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ABSTRACT 

 

This report presents optimization of abrasives machining of ductile cast iron using water 

based SiO2 nanocoolant. Conventional and nanocoolant grinding was peerformed using 

the precision surface grinding machine. Study was made to invetigate the effect of table 

speed and depth of cut towards the surface roughness and MRR. The best output 

parameters between conventional and SiO2 nanocoolant are carry out at the end of the 

experiment. Mathematical modeling is developed using the response surface method. 

Artificial neural network (ANN) model is developed for predicting the results of the 

surface roughness and MRR. Multi-Layer Perception (MLP) along with batch back 

propagation algorithm are used. MLP is a gradient descent technique to minimize the 

error through a particular training pattern in which it adjusts the weight by a small 

amount at a time. From the experiment, depth of cut is directly proportional with the 

surface roughness but for the table speed, it is inversely proportional to the surface 

roughness. For the MRR, the higher the value of depth of cut, the lower the value of 

MRR and for the table speed is vice versa.  As the conclusion, the optimize value for 

each parameters are obtain where the value of surface roughness and MRR itself was 

0.174 µm and 0.101cm
3
/s for the conventional- single pass, 0.186 µm and 0.010 cm

3
/s 

for SiO2- single pass, 0.191µm and 0.115cm
3
/s for conventional-multiple pass, and 

0.240µm and 0.112 cm
3
/s for the SiO2- multiple pass. 
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ABSTRAK 

 

Laporan ini membincangkan tentang pengoptimuman pemesinan pelelas besi tuang 

mulur menggunakan SiO2 nanopartikel. Kajian telah dibuat keatas kesan kelajuan meja 

dan kedalaman pemotongan terhadap kekasaran permukaan dan kadar penyingkiran 

bahan. Parameter output terbaik antara konvensional dan SiO2 nanopartikel diperolehi 

pada akhir eksperimen. Pemodelan matematik dibangunkan dengan menggunakan 

kaedah respons permukaan. Model rangkaian neural tiruan dibangunkan untuk 

meramalkan keputusan kekasaran permukaan dan kadar penyingkiran bahan. Persepsi 

pelbagai lapisan bersama-sama dengan kelompok algoritma perambatan belakang 

digunakan. Persepsi pelbagai lapisan adalah teknik untuk mendapatkan kecerunan untuk 

meminimumkan kesilapan melalui corak latihan tertentu di mana ia menyesuaikan berat 

oleh jumlah kecil pada satu-satu masa. Daripada ujikaji tersebut, kedalaman 

pemotongan adalah berkadar langsung dengan kekasaran permukaan tetapi untuk 

kelajuan jadual, ia adalah berkadar songsang dengan kekasaran permukaan. Untuk kadar 

penyingkiran bahan, semakin tinggi nilai kedalaman pemotongan, lebih rendah nilai 

kadar penyingkiran bahan dan untuk kelajuan jadual adalah sebaliknya. Sebagai 

kesimpulan, mengoptimumkan nilai bagi setiap parameter adalah mendapatkan di mana 

nilai kekasaran permukaan dan MRR sendiri adalah 0,174 μm dan 0.101cm
3
 / s untuk 

pas konvensional-tunggal, 0,186 μm dan 0,010 cm
3
 / s untuk pas SiO2-tunggal, 0,191 

μm dan 0.115cm
3
 / s pas konvensional berganda, dan 0.240μm dan 0,112 cm

3
 / s untuk 

pas SiO2-pelbagai. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 BACKGROUND 

 

Grinding is a manufacturing process with unsteady process behavior, whose 

complex characteristic determine the technological output and quality (Krajnik et al., 

2005). Grinding is actually a finishing process used to improve surface finish, abrade 

hard materials, and tighten the tolerance on flat and cylindrical surface by removing a 

small amount of material. In grinding, an abrasive material rubs against the metal part 

and removes tiny pieces of material. The abrasive material is typically on the surface of 

wheel and abrades material in a way similar to sanding. On a microscopic scale, the 

chip formation in grinding is the same as that found in other machining process. The 

abrasive action of grinding generates excessive heat so that flooding of the cutting area 

with fluid is necessary. The selection of appropriate base fluid is very critical in the 

application of nanoparticles based lubricants in grinding. Grinding may be performed on 

a surface grinding machine which feeds the workpiece into the cutting tool. A 

cylindrical grinding machine which rotates the workpiece as the cutting tool feeds into 

it. Amount of material removal rate (MRR) are depend largely on the amount of the 

machine current and the spark on time in the cutting process (Newman and Ho, 2004). 

The speed of the material removal rate is specified on the rate the material that has 

being removed. The MRR are influenced by the melting temperature of the workpiece, 

the lower melting temperature will gave faster MRR (Helmi et al., 2010). The quality of 

machined surface is characterized by the accuracy of its manufacture with respect to the 

dimension specified by the designer. Every machining operation leaves characteristic 

evidence on the machined surface. This evidenced in form of finely spaced micro 

irregularities left by the cutting tool. Each type of cutting tool leaves its own individual 
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pattern which therefore can be identified. This pattern is known as surface roughness. 

Surface roughness is one of the most important factors for evaluating workpiece quality 

during the finishing process because the quality of surface affects the functional 

characteristics of the workpiece such as fatigue and fracture resistance and surface 

friction (Samhouri and Surgenor, 2005). 

 

Nanofluids have the potential to be the next generation of coolants due to their 

significantly higher thermal conductivities. Nanofluids are formed by dispersing 

nanoparticles in base fluids such as water. It has been reported that the thermal 

conductivities of nanofluids increase dramatically due to the high thermal conductivity 

of solid particles suspended in the heat transfer fluid (Ding et al., 2009). 

Nanofluids/nanoparticles are particles that have one dimension that is 100 nanometers 

or less in size. The properties of many conventional materials change when formed from 

nanoparticles. This is typically because nanoparticles have a greater surface area per 

weight than larger particles; this causes them to be more reactive to certain other 

molecules. Nanoparticles are used, or being evaluated for use in many fields especially 

in medication and engineering fields. 

 

The machining process is very complex, thus experimental and analytical 

models that are developed by using conventional approaches such as the statistical 

regression technique which is combined with the Response surface methodology (RSM) 

have remained as an alternative in the modeling of the machining process. RSM is 

practical, economical and relatively easy for used. The experimental data was utilized to 

build mathematical model for first-and-second order model by regression method. 

Bradley (2007) stated that when the response can be defined by a linear function of 

independent variables, then the approximating function is a first order model.  

 

An artificial neural network is a system based on the operation of biological 

neural networks, in other words, is an emulation of biological neural system. Artificial 

neural network would be implementation necessary because although computing 

nowadays is truly advanced, there are certain tasks that a program made for a common 

microprocessor is unable to perform. Artificial neural network (ANN) has been 

developed as generalizations of mathematical models of biological nervous systems 



3 
 

(Abraham, 2005). A first wave of interest in neural networks also known as 

connectionist models or parallel distributed processing emerged after the introduction of 

simplified neurons by McCulloch and Pitts (1943). 

 

1.2 PROBLEM STATEMENT 

 

The environmental issues in machining industry concern mostly the cutting 

fluids. Coolants are widely used in machining processes to cool the tool and workpiece 

and to help remove chips from the cutting zone. Despite these benefits, the use of 

cutting fluids can present potential environmental problems. Coolants also cause 

harmful effects for the machine operator, as well as in disposal hazardous waste. In 

addition to the base oil, cutting fluids contain many kinds of additives such as 

emulsifiers, antioxidants, bactericides, tensides, EP-additives, corrosion inhibitors, 

agents for preventing foaming and etc. Although the cutting fluids are gradually being 

developed to be safer for the users and environment, they still have many disadvantages 

and risks that cannot be eliminated. Cutting fluids are entrained by chips and 

workpieces, and on the other hand, they contaminated machine tools, floor and workers. 

The SiO2 nanoparticle as a coolant is used in this project.  

 

1.3 PROJECT OBJECTIVES 

 

The objectives of this project are as follows: 

 

(i) To investigate the experimental performance of grinding of ductile cast 

iron based on response surface method.  

(ii) To develop optimization model for grinding parameters using a Radial 

Basis Function (RBF) technique, and  

(iii) To investigate the effect of water based SiO2 nanoparticles to the 

precision surface grinding. 
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1.4 PROJECT SCOPES 

 

The scopes of this project are to prepare the Design of Experiment, preparation 

of the SiO2 nanocoolant. The experiment on grinding machine utilizing abrasive 

grinding wheel have to perform using water based SiO2 of ductile cast iron. The 

performance will be carried out and also the material removal rate and surface 

roughness analysis. Statistical analysis using central composite method also will be 

done. The investigation of the effect of SiO2 nanoparticles and conventional cooling 

fluid are using ANN. 

 

1.5 ORGANIZATION OF REPORT 

 

Chapter 2 presents the literature review that focused on recent studies by the 

previous researcher about the topic which is the effect of grinding process parameters 

on surface roughness of the ductile cast iron by using SiO2 nanoparticles as a coolant. 

Chapter 3 will be discussed about the methodology that will conduct for this project 

such as the design of experiment, experiment setup, selection of parameters. Chapter 4 

is about the analysis the results of surface roughness that obtained from the experiment 

due to the parameters selected. Chapter 5 will be summarized the overall finding and 

recommendation for future work. 



 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1  INTRODUCTION 

 

 Grinding is the most common form of abrasive machining. It is a material 

cutting process which engages an abrasive tool whose cutting elements are grains of 

abrasive material known as grit. These grits are characterized by sharp cutting points, 

high hot hardness, and chemical stability and wear resistance. The grits are held 

together by a suitable bonding material to give shape of an abrasive tool. Grinding may 

be classified in to groups as rough or non-precision grinding and precision grinding. 

Snagging and offhand grinding are the common forms of the rough grinding where the 

metal is removed without regard to accuracy. In precision grinding, according to type of 

surface to be ground, it is classified in to external or internal grinding, surface and 

cylindrical grinding (Malkin, 1984). 

 

Material removal in grinding occurs by the interaction of abrasive grains in the 

grinding wheel with the workpiece at extremely high speeds and shallow penetration 

depths (Malkin, 1984). Therefore some practical methods are described for optimization 

of the grinding and dressing parameters by combining the grinding energy model and 

thermal analysis together with empirical relationships for surface finish and the 

influence of dressing parameters on grinding performance. For grinding of steels with 

aluminium oxide abrasive, it has been postulated that the controlling chemical reaction 

is the formation of a spindle between the oxidized metal and the aluminium oxide, 

which act as a transition layer for adhesion. In this case, lubrication effectiveness of 

grinding fluids might be attributed in part to their ability to reduce metal adhesion by 

inhibity spindle formation and also the sticking of metal chips to each other. 
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2.2 TYPES OF GRINDING 

 

 Grinding machines were originally used almost exclusively for truing tools steel 

parts, which were distorted by hardening. The great improvements have been made both 

in grinding machines and abrasive wheels, however, result from the application of the 

grinding process to the finishing of many unhardened parts. There are various types of 

grinding including the centerless grinding, cylindrical grinding, surface grinding, 

centered grinding and contour grinding. 

 

Centerless Grinding: Centerless grinding is an abrasive machining process by which 

small chips of material are removed from the external surface of a cylindrical metallic 

or nonmetallic workpiece. This process relies on the relative rotations of the grinding 

wheel and regulating wheel to rotate the workpiece. The process does not require 

chucking or locating the workpiece between centers for rotation (Todd et al., 1994). 

Characteristic of this process requires no chucking or mounting of the workpiece. The 

centerless grinding also produces close tolerances and smooth surfaces. This process is 

applicable for cylindrical, stepped, formed and crucial workpiece. As other types of 

grinding, centerless grinding also requires coolant and is a primarily a finishing process 

(see Figure 2.1). 

 

 

 

Figure 2.1: Centerless Grinding 

 

Cylindrical Grinding:  Cylindrical grinding is an abrasive machining process in which 

material is removed from the external surface of a metallic or nonmetallic cylindrical 

STATIONARY WHEEL 

WORKPIECE 

MOVING WHEEL 

PRESSURE 

WORKPIECE 
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workpiece by rotating the grinding wheel and workpiece in opposite directions while 

they are in contact with one another. The workpiece is mounted between centers and is 

rotated by means of a workpiece holder (Todd et al., 1994). The characteristic of this 

process is to produce straight tapered and formed workpiece. It is only used for 

cylindrical workpiece. Cylindrical grinding produces highly accurate surfaces and 

smooth finishes and also primarily a final machining process. 

 

Surface Grinding: Surface grinders are machine tools used to provide precision 

regarding the level, size or finish of the surfaces. The longitudinal feed is usually 

powered by hydraulics or cross feed, and any mixture of hand, electrical or hydraulics 

operation styles may be used depending on the ultimate usage of the machine. There are 

a few types of surface grinding which are horizontal-spindle, vertical-spindle, vertical-

spindle rotary grinding, horizontal spindle single disk, and vertical swivel head 

grinding. Figure 2.2 shows the various types of cylindrical grinding (source: Efunda 

Global). 

 

Centered Grinding: Grinding for surfaces of rotation (axially symmetric surfaces) can 

be either centered or centerless. Centered grinding involves fixturing the part on a 

spindle axis as it is ground as Figure 2.3 (source: Efunda Global). This configuration 

can be compared to fixturing a part on a lathe with or without a tail stock. The abrasive 

material is on a grinding wheel that rotates in a direction such that rolling or sliding 

contact occurs where the wheel and workpiece touch. Centered grinding is accurate and 

stable, but setup takes time and through put surface. 
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Figure 2.2: Surface Grinding 
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Figure 2.3: Centered grinding 

 

2.3 THERMAL ANALYSIS 

 

 A thermal model of the wet grinding process has been used to predict the 

temperature at the workpiece surface. The model considers that the heat sources during 

grinding are from the abrasive grain workpiece interface and the shear plane between 

the workpiece and chip. During grinding, the power and energy is transmitted as well as 

heat is generated in the contact zone of the workpiece and grinding wheel. The 

sliding/friction may raise variety of modes of metal removal, including the plastic 

grooving which is relatively affect surface roughness. It is sensitive to material 

properties such as hardness, fatigue strength, toughness the operative values of which 

being dependent upon the strain, strain rate, and temperature generated in the contact 

zone. An excessive heat generates affect to the surface roughness (Kalpakjian and 

Schmid, 2001). In the metal working industry, the grinding process is a very important 

method of producing a precision part. For ductile materials, the specific energy 

generated during a grinding process is generally very high, and is mostly dissipated as 

heat in the wheel-workpiece contact (Liao et al., 1998). The removal rates can be 

achieved in grinding by the temperature generated. The grinding process required a high 

level of energy, which is virtually all dissipated as heat over a restricted area. The 

resulting temperatures can cause various types of surface damage such as burning with 

steels, softening (tempering) of the surface larger with possible rehardening, 

unfavorable residual tensile stresses, cracks, and distortions (Malkin, 1984). 
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2.4 GRINDING PARAMETERS 

 

There are a few of parameters need to be considered in order to do grinding 

process such as the component centre height, h, longitudinal dressing feed-rate, fd, the 

control wheel speed, nr, the in-feed speed, υfa, depth of cut  and many more. When the 

process planner has a prior knowledge about the product quality likely to be produced 

on a component during grinding, optimum process sequence design and process 

parameter selection is feasible. A need therefore exists to develop intelligent predictive 

product quality performance and the process conditions. The qualities of machined parts 

play a crucial role in the functional capacity of the part and therefore, a great deal of 

attention should be paid to keep consistent tolerances (Malkin, 1984). The machining 

process has an important place in the traditional production industry. Cost effectiveness 

of all machining process has been eagerly investigated. This is mainly affected selection 

of suitable machining parameters like cutting speed, feed rate and depth of cut 

according to cutting tool and workpiece material. The selection of optimum machining 

parameters will result in longer tool life, better surface finish and higher removal rate 

(Cakir et al., 2007). 

 

Depth of Cut: The increase in depth of cut during grinding process increases the 

surface roughness value and roundness error. Effect of depth of cut is an important 

aspect on roundness error (Malkin, 1984). This is because of more metal removal at 

higher depth of cut. 

 

Grinding Feed Rate:  When feed rate is increased, the arithmetic mean roughness 

value (Ra) also increased and gives poor finish. Because of higher feed rate the metal 

removal is not uniform and it may not remove the material and also due to high 

vibration of grinding machine which result in the bad quality product, i.e. - high surface 

roughness and roundness error (Malkin, 1984). 

 

Material Removal Rate: High efficiency deep grinding with its high material removal 

rate offers the potential to improve cycle times whilst maintaining surface integrity, 

form and finish requirements (Comley et al., 2006). 
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Surface Roughness: Grinding is used in the metal working industry to produce parts of 

high quality surface finish and geometry. Surface roughness is one of the most 

important factors for evaluating workpiece quality during the finishing process because 

the quality of surface affects the functional characteristics of the workpiece such as 

fatigue and fracture resistance and surface friction (Samhouri and Surgenor, 2005). 

Surface roughness is one of the most important factors of workpiece in grinding 

process. The ground surface is affected by the wheel surface and wheel should be 

dressed before the ground surface deteriorates beyond a quality limit of surface 

integrity. The surface roughness of workpiece in grinding process is influenced and 

determined by the disc dressing conditions due to effects of dressing process on the 

wheel surface topography. In this way, prediction of the surface roughness helps to 

optimize the disc dressing conditions to improve surface roughness (Baseri et al., 2008). 

 

2.5 SELECTION OF THE GRINDING WHEEL 

 

A successful grinding is based on a qualified operator who has strong knowledge 

about the shapes, types and the properties of the grinding wheels and people have to 

know how to use all kinds of wheels in different conditions. 

  

2.5.1 Grinding Wheel 

 

The most typical materials for the grinding wheel are aluminium oxide and 

silicon carbide. The material of aluminium oxide is not as hard and fragile as silicon 

carbide, it is suitable for grinding the metals with high anti-tensile strength such as 

softer metal, forge iron and bronze. The crystals of the silicon carbide are very fragile. It 

is suitable for grinding the metals with high anti-tensile strength such as steel, marble 

and glass. The grinding wheel is a bonded abrasive body consisting usually of Al2O3 or 

SiC abrasive grain in a matrix of ceramic, resinoid, or rubber band. Wheels are available 

in different grit sizes and type and in different wheel grades and structures that is 

amounts of bond and porosity, both of which affect the performance and wear 

characteristics of the wheel (Middle, 2005). 
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2.5.2 Grain Density 

 

The grain density is denominated by the sifting capacity, for example, a grain 

has the grain density 24 that means it passed a sifter with 24 net-eye/inch. The 

remaining rough grain density wheels are used for parts that need no fine finishing.  

 

2.5.3 Aluminium Oxide Grinding Wheel  

 

Aluminium oxide, the most common industrial mineral in use today, is used 

either individually or with other materials to form ceramic grains. As an angular, 

durable blasting abrasive, aluminium oxide can be recycled many times. It is the most 

widely used abrasive grain in sand blast finishing and surface preparation because of its 

cost, longevity and hardness. Harder than other commonly used blasting materials, 

aluminium oxide grit powder penetrates and cuts even the hardest metals and sintered 

carbide. Aluminium 50% lighter than metallic media, aluminium oxide abrasive grain 

has twice as many particles per pound. The fast-cutting action minimizes damage to thin 

materials by eliminating surfaces stresses caused by heavier, slower cutting media. 

Aluminium oxide grit powder has a wide variety of applications, from cleaning engine 

heads, valves, pistons and turbines blades in the aircraft industry to lettering in 

monument and marker inscriptions. It is also commonly used for matte finishing as well 

as cleaning and preparing parts for metalizing, plating and welding. 

 

2.5.4 Silicon Carbide Grinding Wheel 

 

Silicon carbide grinding wheels are tools used in manufacturing industry to form 

precision components and continue to be used to increased production rates due to their 

ability to remove high volumes of material at high speeds (Jackson, 2010). Silicon 

carbide is the hardest blasting media available. High-quality silicon carbide media is 

manufactured to a blocky grain shape that splinters. The resulting silicon carbides 

abrasive has sharp edges for blasting. Silicon carbide has a very fast cutting speed and 

can be recycled and reused many more times than sand. The hardness of silicon carbide 

allows for much shorter blast times relative to softer media. Silicon carbide grit is the 

ideal media for use on glass and stone in both suction or siphon and direct pressure blast 
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systems. The ability to be recycled multiple times results in a cost-effective silicon 

carbide grit blast media with optimal etching results. Since silicon carbide grit is harder 

than aluminium oxide, it can be used efficiently for glass engraving and stone etching. 

Silicon carbide grit blast media has no free silica, does not generate static electricity and 

is manufactured to contain minimal magnetic content. 

 

2.6 SELECTION OF CUTTING FLUID 

 

During machining operation, friction between workpiece-cutting tool and cutting 

tool-chip interfaces result high temperature on cutting tool. The effect of this generated 

heat affects shorter tool life, higher surface roughness and lowers the dimensional 

sensitiveness of work material. This result is more important when machining of 

difficult to cut materials, due to occurrences of higher heat (Cakir et al., 2007). The 

influence of cutting fluids on surface finish is relatively small and, in general fluids with 

greater lubricating action impart a somewhat better finish. The more important point is 

to ensure proper filtration of the fluid because suspended particles of abrasive and metal 

can cause deep scratches. Isolated scratch marks are a sure sign of dirty fluid. The 

remedy in such cases is to clean the tank and use magnetic separators at frequent 

intervals. The cutting fluids applied in machining processes basically have three 

characteristics which is cooling effect, lubricating effect and taking away formed chip 

from the cutting zone. 

 

2.6.1 Cooling effect  

 

It is necessary to decrease the effects of temperature on cutting tool and 

machined workpiece. Therefore, a longer tool life will be obtained due to less tool wear 

and the dimensional accuracy of machined workpiece will be improved. 

 

2.6.2 Lubrication effect  

 

This will cause easy chip flow on the rake face of cutting tool because of low 

friction coefficient. This would also result in the increased by the chips. Moreover, the 

influence of lubrication would cause less built-up edge when machining some materials 
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such as aluminium and its alloys. As a result, better surface roughness would be 

observed by using cutting fluids in machining processes. 

 

2.6.3 Taking away formed chip from the cutting zone 

 

It is also necessary to take the formed chip away quickly from cutting tool and 

machined workpiece surface. Hence the effect of the formed chip on the machined 

surface would be eliminated causing poor surface finish. Moreover part of the generated 

heat will be taken away by transferring formed chip. 

 

2.7 NANOFLUIDS 

 

Nanofluids are a new class of solid-liquid composite materials consisting of 

solid nanoparticles with at least one critical dimension smaller than -100nm. Much 

attention has been paid in the past decade to this new type of composite material 

because of its enhanced properties and behavior associated with heat transfer (Ding et 

al., 2007). The enhanced thermal behavior of nanofluids could provide a basis for an 

enormous innovation for heat transfer intensification, which is major importance to a 

number of industrial sectors including transportation, power generation, micro-

manufacturing thermal therapy for cancer treatment, chemical and metallurgical sectors. 

Connective heat transfer can be enhanced passively by changing flow geometry, 

boundry conditions, or by enhancing thermal conductivity of the fluid (Wang and 

Mujumdar, 2008). Convective heat transfer refers to heat transfer between a fluid and 

surface due to the macroscopic motion of the fluid relative to the surface (Ding et al., 

2007). 

 

2.8 PREPARATION METHOD FOR NANOFLUIDS 

 

Nanofluids contains two-phase systems which is solid phase and liquid phase. 

Nanofluids have an ability in order to possess enhanced thermophysical properties such 

as thermal conductivity, thermal diffusivity, viscosity and convective heat transfer 

coefficients compared to those of base fluids oil or water. It has proven its potential in 
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many fields. There are two methods in order to prepare the stability mechanisms in 

nanofluids. 

 

2.8.1 Two steps method 

 

The preparation of nanofluids begins by mixing of the base fluid with the 

nanomaterials. In the first step, nanomaterials are synthesized and obtained as powders, 

which are then introduced to the base fluid in the second step. This kind of method is 

the most widely used method in order for preparing nanofluids. Nanoparticles, 

nanofibers, nanotubes or other nanomaterials used in this method are first produced as 

dry powders by chemical or physical methods. The nanosized powder then dispersed 

into a fluid in the second processing step with the help of intensive magnetic force 

agitation, high shear mixing, homogenizing, and ball milling. This method is the most 

economic method to produce nanofluids in large scale, because nanopowder synthesis 

technique has been scaled up to industrial production level (Zu et al., 2009). 

 

2.8.2 One step method 

 

The one-step process consists of simultaneously making and dispersing the 

particles in the fluid. The process of drying, storage, transportation and dispersion of 

nanoparticles are avoided in this method in order to minimize the agglomeration of 

nanoparticles, and the stability of fluids can be increased. One-step physical method 

cannot synthesize nanofluids in large scale, and the cost is also high, so the one-step 

chemical method is developing rapidly (Zu et al., 2009). In contrast, the one-step 

method entails the synthesis of nanoparticles directly in the heat transfer fluid. 

 

2.9 RESPONSE SURFACE METHOD  

 

There are many statistical approaches of assessment of effect process 

parameters. Response surface methodology (RSM) is a collection of statistical 

technique useful for analyzing the effects of several independent variables on the 

response (Box and Draper, 1987). RSM has an important application in the process 

design and optimization as well as the improvement of existing design. This 
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methodology is more practical compared to theoretical models as it arises from 

experimental methodology which includes interactive effects of the variables and 

eventually, it depicts the overall effects of the parameters on the process. 

 

2.10 ARTIFICIAL NEURAL NETWORK  

 

The human brain provides proof of the existence of massive neural networks 

that can succeed at those cognitive, perceptual, and control tasks in which humans are 

successful. The brain is capable of computationally demanding perceptual acts and 

control activities. The advantage of the brain is its effective use of massive parallelism, 

the highly parallel computing structure, and the imprecise information-processing 

capability. The human brain is a collection of more than 10 billion interconnected 

neurons. Each neuron is a cell that uses biochemical reactions to receive process and 

transmit information. Artificial neural networks have been developed as generalizations 

of mathematical models of biological nervous systems (Abraham, 2005).  

 

2.11 RADIAL BASIS FUNCTION 

 

Radial basis functions emerged as a variant of artificial neural network in late 

80’s. However, their roots are entrenched in much older pattern recognition techniques 

as for example potential functions, clustering, functional approximation, spline 

interpolation and mixture models (Tou and Gonzalez, 1974). RBF’s are embedded in a 

two layer neural network, where each hidden unit implements a radial activated 

function. The input into an RBF network is nonlinear while the output is linear (Park 

and Sandberg, 1991). The batch back propagation algorithm is used in layered feed-

forward ANNs. This means that artificial neurons are organized in layers, and send their 

signals forward, and then errors are propagated backwards. The network receives inputs 

by neurons in the input layer, and the output of the network is given by the neurons on 

an output layer. There may be one or more intermediate hidden layers. The batch back 

propagation algorithm uses supervised learning, which means that we provide the 

algorithm with examples of the inputs and outputs we want the network to compute, and 

then the error (difference between actual and expected result) is calculated. The idea of 

the batch back propagation algorithm is to reduce this error, until the ANN learns the 
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training data. The training begins with random weights, and the goal is to adjust them so 

that the error will be minimal (Rumelhart and McClelland, 1986). 

 



 

 

 

CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION  

 

 This chapter discussed about the overall work flow progress of the project which 

is the preparation of workpiece, nanocoolant which is water-based SiO2 nanocoolant, the 

flow of experiment done using the appropriate apparatus. Optimization of abrasive 

machining of ductile cast iron using water-based SiO2 nanoparticles are used a Radial 

Basis Functions approach. There are several parameters for grinding process that had to 

be considering in this project in order to optimize the workpiece such as the depth of 

cut, table speed and type of coolant. This is important to ensure the quality of the 

product is in the best condition. However, the wheel speed needs to be constant due to 

the lack of machine used in the lab. The appropriate apparatus and experimental setup 

need to be prepare in order to achieve the objectives of this research paper. Thus, the 

collected data will be analyzed further and interpreted in suitable way to validate the 

data by compare with previous research. 

 

3.2 WORKPIECE PREPARATION 

 

 A block of the ductile cast iron is taken from the foundry lab. In order to prepare 

the workpiece, the workpiece was cut by the disc cutter into two parts so that it is easy 

to further for the next stage seems the block of the workpiece are big in size. Figure 3.1 

shows the disc cutter machine. The small pieces of the separated workpiece then 

undergo grinding process in order to get the flat surface. The compositions are 

afterwards made to the workpiece to test the quality of the workpiece. Composition is 

defined as something formed in the manner or the resulting state or quality. We had 
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been taking six shots of composition in order to test the quality of the workpiece. 

Workpiece is then undergoing squaring process using the milling machine. Figure 3.2 

shows the operation of Squaring using the milling machine. Milling is a machining 

operation in which a workpiece is fed past a rotating cylindrical tool with multiple 

cutting edges. The axis of rotation of the tool is perpendicular to the feed direction. In 

this experiment, milling process are using in order to get the squaring surface and to 

remove the ingots and to get the 60 mm × 30 mm × 20 mm dimension of the workpiece. 

Figure 3,3 shows the milling machine. The workpiece is then undergoing the band saw 

machine operation. Band saw machine is a machine tool designed to cut material to a 

desired length or contour. This kind of machine is faster and easier than hand sawing 

and is used principally to produce an accurate square or mitered cut on the workpiece. 

The band saws are two common types of sawing machines used to cut metal in the 

machine shop. The band saw uses a reciprocating which is back and forth cutting action 

similar to the one used in a hand hacksaw. It is used for square or angle cutting stock. 

Figure 3.4 shows the operations of the band saw cutting the workpiece.  

 

 

 

Figure 3.1: Disc Cutter 

 

Metal-cutting band saw machines fall into two basics categories which is 

vertical machines and horizontal machines. For this experiment, band saw machine are 

used to cut the material into small pieces. Figure 3.5 shows band saw machine 

(EVERISING S-300HB). The horizontal band saw machine was used in this 

experiment. It is actually a continuous band which revolves around a drive wheel and 
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idler wheel in the band support frame. Two band guides use rollers to twist the band so 

that the teeth are in the proper cutting position. The guides are adjustable and should 

adjust so that they are slightly further apart than the width of the material to be cut. This 

will give maximum support to the saw band and help assure a straight cut. 

 

 

 

Figure 3.2: Squaring using the milling machine 

 

 

 

Figure 3.3: Milling Machine (PARTHNER) 
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Figure 3.4: Operations of the band saw cutting the workpiece 

 

 

 

Figure 3.5: Band saw machine (EVERISING S-300HB) 
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3.3 EXPERIMENTAL DETAILS 

 

 For this experiment, the Precision Surface Grinding Machine (STP-1022ADCII) 

was used. Surface grinding machines and processes are where first developed to 

manufacture very tight tolerances, smooth surface finishes, and removing material from 

very hard materials.  

 

     

 

 

 

 

(c) 

 

Figure 3.6: Precision Surface Grinding Machine (STP-1022ADCII) 

   (a) (b) 
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 The grinding table is then measured using the Tachometer to measure its speed. 

Figure 3.7 shows the tachometer which is an instrument to measures the rotation speed 

of a shaft or disk. In other words, tachometers are utilized to measure the rotating speed 

of any device. By using the tachometer, the speed of the machine is measured in RPM. 

For the experiment, the temperatures of the workpiece need to be taken using infra-red 

thermometer. This is important to record the data in the table for the analysis. Figure 3.8 

shows the infra-red thermometer. 

 

 

 

Figure 3.7: Tachometer 

 

 

 

Figure 3.8: Infra-red thermometer 
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 Grinding wheels are made from many types of grit in a wide range of sizes, in 

conjunction with many bond materials and compositions. For this experiment, the 

silicon carbide abrasive wheels are used for both conventional and nanocoolant 

grinding. Figure 3.9 shows Silicon carbide grinding wheel. Conventional abrasive 

wheels usually comprise the entire bonded abrasive structure. The different type of 

grinding wheels together with the requirement of a wide variety of wheel shapes and 

sizes to fit all the diverse grinding machines and jobs to be done.  

 

Conventional Abrasives Wheel Specification: It is convenient to refer to the standard 

marking system for specifying conventional grinding wheels. The wheel specification 

defines the following parameters: 

 

i) the type of abrasive in the wheel 

ii) the abrasive grain size 

iii) the wheel’s hardness 

iv) the wheel’s structure 

v) the bond type 

 

 

 

Figure 3.9: Silicon carbide grinding wheel 
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 3.4 WATER BASED SiO2 NANOCOOLANT PREPARATION  

 

 For the conventional grinding, the water based coolant used as the coolant. This 

is important so that the surface roughness of this conventional grinding can be compare 

with the surface roughness of nanocoolant grinding. Coolant or cutting fluid widely 

used in metal machining operations. The purpose of coolant are to wash away chips 

from the tool, reduce heat generated reduces, reduces frictions between tool and 

workpiece and also to enhanced tools life. Most of the machines are already installed 

with a coolant system by the manufactured factory itself. This water based coolant are 

contain of 60% of water and 40% of ethylene glycol. The coolant features usually has 

mild alkaline pH. It does not contain toxic elements like sulphur and chlorine. Coolant 

also devoid of bacterial growth due to its special additives. It has an excellent 

anticorrosive property over a wide dilution range.  As it is an aqueous base, it provides 

good cooling effect, which leads increase in the tool life. This coolant will also apply to 

the drilling, grinding, tapping, turning, milling and boring process. Figure 3.10 shows 

water based SiO2 Nanocoolant. 

 

 

 

Figure 3.10: Water Based-Coolant 
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There are two methods in order to prepare the stability mechanisms of 

nanocoolant. They are two-step method and one-step method. For the two-step method, 

nanoparticles are comes directly as a dry powder from the supplier. Then, it is diluted 

the nanoparticles with the distilled water. The nanosized powder then dispersed in the 

distilled water in the second processing step with the help of intensive magnetic force 

agitation, high shear mixing, homogenizing, and ball milling. However, this method is 

economical in order to produce large scale of nanofluids. For this experiment, it is 

prepared the nanofluids using the one-step method since need a small scale of 

nanofluids. This process consists of simultaneously making and dispersing the particles 

in the fluid. Table 3.1 shows the properties of the SiO2 nanoparticles. Figure 3.11 shows 

the prepeation of SIO2 nanofluids using one-step method. 

 

Table 3.1: Properties of the SiO2 nanoparticles 

 

Weight Percent 25 wt% 

Particle Size 30 nm 

Density 2170-2660g/cm
3
 

pH 8-11 amorphous 

 

 

 

Figure 3.11: SiO2 nanocoolant preparation 
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3.5 SURFACE ROUGHNESS TESTER  

 

 Perthometer is a surface roughness measuring device. The Perthometer operates 

by drawing a stylus at constant speed across a 0.56 mm, 1.75 mm, 5.6 mm and 17.5 mm 

length of the surface. The diamond point has a diameter of 5 µm. The length of travel of 

the stylus is divided into 7 equal segments. The first and the last segments axis of the 

panel. A fifth trace was made in the center of the panel with the stylus movement 

perpendicular to the other traces. Measurements made on the backs were essentially the 

same as those made on the fronts. Profile parameter measurements were very consistent 

from one panel to the next. The blast cleaning process was very tightly controlled for 

each of the three blasting conditions, as the sequenced by the uniformly of the data. The 

data was tabulate in the table and will then analyze in the ANOVA. Figure 3.12 shows 

the surface roughness tester using Perthometer.  

 

    

 

                (a)   Mahr Perthometer                  (b) Surface Perthometer 

 

Figure 3.12: Surface roughness tester  

 

3.6 SCANNING ELECTRON MICROSCOPE  

 

 Microstructure analysis is a procedure for testing and analyzing a prepared 

surface of a material. It can generate fine structural images of samples using optical 

microscopy, and combined with careful preparation of the samples, particularly cross-
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sections, allows many aspects of the physical properties of a sample to be analyzed and 

explain. These include: 

 

· Identification and elimination of defects such as contaminants, stains, cracks and 

flaws which can have catastrophic effects on products performances through 

stress concentrators. 

· Failure investigations or evaluation of process improvements in products and 

processes. 

· Microstructure analysis also includes measurement of more fundamentals 

material properties such as mechanical properties and hardness testing. 

 

For this experiment, the microstructure analysis of three depth of cut (DOC) 

parameters thorough the workpiece had been performed which is 0.02 μm, 0.04 μm and 

0.06 μm. Each of the depth of cut was magnified using the 200x and 700x magnifier of 

the microscope. Figure 3.13 shows the scanning electron machine. 

 

 

 

Figure 3.13: Scanning electron machine  
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3.7 DESIGN OF EXPERIMENT  

 

 Before running the experiment, the design of experiment should be design first. 

This is important in order to simplify the experimental and analysis data. For this 

experiment, the JMP 9 software is used to generate the table of DOE. Table 2 shows the 

design of experiment. 

 

Table 3.2: Design of Experiment  

 

Table Speed (mm/s) Depth of Cut (µm) 

333.33 0.2 

333.33 0.4 

333.33 0.6 

500 0.2 

500 0.4 

500 0.6 

666.67 0.2 

666.67 0.4 

666.67 0.6 

 

3.8 RESPONSE SURFACE METHODOLOGY  

 

 In multivariable systems, the classical approach of changing one variable at a 

time to study the effects on other variables for a particular response is time consuming. 

Therefore, an alternative strategy involving statistical approaches, e.g., response surface 

methodology (RSM) was applied to solve for multiple variables in this complex system. 

In this study, the central composite design (CCD) and response surface method were 

applied to optimize the most important operating variables which are table speed and 

depth of cut. Table 3.3 shows experimental values and coded levels of the independent 

variables. The behaviors of the system are described by using the first-order and second-

order analysis. The first order equation is defined as Eq. (3.1). 

 

y = β0 + β1x1 +β2x2 + ε   (3.1) 
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where y is the predicted response, β0 is the interception coefficient, β1 are the linear 

terms, β2 are the quadratic terms, and ε indicates the interactions and the coded levels of 

the independent variables. 

 

The second order equation is expressed as Eq. (3.2): 

 

  y = β0 + β1x1 + β2x2 + β11x
2

11 + β22x
2
22 + β12x1x2  + ε (3.2) 

 

Table 3.3: Experimental values and coded levels of the independent variables 

 

Variable symbol and 

unit 

Independent 

Variable 

Levels 

-1 0 +1 

Table Speed (mm/s) X1 333.33 500.00 666.67 

Depth of Cut (μm) X2 0.02 0.04 0.06 

 

3.9 ARTIFICIAL NEURAL NETWORK  

 

 An Artificial Neural Network (ANN), the most basic and commonly used is the 

multi-layer perception (MLP). It is consists of at least three or more layers which is 

input, output, and number of hidden layers. The batch back propagation is one of the 

famous training algorithms for MLP. For this project, the gradient is determined using a 

technique called batch back propagation, which involves performing computations 

backward through the network. Once the network weights and biases are initialized, the 

network is ready for training. The network can be trained for function approximation 

which is nonlinear regression, pattern association, or pattern classification. The training 

process requires a set of examples of proper network behavior network inputs and target 

outputs. During training the weights and biases of the network are iteratively adjusted to 

minimize the network performance function. The performance function for feed forward 

network is mean square error which means the average squared error between the 

network outputs and the target outputs. All these algorithms use the gradient of the 

performance function to determine how to adjust the weights to minimize performance. 

The objective of developed ANN is to predict the surface roughness and MRR for 

conventional and nanocoolant grinding. The available data set from the experimental 
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study was divided into two sets; training and testing sets. The experimental data set 

consists of 9 values each due to its grinding passes and types of coolant. The ANN 

model was trained using 5 randomly selected data (accounting for 50% of the total data) 

while the remaining four data (accounting for 25% each) was utilized for testing and 

validation of the network performance. 

 

 There are many variations of the batch back propagation algorithm. The simplest 

implementation of batch back propagation learning updates the network weights and 

biases in the direction function decreases most rapidly, the negative of the gradient. 

There are two different ways in which this gradient descent algorithm can be 

implemented: incremental mode and batch mode. In incremental mode, the gradient is 

computed and the weights are updated after each input is applied to the network before 

the weights are updated. In batch mode, the weights and biases of the network are 

updated only after the entire training set has been applied to the network. The gradients 

calculated at each training example are added together to determine the change in the 

weights and biases. The primary objective in the batch back propagation is to explain 

how to use the batch back propagation training functions in the toolbox to train the feed 

forward neural networks to solve specifics problems. There are generally four steps in 

the training process which are: 

 

a) Assemble the training data 

 

The network uses the batch back propagation algorithm for training. The application 

randomly divides input vectors and target input vectors from the experimental data. 

 

-50% from the data are used for training. 

-25% from the data are used to validate that the network is generalizing and to stop 

training before overfitting. 

-The rest 25% are used as a completely independent test of network generalization. 

 

b) Create the network 

 

The architecture of the developed ANN model is shown in Figure 3. 14. 
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Figure 3.14: The architecture of developed ANN model 

 

c) Train the network 

 

During training, the training progress and allows interrupting training at any 

point by clicking stop training. For this experiment we are using the batch back 

propagation algorithm. This training stopped when the validation error increase which 

occurred at iteration 5000. The BP learning algorithms has been used in feed-forward. 

Optimal number of the neurons in the hidden layer was determined by trying different 

networks. The number of neurons is increased from 3 to 7 based on the trial and error 

method in the hidden layer for each analysis (Huseyin and Kayfeci, 2009). 
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3.10 DATA ANALYSIS 

 

Data in Table 3.4-3.7 show the experimental results of the surface roughness and 

material removal rate for conventional and nanofluid coolant. The 0.02 µm, 0.04 µm 

and 0.06 µm for the depth of cut and 333.33 mm/s, 500 mm/s, and 666.67 mm/s for the 

table speed were set. 

 

Table 3.4: Experimental results for conventional-Single pass 

 

Work

piece 

Table 

speed 

(mm/s) 

Depth 

of 

Cut 

(µm) 

Time 

Taken 

(s) 

Mass 

Different 

 (g) 

Density 

of Cast 

Iron 

(g/cm
3
) 

MRR 

(cm
3
/s) 

Surafce 

Roughness 

(µm) 

A 333.33 0.02 0.85 0.152 7.2 0.025 0.304 

B 333.33 0.04 0.85 0.308 7.2 0.050 0.321 

C 333.33 0.06 0.85 0.453 7.2 0.074 0.489 

D 500.00 0.02 0.64 0.147 7.2 0.032 0.241 

E 500.00 0.04 0.64 0.302 7.2 0.066 0.265 

F 500.00 0.06 0.64 0.447 7.2 0.097 0.286 

G 666.67 0.02 0.42 0.138 7.2 0.046 0.151 

H 666.67 0.04 0.42 0.293 7.2 0.097 0.181 

I 666.67 0.06 0.42 0.475 7.2 0.158 0.237 

 

Table 3.5: Experimental results for Silicon Oxide nanocoolant-Single pass 

 

Work

piece 

Table 

speed 

(mm/s) 

Depth 

of 

Cut 

(µm) 

Time 

Taken 

(s) 

Mass 

Different 

 (g) 

Density 

of Cast 

Iron 

(g/cm
3
) 

MRR 

(cm
3
/s) 

Surafce 

Roughness 

(µm) 

A 333.33 0.02 0.80 0.062 7.2 0.011 0.39 

B 333.33 0.04 0.80 0.146 7.2 0.025 0.405 

C 333.33 0.06 0.80 0.281 7.2 0.049 0.468 

D 500.00 0.02 0.62 0.062 7.2 0.014 0.292 

E 500.00 0.04 0.62 0.023 7.2 0.005 0.381 

F 500.00 0.06 0.62 0.27 7.2 0.060 0.388 

G 666.67 0.02 0.44 0.049 7.2 0.015 0.189 

H 666.67 0.04 0.44 0.011 7.2 0.003 0.245 

I 666.67 0.06 0.44 0.178 7.2 0.056 0.277 
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Table 3.6: Experimental results for conventional-Multiple pass 

 

Work

piece 

Table 

speed 

(mm/s) 

Depth 

of 

Cut 

(µm) 

Time 

Taken 

(s) 

Mass 

Different 

 (g) 

Density 

of Cast 

Iron 

(g/cm
3
) 

MRR 

(cm
3
/s) 

Surafce 

Roughness 

(µm) 

A 333.33 0.02 0.87 0.204 7.2 0.033 0.316 

B 333.33 0.04 0.87 0.354 7.2 0.057 0.336 

C 333.33 0.06 0.87 0.512 7.2 0.082 0.402 

D 500.00 0.02 0.65 0.196 7.2 0.042 0.224 

E 500.00 0.04 0.65 0.347 7.2 0.074 0.226 

F 500.00 0.06 0.65 0.498 7.2 0.106 0.276 

G 666.67 0.02 0.42 0.192 7.2 0.063 0.186 

H 666.67 0.04 0.42 0.342 7.2 0.113 0.189 

I 666.67 0.06 0.42 0.487 7.2 0.161 0.233 

 

Table 3.7: Experimental results for Silicon Oxide nanocoolant- Multiple pass 

 

Work

piece 

Table 

speed 

(mm/s) 

Depth 

of 

Cut 

(µm) 

Time 

Taken 

(s) 

Mass 

Different 

 (g) 

Density 

of Cast 

Iron 

(g/cm
3
) 

MRR 

(cm
3
/s) 

Surafce 

Roughness 

(µm) 

A 333.33 0.02 0.84 0.071 7.2 0.012 0.351 

B 333.33 0.04 0.84 0.228 7.2 0.038 0.372 

C 333.33 0.06 0.84 0.473 7.2 0.078 0.374 

D 500.00 0.02 0.68 0.21 7.2 0.043 0.314 

E 500.00 0.04 0.68 0.245 7.2 0.050 0.336 

F 500.00 0.06 0.68 0.114 7.2 0.023 0.361 

G 666.67 0.02 0.47 0.361 7.2 0.107 0.238 

H 666.67 0.04 0.47 0.304 7.2 0.090 0.283 

I 666.67 0.06 0.47 0.208 7.2 0.061 0.293 

 

  

 



 

 

 

CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

4.1 INTRODUCTION 

 

 This chapter is to analyze the results of the experiment and their discussion. The 

method used is response surface methodology and artificial neural network using radial 

basis function network. RSM has an important application in the process design and 

optimization as well as the improvement of existing design. This methodology is more 

practical compared to theoretical models as it arises from experimental methodology 

which includes interactive effects of the variables and eventually, it depicts the overall 

effects of the parameters on the process (Fristak et al., 2012). Artificial neural network 

(ANN) model has been developed. The radial basis function (RBF) network is a three-

layer feed-forward that uses a linear transfer function for the output units and a 

nonlinear transfer function (normally the Gaussian) for the hidden layer neurons. Radial 

basis network may require more neurons than standard feed-forward back propagation 

networks, but often they can be designed with lesser time. They perform well when 

many training data are available (Abraham, 2005).  

 

In order to achieve the objective of the uncertainty analysis and to get a good 

result, there are a few step that required which are selecting the parameters and defined 

the input and output data. For the second step are applied the analytical and numerical 

theory with manual calculation in the Excel. The predicted results are compared with 

the experimental value by calculating percentage of error.  
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4.2 MATHEMATICAL MODELING 

 

After conducting the conventional coolant and SiO2 nanocoolant grinding with 

single and multiple grinding patterns, the experimental data were used to find 

parameters appearing in postulated first order model (FOM) and second order model 

(SOM). RSM comprises a body of methods for exploring for optimum operating 

conditions through experimental methods.  

 

4.2.1 First-Order Modeling 

 

Table 4.1 and Table 4.2 are presented the ANOVA results for conventional coolant and 

SiO2 nanocoolant respectively. The R
2
 is 0.98 and the RMSE is just 0.0075. The P-value 

for MRR recorded 0.001 and the P-value of lack of fit recorded 0.7557 (Table 4.1). The 

R
2
 is 0.65 and the RMSE is just 0.0155. The P-value of lack of fit recorded 0.7623 

(Table 4.2). Regression equation with low P-value (<0.05) indicates that the model is 

considered to be statistically significant (Fristak et al., 2012). Value of P < 0.0001 

indicates statistical significance of a quadratic model. On the basis of this investigation, 

the relationship between the independent variables (table speed, depth of cut) and the 

response (surface roughness, MRR) can be explained according to the regression model. 

The goodness of the model can be confirmed by the coefficient of determination R
2 

are 

close to 1, which are very high indicate a high correlation between the experimental and 

predicted values. However, there are two outleirs at the graph which indicates the 

insignificant of the results due to the error during the experiment. Figure 4.1(c) shows 

the result of multiple pass of conventional grinding. The R
2
 is 0.97 and the RMSE is just 

0.0074. The p-value of ANOVA recorded 0.001 and the p-value of lack of fit recorded 

0.8726 (Table 4.1).  Figure 4.1(d) shows the result of multiple pass of silicon oxide 

nanocoolant grinding. The R
2
 is 0.73 and the RMSE is 0.0191. The p-value of ANOVA 

recorded 0.0379 and the p-value of lack of fit recorded 0.3655 (Table 4.2). Just like 

Figure 4.1(b), there are also two outliers at the graph which indicates the insignificant of 

the results due to the error during the experiment. 
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Table 4.1: ANOVA results for conventional coolant grinding 

 

Source Degree of freedom Sum of sq. F-static P-value 

Single pass grinding 

Model 3 0.01323234 78.0739 <.0001 

Error 6 0.00033897   

C Total 9 0.01357131   

Lack-of-Fit  5 0.00025144 0.5745 0.7557 

Pure Error 1 0.00008753   

Total Error 6 0.00033897   

Multiple pass grinding 

Model 3 0.01266105 77.8424 <.0001 

Error 6 0.00032530   

C Total 9 0.01298635   

Lack-of-Fit  5 0.00019517 0.3000 0.8726 

Pure Error 1 0.00013013   

Total Error 6 0.00032530   

 

Table 4.2: ANOVA results for SiO2 nanocoolant grinding 

 

Source Degree of freedom Sum of sq. F-static P-value 

Single pass grinding 

Model 3 0.00263589 3.6429 0.0834 

Error 6 0.00144714   

C Total 9 0.00408303   

Lack-of-Fit  5 0.00106445 0.5563 0.7623 

Pure Error 1 0.00038269   

Total Error 6 0.00144714   

Multiple pass grinding 

Model 3 0.00594974 5.4442 0.0379 

Error 6 0.00218572   

C Total 9 0.00813546   

Lack-of-Fit  5 0.00209623 4.6849 0.3365 

Pure Error 1 0.00008949   

Total Error 6 0.00218572   

 

The mathematical model of material removal rate for conventional coolant and SiO2 

nanocoolant with single pass and multiple pass grinding as follows: 

 

).Cut(Depth of eed+ Table Sp

ut Depth of C.d + Table Spee. + . = ingle

015560

037620025070072200MRR pass s-Conv

´´

´´
-

    (4.1) 
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).Cut(Depth of eed+ Table Sp

ut Depth of C.d + Table Spee. + . = 

012100

035210027800082120MRR pass multiple-Conv

´´

´´
-

   (4.2) 

 

 
).Cut(Depth of eed+ Table Sp

ut Depth of C.d + Table Spee. + -. = 

000670

020890001630027370MRR pass singleSiO2

´´

´´
-

   (4.3) 

 

). - Cut (Depth ofeed+ Table Sp

ut Depth of C.d + Table Spee. + .= iO

027920

0002750021720053830MRR pass multiple2S

´´

´´
-

   (4.4) 

 

       

       (a)             (b) 

         

   (c)            (d) 

Figure 4.1: (a): Conventional-Single pass, (b): SiO2-Single pass, (c): Conventional-

Multiple pass, (d): SiO2-Multiple pass 

 

 Figure 4.2 shows the trends of surface plot of the depth of cut and table speed 

versus material removal rate. The depth of cut is inversely proportional with the 

material removal rate. As the DOC is increase, the specimen surface is smoother. 
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Different with the table speed, it is directly proportional with the MRR. The increasing 

in the table speed, will give the high value of MRR. 

 

  

        (a) Conventional-Single pass                               (b) SiO2-Single pass 

  

          (c) Conventional-Multiple pass  (d) SiO2-Multiple pass 

 

Figure 4.2: Contour plot for first order RSM model 

 

4.2.2 Second Order Modeling 

 

Table 4.3 and Table 4.4 are presented the ANOVA results for second order 

modeling of MRR for conventional coolant and SiO2 nanocoolant grinding 

respectively. The P-value of lack for both cases are more that 0.005. Therefore, both 

models are adequate and fit for analysis. Figure 4.3(b) shows the result of single pass 

silicon oxide nanocoolant grinding. Figure 4.3(c) shows the result of multiple pass of 
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conventional grinding. However, there are one outleirs at the graph which indicates the 

insignificant of the results due to the error during the experiment. Figure 4.3(a), there 

are also one outleirs at the graph which indicates the insignificant of the results due to 

the error during the experiment. Figure 4.3(d) shows the result of multiple pass of 

silicon oxide nanocoolant grinding. Predicted values by SOM are found in good 

agreement with experimental readings (Table 4.3 and 4.4).  

 

Table 4.3: ANOVA Results of second-order model for conventional grinding 

 

Source Degree of freedom Sum of sq. F-static P-value 

Single pass grinding 

Model 5 0.01334571 47.3250 0.0012 

Error 4 0.00022560   

C Total 9 0.01357131   

Lack-of-Fit  3 0.00013807 0.5258 0.7383 

Pure Error 1 0.00008753   

Total Error 4 0.00022560   

Multiple pass grinding 

Model 5 0.01279319 52.9849 0.0010 

Error 4 0.00019316   

C Total 9 0.01298635   

Lack-of-Fit  3 0.00006303 0.1615 0.9114 

Pure Error 1 0.00013013   

Total Error 4 0.00019316   

 

Table 4.4: ANOVA Results of second-order model for SiO2 nanocoolant 

 

Source Degree of freedom Sum of sq. F-static P-value 

Single pass grinding 

Model 5 0.00342293 4.1484 0.0964 

Error 4 0.00066010   

C Total 9 0.00408303   

Lack-of-Fit  3 0.00027741 0.2416 0.8625 

Pure Error 1 0.00038269   

Total Error 4 0.00066010   

Multiple pass grinding 

Model 5 0.00761519 11.7096 0.0168 

Error 4 0.00052027   

C Total 9 0.00813546   

Lack-of-Fit  3 0.00043078 1.6046 0.5125 

Pure Error 1 0.00008949   

Total Error 4 0.00052027   
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          (a)        (b) 

      

           (c)                (d) 

 

Figure 4.3: (a): Conventional-Single pass, (b): SiO2-Single pass, (c): Conventional-

Multiple pass, (d): SiO2-Multiple pass 

 

 Figure 4.4 shows the trends of surface plot of the depth of cut and table speed 

versus material removal rate. The depth of cut is inversely proportional with the 

material removal rate. As the DOC is increase, the specimen surface will be smoother. 

Different with the table speed, it is directly proportional with the MRR. The increasing 

in the table speed, will give the high value of MRR. The mathematical model of 

material removal rate for conventional coolant and SiO2 nanocoolant with single pass 

and multiple pass grinding as follows: 

 

).-(DOC)+ DOC.(TS) + TS.(DOC*+ TS

DOC .TS + . + . =ingle

002280006870015560

037620025070069440MRR pass s-Conv

´´´´´

´´
-

             (4.5) 
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).(DOC) + DOC.-(TS) + TS.(DOC

 DOC + TS.TS + . +-. =multiple

018310004470000670

020890001630018930MRR pass-Conv

´´´´´

´´´
-

                  (4.6) 

 

).- (DOC) + DOC.(TS) + TS.(DOC+ TS

DOC .TS + . + . =gle

0035100071480012100

035210027800079930 MRR pass sin-SiO2

´´´´´´

´´
-

       (4.7) 

 

).-(DOC) + DOC.(TS) + TS.-(DOC+ TS

DOC .TS + . + . = multiple

003970026710027920

000270021720402030MRR pass-SiO2

´´´´´´

´´
-

         (4.8) 

 

  

         (a) Conventional-Single pass                          (b) SiO2-Single pass 

  

      (c) Conventional-Multiple pass   (d) SiO2-Multiple pass 

 

Figure 4.4: Contour plot for second order RSM model  
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4.3 ARTIFICIAL NEURAL NETWORK ANALYSIS 

 

The ANN model is developed for predicting the surface roughness and MRR. 

The prediction of trained ANN for DOC and table speed is selected. To develop of 

ANN model, the network is processed through two stages which are training stage and 

testing/validation stage. In the training stage, the network is tested to stop or continue 

training it, and it is used to predict an output. It is also used to calculate different 

measures of error. The network training process is stopped when the testing error is 

within the tolerance limits. Table 4.5 and Table 4.6 present the architecture search of 

surface roughness and MRR for single pass conventional as well as SiO2 nancoolant 

respectively. ID 2 is selected for surface roughness and MRR prediction due to the 

highest R
2
 values.  

 

Table 4.5: Architecture search for conventional-Single Pass 

 

ID N F TE VE TE C R-S SR 

Surface Roughness 

1 1 0.993363 0.004693 0.050774 0.093447 0.999091 0.993363 AID 

2 18 0.998635 0.002059 0.031362 0.111193 0.999850 0.998635 AID 

3 11 0.804160 0.039303 0.032449 0.025787 0.945085 0.804160 AID 

4 7 0.997642 0.002858 0.038934 0.101472 0.999688 0.997642 AID 

5 4 0.787351 0.040488 0.030528 0.024483 0.933355 0.787351 AID 

6 9 0.819304 0.036797 0.032549 0.028433 0.950760 0.819304 AID 

7 5 0.842703 0.032950 0.023230 0.028502 0.950913 0.842703 AID 

8 8 0.872363 0.872363 0.019369 0.032271 0.964055 0.872363 AID 

9 6 0.997159 0.997159 0.043469 0.095310 0.999648 0.997159 AID 

MRR 

1 1 0.974346 0.003107 0.001598 0.027060 0.992006 0.974346 AID 

2 18 0.996238 0.000757 0.004100 0.021158 0.999241 0.996238 AID 

3 11 0.994517 0.001216 0.003415 0.023088 0.998636 0.994517 AID 

4 7 0.968235 0.003091 0.002929 0.025573 0.988577 0.968235 AID 

5 15 0.986512 0.001634 0.004652 0.029285 0.996451 0.986512 AID 

6 13 0.977519 0.002242 0.003272 0.030718 0.993174 0.977519 AID 

7 9 0.994106 0.001177 0.008614 0.068105 0.998540 0.994106 AID 

8 12 0.994092 0.001161 0.009081 0.062635 0.998629 0.994092 AID 

9 10 0.992901 0.001516 0.006479 0.053474 0.998005 0.992901 AID 

Note: N= Neurons, F= Fitness, TE= Training error, VE= Validation error, TE= Testing 

error, C= Correlation, R-S= R-square, SR= Stop reason AID = All iterations done 
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Table 4.6: Architecture search for SiO2-Single Pass 

 

ID N F TE VE TE C R-S SR 

Surface Roughness 

1 1 0.016492 0.074381 0.041492 0.094811 0.129275 0.016492 AID 

2 15 12.52008 0.271154 0.250308 0.301681 0.497682 0.599643 AID 

3 9 0.995377 0.005061 0.060476 0.012381 0.997687 0.995377 AID 

4 5 0.574334 0.051339 0.068071 0.044394 0.783732 0.574334 AID 

5 12 5.379968 0.174837 0.018664 0.134686 0.307635 0.537865 AID 

6 13 0.790775 0.033949 0.168071 0.125832 0.902696 0.790775 AID 

7 10 0.969234 0.013100 0.017406 0.078031 0.984737 0.969234 AID 

8 11 0.993113 0.006186 0.325791 0.149633 0.996552 0.993113 AID 

9 6 0.995695 0.001483 0.018340 0.011342 0.995678 0.988657 AID 

MRR 

1 1 0.949016 0.004825 0.007608 0.013993 0.975919 0.949016 AID 

2 18 0.115413 0.017326 0.006561 0.015482 0.541852 0.115413 AID 

3 11 0.177758 0.023372 0.014597 0.012648 0.170887 0.177758 AID 

4 7 0.132705 0.023667 0.021662 0.010353 0.365379 0.132705 AID 

5 4 0.995004 0.001335 0.017738 0.011900 0.998972 0.995004 AID 

6 9 0.997908 0.000813 0.021336 0.010965 0.999647 0.997908 AID 

7 5 0.996251 0.001140 0.020575 0.010338 0.999314 0.996251 AID 

8 8 0.997555 0.000875 0.024212 0.011237 0.999568 0.997555 AID 

9 6 0.988691 0.002223 0.018248 0.011262 0.996621 0.988691 AID 

Note: N= Neurons, F= Fitness, TE= Training error, VE= Validation error, TE= Testing 

error, C= Correlation, R-S= R-square, SR= Stop reason AID = All iterations done 

 

Figure 4.5 shows the actual versus predicted values for conventional-single pass 

by ANN Analysis. The blue line indicates the experimental output and the red line 

indicates the prediction output (target). The performance of the ANN prediction was 

evaluated by a regression analysis between the predicted and the experimental values. 

The ANN prediction yields the statistical coefficient for both of the regression lines are 

giving the correlation coefficient (R
2
) value 0.99 and 0.98 for surface roughness and 

MRR respectively. The regression coefficients obtained from testing of the ANN were 

good and within the acceptable limits in both cases. As the correlation coefficient 

approaches to 1, the accuracy of the prediction improves (Kurt and Kayfeci, 2009). The 

correlation coefficient range is very close to 1, hence it indicates excellent agreement 

between the experimental and the ANN predicted results.  
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(a) Surface Roughness 

 

(b) MRR 

Figure 4.5: Actual versus predicted values for conventional-single pass  

 

Similarly, Figure 4.6 shows the actual versus predicted values for conventional-

single pass by ANN Analysis. The blue line indicates the experimental output and the 

red line indicates the prediction output (target). The ANN prediction yields the 

statistical coefficients are giving the correlation coefficient (R
2
) value 0.99 for both 

cases. The regression coefficients obtained from testing of the ANN were perfect and 

within the acceptable limits in both cases. As the correlation coefficient approaches to 1, 
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the accuracy of the prediction advances. Thus, the correlation coefficient range is very 

close to 1. Consequently, it indicates excellent agreement between the experimental and 

the ANN predicted results. Table 4.7 and Table 4.8 show the range of input and output 

parameters values for conventional and SiO2 nanocoolant single pass and multiple pass 

grinding respectively. Table 4.9 and Table 4.10 are presented for architecture search for 

conventional coolant and SiO2 nanocoolant with multiple pass grinding respectively. 

 

 

(a) Surface Roughness 

 

(b) MRR 

Figure 4.6: Actual versus predicted values for SiO2-single pass 
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Table 4.7: The range of input and output parameters values for single pass grinding 

 

Parameters Minimum Maximum 

Conventional grinding 

Table Speed (mm/s) 333.33 666.67 

Depth of Cut (μm) 0.02 0.06 

Surface Roughness (μm) 0.170 0.457 

Material Removal Rate (cm
3
/s) 0.027 0.152 

SiO2 nanocoolant grinding 

Table Speed (mm/s) 333.33 666.67 

Depth of Cut (μm) 0.02 0.06 

Surafce Roughness (μm) 0.186 0.457 

Material Removal Rate (cm
3
/s) 0.010 0.058 

 

Table 4.8: The range of input and output parameters values for multiple pass grinding 

 

Parameters Minimum Maximum 

Conventional coolant 

Table Speed (mm/s) 333.33 666.67 

Depth of Cut (μm) 0.02 0.06 

Surafce Roughness (μm) 0.187 0.400 

Material Removal Rate (cm
3
/s) 0.033 0.159 

SiO2 nanocoolant 

Table Speed (mm/s) 333.33 666.67 

Depth of Cut (μm) 0.02 0.06 

Surafce Roughness (μm) 0.2239 0.375 

Material Removal Rate (cm
3
/s) 0.013 0.112 

 

Figure 4.7 and Figure 4.8 show actual and predicted values for conventional 

coolant and SiO2 nanocoolant with multiple pass grinding respectively. The 

performance of the neural network prediction was evaluated by a regression analysis 

between the predicted and the experimental values. The regression coefficients obtained 

from testing of the ANN were perfect and within the acceptable limits in both cases. As 

the correlation coefficient approaches to 1, the accuracy of the prediction is acceptable. 

The correlation coefficient range is very close to 1. Thus it indicates excellent 

agreement between the experimental and the ANN predicted results. 
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Table 4.9: Architecture search for conventional with multiple pass grinding 

 

ID N F TE VE TE C R-S SR 

Surface Roughness 

1 1 0.883953 0.022513 0.004986 0.013174 0.986941 0.883953 AID 

2 18 0.998321 0.002172 0.012646 0.028586 0.999780 0.998321 AID 

3 11 0.988417 0.007610 0.016988 0.029194 0.998375 0.988417 AID 

4 7 0.979744 0.010036 0.013179 0.029276 0.997141 0.979744 AID 

5 15 0.989209 0.007556 0.020554 0.030841 0.998260 0.989209 AID 

6 13 0.987268 0.008047 0.005581 0.028366 0.997699 0.987268 AID 

7 16 0.993438 0.004869 0.009234 0.029381 0.999467 0.993438 AID 

8 17 0.989079 0.006394 0.005369 0.035876 0.998707 0.989079 AID 

MRR 

1 1 0.991968 0.001431 0.006565 0.023644 0.998313 0.991968 AID 

2 18 0.997905 0.000689 0.005742 0.019354 0.999538 0.997905 AID 

3 11 0.997393 0.000797 0.005898 0.020232 0.999374 0.997393 AID 

4 7 0.995553 0.001062 0.005858 0.021403 0.998847 0.995553 AID 

5 15 0.997747 0.000720 0.002203 0.016833 0.999494 0.997747 AID 

6 13 0.996744 0.000884 0.001452 0.016369 0.999219 0.996744 AID 

7 16 0.996340 0.000959 0.000725 0.010336 0.999101 0.996340 AID 

8 14 0.997379 0.000795 0.002581 0.015343 0.999381 0.997379 AID 

Note: N= Neurons, F= Fitness, TE= Training error, VE= Validation error, TE= Testing 

error, C= Correlation, R-S= R-square, SR= Stop reason AID = All iterations done 

 

Table 4.10: Architecture search for SiO2 nanocoolant with multiple pass grinding 

 

ID N F TE VE TE C R-S SR 

Surface Roughness 

1 1 0.952358 0.008931 0.018053 0.037088 0.984222 0.952358 AID 

2 18 0.995183 0.002422 0.024921 0.031183 0.999099 0.995183 AID 

3 11 0.984284 0.005360 0.016197 0.013763 0.996549 0.984284 AID 

4 7 0.982542 0.005600 0.020976 0.022371 0.996423 0.982542 AID 

5 15 0.990264 0.003976 0.020695 0.024468 0.998350 0.990264 AID 

6 13 0.990996 0.003833 0.022881 0.017140 0.998422 0.990996 AID 

7 14 0.989989 0.004026 0.009807 0.025953 0.998105 0.989989 AID 

8 12 0.988438 0.004399 0.007814 0.011753 0.998019 0.988438 AID 

MRR 

1 1 -0.315868 0.028451 0.006431 0.028397 0.160204 0.315868 AID 

2 18 0.628088 0.014661 0.005098 0.042006 0.913600 0.628088 AID 

3 11 0.790516 0.011528 0.003650 0.055038 0.971231 0.790516 AID 

4 7 0.966930 0.004116 0.010974 0.073012 0.992002 0.966930 AID 

5 4 0.434784 0.019056 0.011107 0.048682 0.849345 0.434784 AID 

6 9 0.897173 0.008106 0.008975 0.066582 0.983870 0.897173 AID 

7 5 0.307026 0.020752 0.005979 0.043788 0.739724 0.307026 AID 

8 8 0.460940 0.019919 0.008800 0.042534 0.828332 0.460940 AID 

9 6 -0.51821 0.032062 0.009124 0.023176 0.551642 -0.51821 AID 
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(a) Surface Roughness 

 

 

(b) MRR 

(c)  

Figure 4.7: Actual versus predicted values for conventional-Multiple Pass 
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(a) Surface Roughness 

 

 

(b) MRR 

 

Figure 4.8: Actual versus predicted values for SiO2-Multiple Pass 
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4.4 OPTIMIZATION  

 

From the experimental and analysis results for single pass conventional 

grinding, the minimum surface roughness and maximum MRR was chosen from all of 

the data. From the data, two values of the lowest surface roughness were carried out 

from each of the analysis since surface roughness is most prior than MRR which is 

0.204 and 0.250 for 1
st
 order of RSM, 0.186 and 0.247 for 2

nd
 order of RSM, and also 

0.237 and 0.317 for RBF. Between the two values of the surface roughness, one with 

higher MRR value was choose. So, we can conclude that the table speed 666.67mm/s 

with 0.02 µm depth of cut are the most optimize value that can be used for the single 

pass conventional grinding. Comparison between the RSM model and ANN for 

conventional coolant and SiO2 nanocoolant are presented in Table 4.11 and Table 4.12 

respectively. 

 

Table 4.11: Comparison between RSM model and ANN for conventional coolant 

 

Table 

Speed 

(mm/s) 

Depth 

of 

Cut 

(μm) 

Surface Roughness MRR 

Exp. 

RSM 

RBF Exp. 

RSM 

RBF 1
st
 

order 

2
nd

 

order 

1
st
 

order 

2
nd

 

order 

Single pass grinding 

666.67 0.02 0.151 0.156 0.170 0.164 0.046 0.044 0.046 0.031 

666.67 0.04 0.181 0.184 0.174 0.172 0.097 0.097 0.101 0.043 

Multiple pass grinding 

666.67 0.02 0.186 0.168 0.187 0.194 0.063 0.063 0.064 0.055 

666.67 0.04 0.189 0.190 0.191 0.193 0.113 0.110 0.115 0.110 

 

4.5 MICROSTRUCTURE ANALYSIS  

 

 Figure 4.9 shows the microstructure result of surface workpiece between 

conventional and SiO2 grinding. The microstructure was magnified using the 200x and 

700x magnifier of the microscope. From the figure, it can be observed that there are 

crack, peak, and valley, cavity, grinding marks and also flat surface on of the surface 

workpiece. In order to get the best quality surface of the workpiece, dressing plays the 

important role. The cracks usually happen when the dressing are not doing very well on 
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the grinding wheel. From the figure, it can be concluded that grinding with SiO2 gives 

the better surface workpiece compare to the conventional grinding. This is due to the 

SiO2 nanoparticles properties itself. The smaller the size of the particles, the better 

surface finishes. 

 

Table 4.12: Comparison between RSM model and ANN for silicon oxide nanocoolant 

 

Table 

Speed 

(mm/s) 

Depth 

of 

Cut 

(μm) 

Surface Roughness MRR 

Exp. 

RSM 

RBF Exp. 

RSM 

RBF 1
st
 

order 

2
nd

 

order 

1
st
 

order 

2
nd

 

order 

Single pass grinding 

666.67 0.02 0.189 0.204 0.186 0.237 0.015 0.004 0.010 0.018 

666.67 0.04 0.245 0.250 0.247 0.317 0.003 0.026 0.013 0.006 

Multiple pass grinding 

666.67 0.02 0.238 0.251 0.240 0.246 0.107 0.103 0.112 0.099 

666.67 0.04 0.283 0.280 0.278 0.283 0.090 0.076 0.089 0.091 

 

Magnified Conventional SiO2 

200x 

  

700x 

  

 

Figure 4.9: Microstructure of surface workpiece of conventional and nanocoolant 

grinding 

 



 
 

 

 

 

CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 CONCLUSIONS 

 

The objectives of this project are to investigate the performance of grinding of 

ductile cast iron based on Response Surface Method (RSM), to develop optimization 

model for grinding parameters using a Radial Basis Function (RBF) technique and also 

to investigate the effect of water based SiO2 nanoparticles to the precision surface 

grinding.  

 

As the overall experimental and analysis had done, it can be simplify that all of 

the objectives for this project are achieved. In order to optimize the two parameters to 

yield the minimum surface roughness and the maximum material removal rate value in 

the process, a combination of knowledge in variable table speed and depth of cut 

parameters is very crucial. The use of Response Surface Methodology is very useful in 

analyzing the effect and the interaction of the factors affecting the surface texture of the 

workpiece. The graphs analysis clearly shows that the parameter used which is table 

speed and depth of cut was positively correlated with the surface roughness and MRR. 

The correlation of determination R
2
 also gives the 0.98 value for almost parameters 

which is just gives 0.02 errors. The SiO2 multiple pass grinding gives the best value of 

percentage error between the RSM and experimental value is 0.4%. 
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For Artificial Neural Network (ANN) which using Radial Basis Function (RBF), 

it can be conclude that the uncertainty analysis using ANN will yield the results 

approximate with the analytical method. This technique or approve method can be used 

to determine problem solution of uncertainty propagation. This not only for this project 

but other equation also can be used to determine the problem of uncertainty. The 

correlation of determination R
2
 for each parameter also gives the 0.99 value which is 

just gives 0.01 errors. The SiO2 multiple pass grinding gives the best value of 

percentage error between the RBF and the experimental value is 0.3%. 

 

The third objectives of the project also achieved which to investigate the effect of 

water based SiO2 nanoparticles to the precision surface grinding. Grinding process with 

SiO2 nanocoolant gives the better result of the surface roughness and surface finish 

compare to the conventional grinding.  

 

 

5.2 RECOMMENDATIONS 

 

 The recommendation has been drawn based on present study, which is presented 

as follows: 

 

i) Use the different concentration of nanofluids to investigate the effect on surface 

roughness and MRR. 

 

ii) Use another optimization method such as Fuzzy Logic, PSO and SVM. 

 

iii) Increase the design level so that the output parameters will be more accurate.  
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