COMPUTATIONAL INTELLIGENCE BASED POWER SYSTEM SECURITY ASSESSMENT AND IMPROVEMENT UNDER MULTI-CONTINGENCIES CONDITIONS

NOR RUL HASMA ABDULLAH

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Electrical Engineering

June 2012
This thesis presents new techniques for voltage stability assessment and improvement in power system under multi-contingencies. A line-based voltage stability index termed as Static Voltage Stability Index (SVSI) was used to evaluate the voltage stability condition on a line. The value of SVSI was computed to identify the most sensitive line and corresponding weak bus in the system. The results obtained from the voltage stability analysis using SVSI were utilized to identify most sensitive line corresponds to a load bus and estimate the maximum loadability and operating margin in the system. The SVSI was consequently used as the line outage severity indicator in the implementation of contingency analysis and ranking. The application of SVSI was extended for the evaluation of the constrained power planning (CPP) and Flexible AC Transmission Systems (FACTS) devices installation using Evolutionary Programming (EP) by considering multi-contingencies occurrence in the system. The minimizations of SVSI and transmission loss are used as two separate objective functions for the development of optimization technique. The effect of reactive power load variation on transmission loss in the system is also investigated. Consequently, the EP optimization technique is extended for the evaluation of the operating generator scheduling (OGS) to be applied on reactive power control in power system. The results obtained from the study can be used by the power system operators to make a decision either to achieve minimal SVSI, minimal transmission loss or minimal installation cost. This has also avoided all generators to dispatch power at the same time. Finally, a novel multi-objective Constrained Reactive Power Control (CRPC) algorithm using the state-of-the-art of EP for voltage stability improvement has been developed. A performance comparison with Artificial Immune System (AIS) in terms of SVSI and loss minimization was made and it is found that the proposed algorithm has been able to produce better results as compared to AIS. The contributions of the studies among the others are the development EP and AIS engine for CPP considered multi-contingencies (N-m), the development of EP and AIS engine for FACTS installation considered multi-contingencies (N-m) for the determination of FACTS placement using SVSI and optimal sizing of FACTS using EP and AIS, the development of new technique for OGS based on EP optimization technique and the development of multi-objective EP and AIS engines for CRPC considered multi-contingencies (N-m).
TABLE OF CONTENTS

AUTHOR’S DECLARATION
ii
ABSTRACT
iii
ACKNOWLEDGEMENTS
iv
TABLE OF CONTENTS
v
LIST OF TABLES
xi
LIST OF FIGURES
xvi
NOMENCLATURE
xviii

CHAPTER ONE: INTRODUCTION

1.1 Problem Statement
1
1.2 Objective of the Study
3
1.3 Scope of Work
4
1.4 Significance of Study
6
1.5 Organization of Thesis
6

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction
9
2.2 Definitions
11
2.3 Voltage Stability Analysis (VSA) Techniques in Electric Power Systems
11
2.4 Voltage Stability Index (VSI)
12
2.5 Maximum Loadability and Contingency Analysis in Electric Power Systems
15
2.6 Power Scheduling for Voltage Stability Improvement in Power
20
CHAPTER THREE: MULTI-CONTINGENCY COMPONENT IDENTIFICATION FOR POWER SCHEDULING

3.1 Introduction 36
3.2 Static Voltage Stability Index 38
3.3 Weak and Secure Bus Identification 43
 3.3.1 Algorithm for Weak and Secure Bus Identification 44
3.4 Contingency Analysis 46
3.5 Identification of Sensitive Line and Generator Contingency Analysis 48
 3.5.1 Algorithm for Sensitive Line used for Contingency Analysis 49
 3.5.2 Algorithm for Sensitive Generator used for Contingency Analysis 50
3.6 Results and Discussion 52
 3.6.1 Weak and Secure Bus Identification 54
 3.6.1.1 Weak and Secure Bus Identification for IEEE 30-bus RTS 54
 3.6.1.2 Weak and Secure Bus Identification for IEEE 118-bus RTS 55
 3.6.2 Sensitive Line Identification 56
 3.6.2.1 Line Outage Ranking for IEEE 30-bus RTS 56
 3.6.2.2 Line Outage Contingency Ranking for IEEE 118-bus
CHAPTER FOUR: COMPUTATIONAL INTELLIGENCE REACTIVE POWER PLANNING TECHNIQUE FOR LOSS MINIMIZATION AND VOLTAGE STABILITY IMPROVEMENT CONSIDERING INSTALLATION COST

4.1 Introduction 63
4.2 Constrained Power Planning 64
 4.2.1 Problem Formulation 64
 4.2.1.1 Voltage Stability Improvement as Objective Function 64
 4.2.1.2 Transmission Loss Minimization as Objective Function 65
 4.2.1.3 Installations Cost 67
4.3 Optimization Technique Using Evolutionary Programming 68
 4.3.1 Application of Evolutionary Programming in Constrained Power Planning 68
 4.3.1.1 Initial Population Generation 68
 4.3.1.2 Mutation 69
 4.3.1.3 Combination 71
 4.3.1.4 Tournament Selection 71
 4.3.1.5 Convergence Criterion 72
4.4 Constrained Power Planning for Voltage Stability Improvement and Transmission Loss Minimization 72
 4.4.1 Constrained Reactive Power Control 73
 4.4.2 Constrained Active Power Scheduling 75
4.4.3 Constrained Hybrid Power Scheduling

4.5 Results and Discussion

4.5.1 Constrained Power Planning for Voltage Stability Improvement and Transmission Loss Minimization.

- **4.5.1.1** Constrained Reactive Power Control
- **4.5.1.2** Constrained Active Power Schedule
- **4.5.1.3** Constrained Hybrid Power Scheduling

4.5.2 Comparative Studies of Constrained Power Planning between Evolutionary Programming and Artificial Immune System

- **4.5.2.1** Constrained Reactive Power Control
- **4.5.2.2** Constrained Active Power Scheduling
- **4.5.2.3** Constrained Hybrid Power Scheduling

4.6 Summary

CHAPTER FIVE: COMPUTATIONAL INTELLIGENCE TECHNIQUE FOR FACTS DEVICES INSTALLATION

5.1 Introduction

5.2 Mathematical Model of FACTS Devices

- **5.2.1** Modeling of Static VAR Compensator
- **5.2.2** Modeling of Thyristor Controlled Series Compensator
- **5.2.3** Modeling of Unified Power Flow Controller (UPFC)
- **5.2.4** FACTS Devices Installations Cost

5.3 FACTS Devices installation

5.4 Total Loss Minimization as Objective Function

5.5 Application of Evolutionary Programming in FACTS Installation

5.6 Optimization of FACTS for Total Loss Minimization

5.7 Results and Discussion

- **5.7.1** Constrained Static VAR Compensator for Total Loss
CHAPTER SIX: OPERATING GENERATOR SELECTION FOR INTELLIGENT REACTIVE POWER CONTROL

6.1 Introduction 141
6.2 Application of Evolutionary Programming for Operating Generator Scheduling 141
 6.2.1 Algorithm for Operating Generator Scheduling 142
6.3 Results and Discussion 144
 6.3.1 Results for Operating Generator Scheduling using Evolutionary Programming Technique 145
 6.3.1.1 Voltage Stability Improvement as the Objective Function 145
 6.3.1.2 Transmission Loss Minimization as the Objective Function 149
6.4 Summary 154
CHAPTER SEVEN: CONSTRAINED REACTIVE POWER CONTROL BASED MULTI-OBJECTIVE OPTIMIZATION UNDER MULTI-CONTINGENCIES \((N-m)\)

7.1 Introduction 155
7.2 Multi-Objective Optimization 156
7.3 Multi-Objective Optimization using Evolutionary Programming and Artificial Immune System
 7.3.1 Non-domination Sorting and Pareto Optimality 162
 7.3.2 Crowding Distance 162
 7.3.3 Cloning 163
 7.3.4 Mutation 164
 7.3.5 Combination and Selection 165
 7.3.6 Best Compromise Solution (BCS) 165
7.4 Results and Discussion 166
 7.4.1 Multi-Objective Evolutionary Programming for Constrained Reactive Power Control 166
 7.4.2 Multi-Objective Artificial Immune System for Constrained Reactive Power Control 169
 7.4.3 Comparative Studies 171
7.5 Summary 172

CHAPTER EIGHT: OVERALL CONCLUSION AND RECOMMENDATION

8.1 Conclusion 173
8.2 Recommendations and Future Work 176

REFERENCES 177
APPENDICES 197
Table 3.1	Maximum loadability for each bus in IEEE 30-bus RTS (Base Case)	55
Table 3.2	Maximum loadability for each bus in IEEE 118-bus RTS (Base Case)	56
Table 3.3	Results for line outage contingency ranking in IEEE 30-Bus RTS (Base condition)	57
Table 3.4	Generator outage rank based $SVSI$ in the IEEE 30-Bus RTS (Base condition)	61
Table 3.5	Generator outage rank based $SVSJ$ in the IEEE 118-Bus RTS (Base Condition)	62
Table 4.1	Results for CRPC when bus 26 was reactively loaded: IEEE 30-bus RTS.	81
Table 4.2	Results for CRPC when bus 14 was reactively loaded: IEEE 30-bus RTS.	82
Table 4.3	CRPC sizing when bus 26 and bus 14 was reactively loaded: IEEE 30-bus RTS	82
Table 4.4	Results for CRPC when bus 22 was reactively loaded: IEEE 118-bus RTS.	83
Table 4.5	Results for CRPC when bus 78 was reactively loaded: IEEE 118-bus RTS.	84
Table 4.6	Results for CAPS when bus 26 was reactively loaded: IEEE 30-bus RTS.	84
Table 4.7	Results for CAPS when bus 26 was reactively loaded: IEEE 30-bus RTS.	86
Table 4.8	Results for CAPS when bus 14 was reactively loaded: IEEE 30-bus RTS.	86
Table 4.9	CAPS sizing when bus 26 and bus 14 was reactively loaded: IEEE 30-bus RTS	87
Table 4.10	Results for CAPS when bus 22 was reactively loaded: IEEE 118-bus RTS.	88
Table 4.11	Results for CAPS when bus 78 was reactively loaded: IEEE 118-bus RTS.	88
Table 4.12 CAPS sizing when bus 22 and bus 78 was reactively loaded: IEEE 118-bus RTS

Table 4.13 Results for CHPS when bus 26 was reactively loaded: IEEE 30-bus RTS.

Table 4.14 Results for CRPC when bus 14 was reactively loaded: IEEE 30-bus RTS.

Table 4.15 CAPS sizing when bus 26 and bus 14 was reactively loaded: IEEE 30-bus RTS.

Table 4.16 Results for CHPS when bus 22 was reactively loaded: IEEE 118-bus RTS.

Table 4.17 Results for CRPC when bus 78 was reactively loaded: IEEE 118-bus RTS.

Table 4.18 CAPS sizing when bus 26 and bus 14 was reactively loaded: IEEE 118-bus RTS.

Table 4.19 Comparison results for CRPC between EP and AIS when bus 26 was loaded: IEEE 30-bus RTS.

Table 4.20 Comparison results for CRPC between EP and AIS when bus 14 was loaded: IEEE 30-bus RTS.

Table 4.21 Comparison results for CRPC between EP and AIS when bus 22 was loaded: IEEE 118-bus RTS.

Table 4.22 Comparison results for CRPC between EP and AIS when bus 78 was loaded: IEEE 118-bus RTS.

Table 4.23 Comparison results for CAPS between EP and AIS when bus 26 was loaded: IEEE 30-bus RTS.

Table 4.24 Comparison results for CAPS between EP and AIS when bus 14 was loaded: IEEE 30-bus RTS.

Table 4.25 Comparison results for CAPS between EP and AIS when bus 22 was loaded: IEEE 118-bus RTS.

Table 4.26 Comparison results for CAPS between EP and AIS when bus 78 was loaded: IEEE 118-bus RTS.

Table 4.27 Comparison results for CHPS using EP and AIS when bus 26 was loaded: IEEE 30-bus RTS.

Table 4.28 Comparison results for CHPS using EP and AIS when bus 14 was loaded: IEEE 30-bus RTS.
Table 4.29 Comparison results for CHPS between EP and AIS when bus 22 was loaded: IEEE 118-bus RTS.

Table 4.30 Comparison results for CHPS between EP and AIS when bus 78 was loaded: IEEE 118-bus RTS.

Table 5.1 Results for CSVC when bus 26 was reactively loaded: IEEE 30-bus RTS.

Table 5.2 Results for CSVC when bus 14 was reactively loaded: IEEE 30-bus RTS.

Table 5.3 SVC sizing and location when bus 26 and bus 14 were reactively loaded: IEEE 30-bus RTS

Table 5.4 Results for CSVC when bus 22 was reactively loaded: IEEE 118-bus RTS.

Table 5.5 Results for CSVC when bus 78 was reactively loaded: IEEE 118-bus RTS.

Table 5.6 SVC sizing when bus 22 and bus 78 were reactively loaded: IEEE 118-bus RTS

Table 5.7 Results for CTCSC when bus 26 was reactively loaded: IEEE 30-bus RTS.

Table 5.8 Results for CTCSC when bus 14 was reactively loaded: IEEE 30-bus RTS.

Table 5.9 TCSC sizing when bus 26 and bus 14 were reactively loaded: IEEE 30-bus RTS

Table 5.10 Results for CTCSC when bus 22 was reactively loaded: IEEE 118-bus RTS.

Table 5.11 Results for CTCSC when bus 78 was reactively loaded: IEEE 118-bus RTS.

Table 5.12 TCSC sizing when bus 22 and bus 78 were reactively loaded: IEEE 118-bus RTS

Table 5.13 Results for CUPFC when bus 26 was reactively loaded: IEEE 30-bus RTS.

Table 5.14 Results for CUPFC when bus 14 was reactively loaded: IEEE 30-bus RTS.

Table 5.15 CUPFC sizing when bus 26 and bus 14 was reactively loaded: IEEE 30-bus RTS
Table 5.16 Results for CUPFC when bus 22 was reactively loaded:
IEEE 118-bus RTS

Table 5.17 Results for CUPFC when bus 78 was reactively loaded:
IEEE 118-bus RTS.

Table 5.18 TCSC sizing when bus 22 and bus 78 was reactively loaded: IEEE 118-bus RTS

Table 5.19 Comparison results for CSVC between EP and AIS when bus 26 was loaded: IEEE 30-bus RTS.

Table 5.20 Comparison results for CSVC between EP and AIS when bus 14 was loaded: IEEE 30-bus RTS.

Table 5.21 Comparison results for CSVC between EP and AIS when bus 22 was loaded: IEEE 118-bus RTS.

Table 5.22 Comparison results for CSVC between EP and AIS when bus 78 was loaded: IEEE 118-bus RTS.

Table 5.23 Comparison results for CTCSC between EP and AIS when bus 26 was loaded: IEEE 30-bus RTS.

Table 5.24 Comparison results for CTCSC between EP and AIS when bus 14 was loaded: IEEE 30-bus RTS.

Table 5.25 Comparison results for CTCSC between EP and AIS when bus 22 was loaded: IEEE 118-bus RTS.

Table 5.26 Comparison results for CTCSC between EP and AIS when bus 78 was loaded: IEEE 118-bus RTS.

Table 5.27 Comparison results for CUPFC between EP and AIS when bus 26 was loaded: IEEE 30-bus RTS.

Table 5.28 Comparison results for CUPFC between EP and AIS when bus 14 was loaded: IEEE 30-bus RTS.

Table 5.29 Comparison results for CUPFC between EP and AIS when bus 22 was loaded: IEEE 118-bus RTS.

Table 5.30 Comparison results for CUPFC between EP and AIS when bus 78 was loaded: IEEE 118-bus RTS.

Table 6.1 SVSI ranking of operating generator scheduling for RPC: VSI as the objective function

Table 6.2 Transmission loss ranking of operating generator scheduling for RPC: VSI as the objective function
Table 6.3	Installation cost ranking of operating generator scheduling for RPC : VSI as the objective function	149
Table 6.4	SVSI ranking of operating generator scheduling for RPC : TLM as the objective function	150
Table 6.5	Transmission loss ranking of operating generator scheduling for RPC : TLM as the objective function	152
Table 6.6	Installation cost ranking of operating generator scheduling for RPC : TLM as the objective function	153
Table 7.1	Results for MOEP when bus 26 was reactively loaded at $\lambda = 2.3$	167
Table 7.2	Results for MOEP when bus 14 was reactively loaded at $\lambda = 3.5$	168
Table 7.3	Results for MOAIS when bus 26 was reactively loaded at $\lambda = 2.3$	170
Table 7.4	Results for MOAIS when bus 14 was reactively loaded at $\lambda = 3.5$	171
Table 7.5	Best Compromise Solution for CRPC when bus 26 and bus 14 was reactively loaded	171
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scope of Work diagram</td>
<td>5</td>
</tr>
<tr>
<td>3.1</td>
<td>Algorithm for Severity Studies</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Single line diagram for IEEE 30-bus RTS</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Single line diagram for IEEE 118-bus RTS</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>General two-bus system</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>SVSI profiles with respect to Q_d variation during pre and post-contingency</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>Flowchart for maximum loadability identification in power system</td>
<td>46</td>
</tr>
<tr>
<td>3.7</td>
<td>Flowchart for line outage contingency analysis</td>
<td>51</td>
</tr>
<tr>
<td>3.8</td>
<td>Flowchart for generator outage contingencies analysis</td>
<td>53</td>
</tr>
<tr>
<td>3.9 (a)</td>
<td>Line outage contingency ranking in the IEEE 30-bus RTS</td>
<td>59</td>
</tr>
<tr>
<td>3.9 (b)</td>
<td>Line outage contingency ranking in the IEEE 118-bus RTS</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Flowchart for the constrained power planning (CPP) using EP</td>
<td>70</td>
</tr>
<tr>
<td>5.1</td>
<td>Transmission line model</td>
<td>107</td>
</tr>
<tr>
<td>5.2</td>
<td>SVC model</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>TCSC model</td>
<td>109</td>
</tr>
<tr>
<td>5.4</td>
<td>UPFC model</td>
<td>109</td>
</tr>
<tr>
<td>5.5</td>
<td>Flowchart for optimization of FACTS using EP.</td>
<td>115</td>
</tr>
<tr>
<td>6.1</td>
<td>OGS block diagram</td>
<td>143</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Flowchart for the RPC using EP</td>
<td>144</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Flowchart for CRPC using MOEP.</td>
<td>159</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>Flowchart for CRPC using MOAIS.</td>
<td>161</td>
</tr>
<tr>
<td>Figure 7.3</td>
<td>All solutions of objective functions for multi-objective optimization</td>
<td>162</td>
</tr>
<tr>
<td>Figure 7.4</td>
<td>Pareto optimal front for difference type objective functions</td>
<td>163</td>
</tr>
<tr>
<td>Figure 7.5</td>
<td>Pareto front for SVSI and transmission loss minimization obtained using MOEP for CRPC at bus 26.</td>
<td>167</td>
</tr>
<tr>
<td>Figure 7.6</td>
<td>Pareto front for SVSI and Transmission Loss minimization obtained using MOEP for CRPC at bus 14.</td>
<td>168</td>
</tr>
<tr>
<td>Figure 7.7</td>
<td>Pareto front for SVSI and Transmission Loss minimization obtained using MOAIS for CRPC at bus 26.</td>
<td>169</td>
</tr>
<tr>
<td>Figure 7.8</td>
<td>Pareto front for SVSI and Transmission Loss minimization obtained using MOAIS for CRPC at bus 14.</td>
<td>170</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>AIS</td>
<td>Artificial Immune System</td>
<td></td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
<td></td>
</tr>
<tr>
<td>BCS</td>
<td>Best Compromise Solution</td>
<td></td>
</tr>
<tr>
<td>CAPS</td>
<td>Constrained Active Power Scheduling</td>
<td></td>
</tr>
<tr>
<td>CHPS</td>
<td>Constrained Hybrid Power Scheduling</td>
<td></td>
</tr>
<tr>
<td>CPP</td>
<td>Constrained Power Planning</td>
<td></td>
</tr>
<tr>
<td>CRPC</td>
<td>Constrained Reactive Power Control</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>Evolutionary Programming</td>
<td></td>
</tr>
<tr>
<td>FACTS</td>
<td>Flexible AC Transmission Systems</td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
<td></td>
</tr>
<tr>
<td>MOEP</td>
<td>Multi-Objective EP</td>
<td></td>
</tr>
<tr>
<td>MOAIS</td>
<td>Multi-Objective AIS</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>Performance Index</td>
<td></td>
</tr>
<tr>
<td>PQ</td>
<td>Load bus</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>Voltage Control Bus</td>
<td></td>
</tr>
<tr>
<td>RPD</td>
<td>Reactive Power Dispatch</td>
<td></td>
</tr>
<tr>
<td>RPP</td>
<td>Reactive Power Planning</td>
<td></td>
</tr>
<tr>
<td>RTS</td>
<td>Reliability Test System</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Simulated Annealing</td>
<td></td>
</tr>
<tr>
<td>STATCOM</td>
<td>Static Synchronous Compensator</td>
<td></td>
</tr>
<tr>
<td>SVC</td>
<td>Static VAR Compensator</td>
<td></td>
</tr>
<tr>
<td>SVSI</td>
<td>Static Voltage Stability Index</td>
<td></td>
</tr>
<tr>
<td>TCSC</td>
<td>Thyristor-controlled Series Capacitor</td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>Tabu Search</td>
<td></td>
</tr>
<tr>
<td>UPFC</td>
<td>Unified Power Flow Controller</td>
<td></td>
</tr>
<tr>
<td>VSA</td>
<td>Voltage Stability Assessment</td>
<td></td>
</tr>
<tr>
<td>VSI</td>
<td>Voltage Stability Improvement</td>
<td></td>
</tr>
</tbody>
</table>
\[\beta \text{: Mutation scale} \]
\[C_{ci} \text{: Per unit reactive power source purchase cost at bus } i \]
\[\delta_i, \delta_j \text{: Voltage angles at bus } i \text{ and bus } j \]
\[\delta_{ji} \text{: Angle difference} \]
\[e_i \text{: Fixed reactive power source installation cost} \]
\[f_i \text{: Fitness for the } i^{th} \text{ random number} \]
\[f_{\text{max}} \text{: Maximum fitness} \]
\[G_y \text{ and } B_y \text{: Mutual conductance and susceptance between bus } i \text{ and bus } j \]
\[g_k \text{: Conductance of branch } k \]
\[h \text{: Per unit energy cost} \]
\[N \text{: Gaussian random variable with mean } \mu \text{ and variance } \sigma^2 \]
\[N-I \text{: Single Contingency} \]
\[N_B \text{: Number of buses} \]
\[N_{B-I} \text{: Total buses excluding slack bus} \]
\[N_c \text{: Possible reactive power source installation buses number} \]
\[N_E \text{: Branch number} \]
\[N_i \text{: Numbers of buses adjacent to bus } i \text{ including bus } i \]
\[N-m \text{: Multi-Contingencies} \]
\[N_{PQ} \text{: PQ bus number} \]
\[N_{PV} \text{: PV bus number} \]
\[n_s \text{: Slack (reference) bus number} \]
\[Q_{ci} \text{: Amount of reactive power either positive (reactance) or negative (capacitance) installation} \]
\[Q_d \text{: Reactive power loading (reactive load)} \]
\[Q_{gn} \text{: Reactive power to be injected to generator } n \]
\[S_{vi}, P_i \text{ and } Q_i \text{: Apparent, active and reactive powers at bus } i \]
\[S_{vj}, P_j \text{ and } Q_j \text{: Apparent, active and reactive powers at bus } j \]
\[SVSI_{\text{avg}} \text{: Average fitness (with } SVSI \text{ as fitness)} \]
\[SVSI_{\text{max}} \text{: Maximum fitness (with } SVSI \text{ as fitness)} \]
$SVSI_{\text{min}}$: Minimum fitness (with $SVSI$ as fitness)

$SVSI_{\text{set}}$: $SVSI$ value before optimised CPP

$SVSI_{\text{sum}}$: Sum of fitness (with $SVSI$ as fitness)

V_{set} : Bus voltage before optimised CPP

V_i, V_j : Voltages at bus i and bus j respectively

$x_{i+m,j}$: Mutated parents (offsprings)

x_j : Parents

$x_{j \text{max}}$: Maximum random number for every variable

$x_{j \text{min}}$: Minimum random number for every variable

Z_{ji}, R_{ji}, X_{ji} : Line impedance, resistance and reactance

θ_i : Voltage angle different between bus i and bus j (rad),
CHAPTER ONE
INTRODUCTION

Nowadays, the power transmission systems have been changed a lot. The voltage deviation due to load variation and power transfer limitation was experienced due to reactive power unbalance which has drawn attention to better utilize the existing transmission line. The shortage of reactive power can cause the generator and transmission line failure leading to blackout or collapse in a system [1]. It also causes a higher impact on power system security and reliability [6]. Hence, the electrical energy demand increases continuously from time to time. This increase is due to the fact that few problems could appear with the power flows through the existing electric transmission networks. If this situation is uncontrollable, some lines located on the particular paths might become overloaded [2]. Due to the overloaded conditions; the transmission lines will have to be driven close to or even beyond their transfer capacities. Consequently, the transmission line outage in a power system was reported to be the main issue towards voltage instability as well as generator outage contingency [3-4]. The line outage may cause violations on bus limit, transmission line overloads and lead to system instability [5]. While, the generator outage can be caused by failure of generator; this may interrupt system delivery and lead to system instability [6].

1.1 PROBLEM STATEMENT

Voltage stability has become a concern in power system operation when it involves heavy load and contingencies. It is highly dependent upon the system limits, which leads to the restriction of loading capability of a network. Therefore voltage stability study becomes an important issue in power system planning and operation since it was reported in [7-12] that this problem is a progressive issue which receives major concern. The increment in load demands will decrease the reactive power and voltage, which leads to voltage collapse in the system. Therefore, the system consumes more reactive power to raise the voltage level and improve the voltage stability condition in
the system. Voltage instability phenomenon could also be resulted from the contingencies caused by either line or generator outages apart from the stressed conditions of a power system network [13]. During contingency, the operating generators fail to operate and cause the reactive power supply by the generators suddenly drop in the system. Therefore, the system also has to improve the reactive power level to prevent voltage collapse in the system. Furthermore, power scheduling has also resulted in the change in power flow in the network and hence affects the system voltage profiles. Therefore, voltage stability in the system will be affected.

Voltage stability is important to maintain a secure power system operation. Therefore, an efficient voltage stability analysis technique is required in order to perform the voltage stability study accurately with less computational burden. Studies have shown that voltage stability can be improved by means of real and reactive power rescheduling in a power system [14 – 17]. Basically, real and reactive power planning could be controlled by reactive power dispatch, compensating capacitor placement, transformer tap changer setting and installation of FACTS devices. Hence, this research proposed a new technique for rescheduling the real and reactive power at voltage controlled buses and also identifying suitable location and sizing of compensating capacitors in order to improve voltage stability in power system and at the same time minimizing the total losses in the system under multi-contingencies.

This research also proposes a new approach for operating generator scheduling to be applied on reactive power control based on Evolutionary Programming optimization technique in power system. The proposed technique will determine the best combination of generator which should be dispatched with reactive power in the system based on SVSI, transmission loss and installation cost in order to improve voltage stability condition of a system. Two objective functions were considered separately for the OGS namely improving voltage stability condition indicated by reduction in SVSI and transmission loss minimization (TLM) in the system. The information obtained from this analysis allows the power system operators to schedule generator units in an economic way as required by the utility company.
In reactive power control (RPC) problem, many of the proposed methods for optimization focus on the constraints related to the steady state operations. Numerous optimization problems have more than one objective function in conflict with each other. It is very difficult to decide which section is most suitable for the objective function. Therefore, instead of single-objective function, this research has implemented the multi-objective into the system in order to solve the optimal RPC problem where trade-off between the different components of the objective function is fixed. It is important to develop a multi-objective optimization algorithm which take both voltage stability index and transmission loss into account, to provide users a set of options with flexibility to solve the problem. The presence of reactive power control into power system brings many benefits. If the goals of the research need more than one objective function to be optimized, then it is called multi-objective optimization problems. The genuine way of solving multi-objective problem is to consider all objective functions applied simultaneously. That is why this research has been implemented in multi-objective optimization in order to take all the objective functions into account.

1.2 OBJECTIVES OF STUDY

The objectives of this research are:

(i) To develop an algorithm for the identification of sensitive lines and generators, weak bus and secure in power system for constrained power planning analysis.
(ii) To develop a new and superior technique of power scheduling to improve voltage stability, minimize total transmission losses; and enhance of voltage profile for the system under stress and contingencies.
(iii) To develop a new and superior technique of FACTS devices installation in order to minimize total transmission losses and enhancement of voltage profile in the system under contingency (N-m) such as line outages and generator outages.
(iv) To develop an algorithm for operating generator scheduling identification in order to avoid hundred percent generator operations.

(v) To develop a multi-objective Evolutionary Programming algorithm to improve voltage stability, minimize total transmission losses for the system under stress and contingencies.

1.3 SCOPE OF WORK

Figure 1.1 shows the block diagram of overall activities conducted in this research. Initially, this work involved the implementation of SVSI for evaluating the voltage stability condition and optimization in power system for a system under stress and multi-contingencies. SVSI is used to evaluate contingency analysis and ranking for the line and generator outages. The results obtained from the line and generator outage contingency analysis and ranking were sorted in descending order to identify the line and generator outage severity in the system. Results from the contingency analysis and ranking are utilized in order to form the multi-contingencies selection to be applied in constrained power planning, constrained FACTS and multi-objective constrained reactive power control. In OGS, system with only stress condition is considered to be applied and tested. A stochastic optimization technique in the Evolutionary Computation hierarchy called the EP is applied in determining optimum CPP and FACTS to improve the voltage stability condition in the power system. Multi-objective optimizations namely MOEP and MOAIS are also considered for the combination of two objective functions namely VSI and TLM. SVSI is utilized as the fitness when VSI is taken as the objective function, while transmission loss is taken as the fitness when objective function is to minimize the transmission loss. The process was conducted at various loading condition in order to investigate the effects of loading condition and also to monitor the consistency of the process. For the purpose of validation, the propose techniques are tested on most IEEE Reliability Test System (RTS) namely IEEE 30-bus RTS and IEEE 118-bus RTS.
1. To develop algorithm for CPP analysis using SFS as indicator
 - To identify sensitive lines and generators
 - To identify weak and secure bus
 - Validation verification

2. To develop EP engines for power scheduling purpose considered multi-contingencies
 - Constrained Reactive Power Control (CRPC)
 - Constrained Active Power Scheduling (CAPS)
 - Constrained Hybrid Power Scheduling (CHPS)
 - Perform comparative studies

3. To develop EP engines for FACTS installation considered multi-contingencies
 - Constrained Static Voltage Controller (CSVC)
 - Constrained Thyristor Controlled Series Compensator (CTCSC)
 - Constrained Unified Power Flow Controller (CUPFC)
 - Perform comparative studies

4. To develop new approach for OGS
 - Based on RPC
 - Based on EP
 - Validation verification

5. To develop multi-objective programming engines considered multi-contingencies for CRPC
 - Multi-Objective Evolutionary Programming (MOEP)
 - Multi-Objective Artificial Immune System (MOAIS)
 - Perform comparative studies

Figure 1.1: Scope of Work diagram
1.4 SIGNIFICANCE OF THE STUDY

The significance of this study are:-

(i) The power scheduling research explored a new approach in optimizing the power control which will result in the improvement of voltage stability condition in a power system.

(ii) The proposed technique can be utilized by the power system engineers and operators in order to alleviate the problems related to voltage instability and hence reduce the incidence of voltage collapse especially in the event of contingencies

(iii) In operating generator scheduling, the proposed technique able to economize the usage of capacitor bank or of the reactive power support devices. This will help power system utility to get ideas in managing the reactive power support. In addition, the implementation of the technique can be utilized by the power system engineers and operators in order to identify the correct combination of generators operation and the power schedule in the power scheduling system hence will minimize the system operation cost.

1.5 ORGANIZATION OF THESIS

This thesis begins with some preliminary studies on the current scenarios of voltage stability analysis, contingencies analysis, power planning, FACTS, operating generator scheduling and multi-objective. Literature review on the work that has been carried related to voltage stability studies are presented in Chapter 2. This chapter describes several important terminologies related to voltage stability studies including voltage stability analysis techniques, voltage stability index, maximum loadability and contingency studies, power scheduling, FACTS devices as compensation tools, operating generators scheduling and multi-objective optimization techniques.