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ABSTRACT 

The Multi-Parameter Two-Layer (MPTL) mathematical model was developed in 

this work specifically to model the Residence Time Distribution (RTD) of particles in 

a continuous system of swirling fluidized bed reactor. The model consists of two 

parallel layers. The top layer is a stirred tanks-in-series model and represents the 

conventional fluidized bed. Meanwhile, the bottom layer obeys the general recycle 

model and represents the swirling motion at the bottom layer of the bed. The Laplace 

transformation and convolution integral techniques are used to derive explicit 

expressions for the RTD functions of the stirred tanks-in-series model and general 

recycle model. The proposed model has six independent parameters - recycle fraction 

(P), recycle layer flow rate fraction (w), recycle layer volume fraction (Yr)' number 

of tanks in the main flow line of the recycle layer (n1 ), number of tanks in the recycle 

line (n2 ) and number of tanks in the top layer (no ). The RTD experiments were 

conducted at different particle sizes and bed weights. The bed material used in the 

experimental work is spherical plastic beads with a diameter d = 2.99mm 

andd = 3.85mm. During hydrodynamics study, it is found that bed pressure drop 

AP, increases with air velocity and bed weight. Besides, the smaller bed particle 

gives a higher pressure drop for a given bed. The effects of parameters on the RTD 

function E(0) are studied and the model is shown to be highly versatile and capable 

of representing widely different mixing conditions depending on the system variables. 

By best-fitting of the model response to the experimental data, the model parameters 

can be evaluated. The experimental result of solid RTD shows that the bed 

performance varies from one-layer to two-layer bed as the bed weight increased. 

One-layer bed can be modeled by having number of stirred tanks n2 = 4. P, w and 

Yr ranging from 0.8 to 0.83, 0.9 to 1.0 and 0.75 to 1.0 respectively. For two-layer 

bed, it is found that the combination of n 1 = n2 = n,, = 5 can fit all the runs. The value 
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of the model parameters P,w and Yr ranging from 0.5 to 0.83, 0.2 to 1.0 and 0.52 to 

1.0 respectively.
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ABSTRAK 

Matematik model yang dipanggil Dwi-Lapisan Pelbagai Pembolehubah 

(MPTL) telah dibangunkan dalam penyelidikan mi khusus untuk 

menginterpretasikan Pengagihan Masa (RTD) zarah pepejal dalam sistem 

berterusan lapisan terbendalir berpusar. Model mi terdiri daripada düa lapisan 

selari. Lapisan atas diwakili oleh susunan tanki pengacau dalam kedudukan sesiri 

dan ia mewakili lapisan terbendalir konvensional. Sementara itu, lapisan bawah 

yang mewakili gerakan berpusar diwakilkan oleh model susunan tangki-pengacau 

bagi kitaran yang am. Transformasi Laplace dan teknik Convolution Integral 

digunakan untuk memperolehi ungkapan yang jelas untuk fungsi-fungsi 

Pengagihan Masa, E(0). Model yang dicadangkan mempunyai enam 

pembolehubah bebas - pecahañ kitaran semula (F), pecahan kadar aliran bagi 

lapisan kitaran (w), pecahan isipadu bagi lapisan kitaran (Yr)' bilangan tangki-

pengacau di lapisan aliran utama kitaran (n1 ), bilangan tangki-pengacau di lapisan 

kitaran (n2 ) dan bilangan tangki-pengacau di lapisan utama (nt ). Eksperimen 

bagi menguji Pengagihan Masa zarah di dalam lapisan terbendalir berpusar telah 

dijalankan dengan menggunakan saiz dan berat zarah pepejal yang berbeza. Zarah 

pepejal yang digunakan di dalam eksperimen mi adalah zarah pepejal sphera yang 

masing-masing mempunyai saiz d = 2.99mm dan d = 3.85mm. Semasa kajian 

hidrodinamik, didapati bahawa kejatuhan tekanan di dalam sistem lapisan 

terbendalir meningkat selari dengan meningkatnya kadar halaju udara yang 

disalurkan ke dalam sistem dan juga jurnlah berat zarah pepejal. Selain itu, 

kejatuhan tekanan di dalam sistem didapati dipengaruhi oleh saiz zarah pepejal. 

Semakin kecil saiz zarah, semakin meningkat kejatuhan tekanan. Kesan parameter 

ke atas fungsi Pengagihan Masa E(0) dikaji dan didapati model yang ditunjukkan 

mampu mewakili keadaan pencampuran yang berbeza, bergantung kepada 

pemboleh ubah sistem. Teknik cuba jaya digunakan untuk menentukan pemboleh 
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ubah di dalam matematik model dengan mengubah pemboleh ubah mengikut data 

yang diperoleh dad keputusan eksperimen. Keputusan eksperimen Pengagihan 

Masa zarah pepejal menunjukkan bahawa, semakin meningkatnya berat zarah 

pepejal, lapisan terbendalir didapati berubah-ubah dari satu-lapisan ke dua-

lapisan. Satu-lapisan terbendalir yang direkodkan tersebut boleh dimodelkan oleh 

pembolehubah dengan mempunyai bilangan tangki-pengacau sebanyak n 2 =4. 

Manakala nilai pemboleh ubah P, w and Yr masing-masing bernilai antara 0.8 

hingga 0.83, 0.9 hingga 1.0 dan 0.75 hingga 1.0. Bagi dua-lapisan terbendalir 

pula, didapati bahawa kombinasi pembolehubah n1 = n2 = n =5 menepati 

eksperimen data dengan sangat baik. Nilai pemboleh ubah model P, w and Yr' 

masing-masing didapati berada antara 0.5-0.83, 0.2-1.0 dan 0.52 hingga 1,0. 
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NOMENCLATURE 

d inner diameter of the distributor [mm] 

d0 outer diameter of the distributor [mm] 

d particle diameter [mm] 

E(t) residence time distribution density function [s'] 

E(s) transfer function [-1 

E(0) dimensionless residence time distribution density [-1 
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hmj bed height at minimum fluidization [mm] 

static bed height [mm] 

Mb total bed weight [g] 

MbS stagnant bed weight [g] 

MT total tracer weight added to the bed [g] 

M 1 tracer weight in sample no. i [g] 

NOB number of distributor blades 

total number of samples collected in each experiment 

n number of stirred tanks-in-series 

P recycle fraction [-] 

static bed pressure [mmH20] 

AP, bed pressure drop [mmH20] 

AP total pressure drop [mml-120] 

Q flow rate [m3/h] 

Qa ar flow rate [m 3/h] 

Q solid flow rate [m 3/h] 

S variable of Laplace Transformation [-]
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t residence time [s] 

mean residence time [s] 

th mean holding time [s] 

t i clock time of sample no. i [s] 

U superficial air velocity [m/s] 

U,, horizontal component of air velocity [m/s] 

•	 U, initial fluidization velocity [m/s] 

minimum fluidization velocity [m/s] 
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vertical component of air velocity [m/s] 
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u minimum two-layer velocity [m/s] 

V volume [m3] 
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Y main flow line volume fraction 

Yr recycle layer volume fraction

SUPERSCRIPTS 

*	 denotes convolution integral 

* m	 denotes rn-fold convolution integral 
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2	 denotes recycle line 

n	 denotes individual stirred tank 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Fluidized bed technology has been utilized in chemical, petroleum, mineral 

processing and other industrial processes since its advent during World War II. 

Applications of this technology include: particle processing such as cooling, heating, 

roasting, drying, coating, granulation and transportation, cracking and reforming of 

hydrocarbons, coal carbonization and gasification, Fischer-Tropsch synthesis etc. In 

spite of its importance and wide application, knowledge of basic fluidization 

phenomena is still very rudimentary and the design of fluidized bed reactors is, at 

best, difficult, imprecise, and based mainly on experience on know-how. This is 

because the flow behavior of fluidized bed is sensitive to bed geometry, scale and 

operating conditions. 

Although a number of fluidized bed reactor models have appeared in 

literature, it is still difficult to identify which one of these models represents the 

fluidized bed behavior most closely for a given application. Fluidized bed reactors 

have gained wide use because of a number of highly useful properties, the most being 

concerned with their excellent heat transfer characteristics and temperature control, 

continuity of operation, efficient handling of large quantities of solids and excellent 

fluid-solid contact. Gas fluidized bed technology is increasingly being applied to a 

wide range of industrial applications where good mixing and/or heat transfer must be 

achieved.
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There have been many efforts to expand fluidized bed performance and to 

have different varieties of its operation. Different designs of the distributors and a 

study of the effect resulting from bed-distributor interaction on bed performance, 

extensive studies of bubble characteristics and studies of internals location, position 

and configuration in the gas fluidized bed are examples of attempts at understanding 

and improving the bed performance. The circulating fluidized bed is one variant of 

fluidized bed which has assumed considerable importance especially in combustion 

applications. Tapered fluidized bed and centrifugal fluidized bed are other variants of 

fluidized bed which have been proposed to overcome certain limitations of the 

conventional fluidized bed. 

One of the promising candidates is a swirling fluidized bed which could be of 

many designs to impart swirling motion to the bed particles. In the present work, a 

variant of continuous fluidized bed that features an annular bed, angular injection of 

gas through the distributor blades and swirling motion of bed material in a confined 

circular path is introduced and studied. When a jet of gas enters the bed at an angle 0 

to the horizontal, the gas velocity U will have two components; the vertical 

component, U, = U sin  responsible for fluidization and causes lifting of particles 

and, the horizontal component Uh = U cos 0 creates a swirling motion of the particles 

[1], [2]. The gas entering the bed will impart a tangential motion to the particles and 

will progressively turn to a vertical direction of flow. Thus, at successive layers of the 

bed, the tangential component of particle motion will decay with bed height. In the 

general case, one may visualize a bed with a lower swirling layer and an upper non-

swirling conventional layer (Fig. 1 .1).
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Top
Conventional

Layer

Bottom Swirling
Layer 

Fig. 1.1 Schematic of Two Layer Bed. 

From the visual observation of the swirling fluidized bed during operation, as the 

air velocity increases, the sequence of flow regimes observed are packed bed, partially 

fluidized bed and wave motion regime. On further increase of the air velocity, 

particles at the top layer of the bed are fully fluidized and the bed is bubbling. 

Meanwhile, the particles at the bottom layer of the bed are in swirling motion. This is 

the regime of the two layer fluidized bed. The velocity is termed as the minimum 

two-layer velocity, U,. As the air velocity increases further, the height of swirling 

layer increases until it dominates the entire bed and the bed become a single swirling 

mass. 

1.2 Problems Statements 

In continuous processing of solids in a fluidized bed, it is necessary to have 

quantitative information on the residence time distribution (RTD) of solids in the bed, 

which is fundamental to the design, study and analysis of the system performance. 

The RTD approach is utilized to gain knowledge of the overall system dynamics since 

single particle dynamics and accurate description of its history in the bed are difficult. 

This thesis presents an analytical and experimental study of the RTD of solids in 

continuous swirling fluidized bed.
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1.3 Objectives 

The objectives of the present works are: 

a.
To propose a general RTD model which achieves both physical representation 

of the bed behavior and an accurate fit to the experimental data through 

adequate flexibility of the model. 

b. To perform detailed experimental study of particles in the swirling fluidized 

bed covering a wide range of variables, viz., bed height, bed weight, gas 

velocity and particle size. 

C.

	

	
To conduct comparative analysis of the experimental data and the RTD model, 

by best-fitting of the model response to the experimental data, to evaluate the 

model parameters. 

1.4 Thesis Outline 

This thesis consists of 5 chapters. The first chapter sets out the context against this 

research was carried out, the objectives of the present research and an outline 

structure of the thesis. Since this research work required a current working knowledge 

of RTD, their relevant literatures were reviewed respectively in Chapter 2. 

Multi-Parameter Two-Layer (MPTL) Residence Time Distribution RTD 

model was introduced in Chapter 3. The model is developed based on the observation 

of bed that exhibits two-layer during the operation. Continuous Stirred Tanks Reactor 

(CSTR) in-series were used to model the MPTL in swirling fluidized bed. Besides, 

experimental procedure and development of experimental rigs are explained in details 

in Chapter 3. 

Parametric analysis of MPTL model and experimental investigations are 

presented in Chapter 4. The present findings are analyzed and discussed. Finally 

conclusions and recommendations for future research are formulated in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The measurement and accurate analysis of residence time distribution (RTD) has 

become a prominent tool in the study, analysis and design of continuous flow 

systems, for evaluating the performance of a continuous fluidized bed and to gain an 

insight into the fluid process. Residence time theory deals with how particles enter, 

flow through and leave a system. Intuitively it seems natural to expect that not all the 

particles will have the same residence time. The idea of using the distribution of 

residence times in the analysis of chemical reactor was first proposed in a pioneering 

paper by Danckwerts [3] in 1953 where he used the internal and exit age distributions 

to characterize the residence time distributions in a system. 

RTD can be measured directly by a widely used method of inquiry, the 

stimulus response experiment, which is based on the introduction of some tracer 

(stimulus) and measurement of the time independence of the tracer in the outflow 

(response) [4]. Four different injection techniques of tracer are used, pulse, step, 

periodic concentration fluctuation or random concentration change. The pulse and 

step input of tracer are easier to interpret. Therefore, they are the most widely used 

techniques [5], [6]. 

From a pulse injection, the residence time distribution density function 

E(t) introduced by Danckwerts [3] is defined such that E(t)dt is the fraction of the 

fluid that spends a given duration, t inside the reactor and has the unit of s'. 

=
	 (2.1) 
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Another function capable of characterizing RTD is F curve. The F curve is the 

integral of exit age distribution function, E(t); 

F(t) = JE(t)dt
	 (2.2) 

In many cases a dimensionless time 0 is a better time parameter than t. The 

dimensionless time 0 is defined as 9 = where I is a mean residence time or mean 
t 

holding time. A great deal of literature attention has been devoted to determine I 

from physical considerations. For a constant density system, Levenspiel [7] showed 

that I = - where V is the volume of the system and Q is the volumetric flow rate. 

This result of I was part of a more general theorem that relates Ito the ratio of total 

particle inventory (or hold up of particles in the system) to total throughput (total 

outflow of particle). The mean residence time I and the variance of RTD can also be 

obtained from the relations;

(2.3) 
1=

It has become standard practice to discuss RTD and its models in their 

dimensionless or normalized forms so that t is not considered an adjustable parameter 

in the models. The normalized form of RTD functions are: 

E(9) = IE(t) = IE(I0)
- dF(0)	 (2.4) 

- dO

(2.5) 
F(0) = F(t) = fE(0)dO = F(IO) 

Another important property of the RTD function is the convolution integral 

theorem discussed in detailed by Levenspiel [7] and being used by Mann et al. [8] and



Fu et al. [9]. The convolution integral relates the shapes of the initial tracer 

disturbance with the shape of the final exit age distribution curve. The 

simplestexample of a convolution integral is obtained when two reactors are 

connected in series and the RTD over the two reactors is measured. The final RTD is 

equal to the RTD in the first reactor convoluted in the second one. The mathematical 

expression is described in integral form as: 

E1 *2 (t) = E1 (t) *E1 Q) = fE,	 El (t — -r)dr
	

(2.6) 

Non-ideal flow within the continuous systems can be characterized by using 

few RTD models available in the literature. All the models take the form of 

mathematical functions which describe the curves E(0) and F(0). All models for 

RTD of solids in a continuous fluidized bed are Empirical models which have one or 

more adjustable parameters. 

2.2 Empirical Model for RTD 

Empirical models can be classified in different ways. They can be classified based on 

their mathematical description and basic assumption given by Varma [10] or on the 

basis of number of parameters on the model done by Levenspiel [7], which will be the 

basis used in this study. 

2.2.1 The Dispersion Model 

The dispersion model assumes a uniform velocity for the solids over the cross section, 

with some degree of back mixing super-imposed on it which is uniquely characterized 

by a longitudinal axial dispersion coefficient (P,,). The dispersion model is based on 

the equation 

aCD,a2c ac 
ao ( (2.7)



D where -- is the vessel dispersion number. For small -- the density of RTD 
UL

UL 

represents a family of Gaussian or error curves and given by [7], 

1 4(D/UL) 2 FD E(0) =

Many investigators have used this model to describe their experiments such 

van Gelder and WesterterP [11], Kersting et al. [12] and Marquez et al. [13]. The 

results of experiments are rather difficult to compare and often are contradictory. 

Morris et al. [141 applied this model to the study if solids RTD in a single stage 

fluidized bed. The dispersion coefficients were determined from the slope of the 

experimental F-diagram. No agreement was found between theory and experiment. 

Other conditions remaining constant, the measured values for the dispersion 

coefficient were found to decrease with bed height whereas the model assumed it to 

be constant. The authors concluded that a simple axial dispersion mechanism was 

inadequate to describe the Solids mixing in a single-stage fluidized bed. 

2.2.2 Stirred Tanks-In-Series and Parallel Model 

In this model (Fig 2.1) the system is supposed to consists of a number of equally 

sized perfect mixers in series ([4], [ 15 ], [161, [171 and [18, 19]). Mason and Piret [20] 

derived transient equations for first order reactions in continuous five stirred tanks 

reactor systems in series. The Laplace transform method was used to solve the rate 

equations of differential equations. The authors reported that the average deviation of 

the transient data was 1.4% from the theoretical curves. 

Meanwhile, stirred tanks in parallel have been extensively studied by Naor and 

Shinnar [21] and Krambeck et al [22]. In this model, series of different number of 

perfect mixers are set in parallel. Fractions Wj of the solids feed pass through j of 

(2.8) 
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the parallel series which has n equally sized perfect mixers as shown in Fig. 2.2. 

Then the RTD function is given by 

F(0) =1—	 Wmie'°J	
1	

(2.9) 

where m total number of parallel paths.

Direction of 
fluid flow 

Stirred tanks	 Stirred tanks 

Fig. 2.1 Stirred tanks in series model. 

Wm	
j 0J0

Stirred tanks 

Total flow 
rate Qo	 Wj

Direction of Stirred tanks	
fluid flow 

Wi	 * Lni 

Stirred tanks 

Fig. 2.2 Stirred tanks in series and parallel model.
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