ELSEVIER

Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Layered sodium titanate nanostructures as a new electrode for high energy density supercapacitors

Radhiyah Abd Aziz^a, Izan Izwan Misnon^a, Kwok Feng Chong^a, Mashitah M. Yusoff^{a,b}, Rajan Jose^{a,*}

- a Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang. Malaysia
- ^b Central Laboratory, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

ARTICLE INFO

Article history:
Received 5 June 2013
Received in revised form
18 September 2013
Accepted 22 September 2013
Available online 8 October 2013

Keywords: Alkali titanates Electrochemistry Energy storage Renewable energy Supercapacitor

ABSTRACT

A flower-shaped hydrated layered sodium titanate material, $Na_2Ti_2O_4(OH)_2$, have been synthesized through a facile hydrothermal method and subsequently converted into sodium free titania (anatase). Potential application of the $Na_2Ti_2O_4(OH)_2$ as an electrode for supercapacitors under pseudo-capacitance storage mode is evaluated. The $Na_2Ti_2O_4(OH)_2$ showed sixfold higher specific capacitance ($C_S \sim 300 \, \mathrm{F \, g^{-1}}$) in an aqueous electrolyte than the anatase and demonstrated stable electrochemical cycling. This high C_S is originated from a combination of electrochemical double layer and pseudo-capacitance storage mechanisms. The presence of hydrated layered within some loose interlayer plays an important role in assisting the diffusion process of ions as confirmed in electrical impedance spectroscopy analysis.

© 2013 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +60 9 5492451; fax: +60 9 5492766. E-mail addresses: rjose@ump.edu.my, joserajan@gmail.com (R. Jose).