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ABSTRACT

ABSTRACT 

The present research is concerned with the modelling of the structural behaviour of steel 

fibre-reinforced concrete (SFRC) using non-linear finite-element (FE) analysis. Key 

structural response indicators such as load-deflection curves, strength, stiffness, 

ductility, energy absorption and cracking were examined. In particular, the potential for 

fibres to substitute for a reduction in conventional transverse reinforcement was studied. 

Such reduction is highly desirables in practice as it helps alleviate reinforcement 

congestion, often experienced in the seismic detailing of critical regions such as beam-

column joints. Thus two key parameters were considered, namely reducing transverse 

reinforcement while increasing the amount of fibres. The reduction in conventional 

reinforcement was achieved mainly by increasing stirrups spacing (and also by reducing 

double-hoop arrangement commonly used in seismic detailing ofjoints). 

The behaviour of SFRC structural elements was studied under both monotonic and 

reversed-cyclic loadings (the latter used to mimic seismic action). Emphasis was 

initially focused on the study of available experimental data describing the effect of 

steel fibres on the post-cracking response of concrete. Consequently the SFRC 

constitutive model proposed by Lok and Xiao (1999) was selected. The numerical 

model was calibrated against existing experimental data to ensure the reliability of the 

FE predictions. Subsequently, further analyses were carried out investigating three main 

case studies namely, simply supported beams, two-span continuous (i.e. statically-

indeterminate) columns, and both exterior and interior beam 1colunm joints. Parametric 

studies were carried out covering the full practical range of steel fibre dosages and 

appropriate amounts of reduction in conventional transverse reinforcement. The results 

show that steel fibres increase the load-carrying capacity and stiffness (thus enhancing 

response at both the serviceability and ultimate limit states, which are important design 

considerations). Fibres were found also to improve ductility (as well as altering the 

mode of failure from a brittle to a ductile one). 
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