Layered sodium titanate nanostructures as a new electrode for high energy density supercapacitors

Radhiyah Abd Aziza, Izan Izwan Misnona, Kwok Feng Chonga, Mashitah M. Yusoffa,b, Rajan Josea,*

a Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
b Central Laboratory, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 5 June 2013
Received in revised form 18 September 2013
Accepted 22 September 2013
Available online 8 October 2013

\textbf{Keywords:}
Alkali titanates
Electrochemistry
Energy storage
Renewable energy
Supercapacitor

\textbf{A B S T R A C T}

A flower-shaped hydrated layered sodium titanate material, Na\textsubscript{2}Ti\textsubscript{2}O\textsubscript{4}(OH)\textsubscript{2}, have been synthesized through a facile hydrothermal method and subsequently converted into sodium free titania (anatase). Potential application of the Na\textsubscript{2}Ti\textsubscript{2}O\textsubscript{4}(OH)\textsubscript{2} as an electrode for supercapacitors under pseudo-capacitance storage mode is evaluated. The Na\textsubscript{2}Ti\textsubscript{2}O\textsubscript{4}(OH)\textsubscript{2} showed sixfold higher specific capacitance (\(C\textsubscript{s} \sim 300 \text{ F g}^{-1}\)) in an aqueous electrolyte than the anatase and demonstrated stable electrochemical cycling. This high \(C\textsubscript{s}\) is originated from a combination of electrochemical double layer and pseudo-capacitance storage mechanisms. The presence of hydrated layered within some loose interlayer plays an important role in assisting the diffusion process of ions as confirmed in electrical impedance spectroscopy analysis.

\textcopyright 2013 Elsevier Ltd. All rights reserved.