BEHAVIOUR OF FIBRE-REINFORCED CONCRETE STRUCTURES UNDER SEISMIC LOADING

A thesis submitted for the degree of
Doctor of Philosophy of the
Imperial College London
by

Sharifah Maszura Binti Syed Mohsin

Structures Section
Department of Civil and Environmental Engineering
Imperial College London

\1
April 2012

Abstract

The present research is concerned with the modelling of the structural behaviour of steel fibre-reinforced concrete (SFRC) using non-linear finite-element (FE) analysis. Key structural response indicators such as load-deflection curves, strength, stiffness, ductility, energy absorption and cracking were examined. In particular, the potential for fibres to substitute for a reduction in conventional transverse reinforcement was studied. Such reduction is highly desirables in practice as it helps alleviate reinforcement congestion, often experienced in the seismic detailing of critical regions such as beamcolumn joints. Thus two key parameters were considered, namely reducing transverse reinforcement while increasing the amount of fibres. The reduction in conventional reinforcement was achieved mainly by increasing stirrups spacing (and also by reducing double-hoop arrangement commonly used in seismic detailing of joints).

The behaviour of SFRC structural elements was studied under both monotonic and reversed-cyclic loadings (the latter used to mimic seismic action). Emphasis was initially focused on the study of available experimental data describing the effect of steel fibres on the post-cracking response of concrete. Consequently the SFRC constitutive model proposed by Lok and Xiao (1999) was selected. The numerical model was calibrated against existing experimental data to ensure the reliability of the FE predictions. Subsequently, further analyses were carried out investigating three main case studies namely, simply supported beams, two-span continuous (i.e. staticallyindeterminate) columns, and both exterior and interior beam-column joints. Parametric studies were carried out covering the full practical range of steel fibre dosages and appropriate amounts of reduction in conventional transverse, reinforcement. The results show that steel fibres increase the load-carrying capacity and stiffness (thus enhancing response at both the serviceability and ultimate limit states, which are important design considerations). Fibres were found also to improve ductility (as well as altering the mode of failure from a brittle to a ductile one).

TABLE OF CONTENTS

ABSTRACT 4
ACKNOWLEDGEMENTS 5
LIST OF FIGURES 15
LIST OF TABLES 35
LIST OF SYMBOLS 40
CHAPTER 1: INTRODUCTION AND OBJECTIVES 46
1.1 Research background 46
1.2 Problem statement 47
1.3 Research aim, objectives and scope 49
1.4 Thesis outline 51
CHAPTER 2: LITERATURE REVIEW 53
2.1 Introduction 53
2.2 Overview of fibres 54
2.2.1 Basic properties and characteristics of SFRC 54
2.2.2 Behaviour of SFRC 56
2.2.3 Crack propagation 57
2.3 Constitutive models for SFRC 60
2.3.1 RILEM TC 162-TDF Recommendations for SFRC. 60
2.3.2 Lim et al. (1987) proposed SFRC model 65
2.3.3 Murugappan et al. (1994) proposed SFRC model 67
2.3.4 Lok and Pei (1998) proposed SFRC model 68
2.3.5 Lok and Xiao (1999) proposed SFRC model 71
2.3.6 Barros and Figueiras (1999) proposed SFRC model 72
2.3.7 Barros and Figueiras (2001) proposed SFRC model 74
2.3.8 Barros et al. (2005) proposed SFRC model 75
2.3.9 Tlemat ${ }^{\text {a,b,c }}$ et al. (2006) proposed SFRC model 76
2.4 Experimental investigation for SFRC under static loading 78
2.4.1 Monotonic loading 78
2.4.1.1 SFRC at the material level 78
2.4.1.2 At the structural level 80
2.4.2 Reversed-cyclic loading 84
2.5 Experimental investigation for SFRC under seismic loading 86
2.6 Summary 88
CHAPTER 3: METHODOLOGY: NON-LINEAR FE ANALYSIS OF 91 SFRC STRUCTURES
3.1 Introduction 91
3.2 Constitutive models for SFRC 91
3.2.1 Background 91
3.2.2 Tension model 92
3.2.3 Compression model 93
3.2.4 Conclusions on SFRC constitutive models 93
3.3 Review of material models in ABAQUS software 94
3.3.1 Concrete models available in ABAQUS 95
3.3.1.1 Smeared cracking concrete model 96
3.3.1.2 Brittle cracking concrete model 98
3.3.1.3 Damaged plasticity concrete model 100
3.3.1.4 Concrete model selection 102
3.3.2 Steel model 103
3.3.3 Analysis procedure 104
3.3.3.1 Analysis modules 104
3.3.3.2 Model definition 105
3.3.4 Failure criterion 106
3.4 Seismic design considerations' 107
3.5 Scope of case/parametric studies 109
3.5.1 Case study 1: Simply supported beams under monotonic and cyclic 110 loading
3.5.2 Case study 2: Two-span continuous columns under monotonic and 111 cyclic loading
3.5.3 Case study 3: Beam-column joints under cyclic loading 112
3.6 Summary 113
CHAPTER 4: CASE STUDY 1: SIMPLY SUPPORTED BEAMS 114 UNDER MONOTONIC AND REVERSED-CYCLIC LOADING
4.1 Introduction
4.2 Case Study 1(a): Calibration with Campione and Mangiavillano 114 (2008) tests
4.2.1 Results for beams under monotonic loading (Case Study 1(a)-M) 117
4.2.2 Results for beam under reversed-cyclic loading (Case Study 1(a)-C) 118
4.3 Case Study 1(a)-M: Parametric study on simply supported beams 120 under monotonic loading
4.3.1 Load-deflection curves 121
4.3.2 Strength 121
4.3.3 Ductility 127
4.3.4 Cracking pattern 127
4.3.4.1 Principal strain contours 128
4.3.4.2 Principal strain vectors 130
4.3.4.3 Deflected shapes 132
4.3.5 Comparative study with control specimen using non-dimensional 133 ratios
4.3.5.1 Strength ratio134
4.3.5.2 Ductility ratio 135
4.3.5.3 Energy absorption ratio 136
4.3.6 Comparison between FE-based predictions and design calculations 136
4.4 Case Study 1(a)-C: Parametric study on simply supported beams 138 under reversed-cyclic loading
4.4.1 Load-deflection curves 139
4.4.2 Strength 139
4.4.3 Ductility 145
4.4.4 Cracking pattern 145
4.4.4.1 Principal strain contours 145
4.4.4.2 Principal strain vectors 148
4.4.4.3 Deflected shapes 150
4.4.5 Comparative study with control specimen using non-dimensional 151ratios
4.4.5.1 Strength ratio 151
4.4.5.2 Ductility ratio 152
4.4.5.3 Energy absorption ratio 152
4.4.5.4 Number of cycles ratio 153
4.5 Case Study 1(b): Calibration with Campione et al. (2006) 154 experimental work
4.6 Case Study 1(b): Parametric study on shear failure of simply 158 supported beams under monotonic loading
4.6.1 Load-deflection curves 159
4.6.2 Strength 159
4.6.3 Ductility 162
4.6.4 Cracking patterns 163
4.6.4.1 Principal strain contours 163
4.6.4.2 Principal strain vectors 166
4.6.4.3 Deflected shapes 167
4.6.5 Comparative study with control specimen using non-dimensional 169 ratios
4.6.5.1 Strength ratio 169
4.6.5.2 Ductility ratio 170
4.6.5.3 Energy absorption 171
4.6.6 Comparison between FE-based predictions and design calculations 172
4.7 Conclusions 174
CHAPTER 5: CASE STUDY 2: TWO-SPAN CONTINUOUS SFRC 177
COLUMN UNDER MONOTONIC AND REVERSED-CYCLIC LOADING
5.1 Introduction 177
5.2 Calibration with experimental data 178
5.2.1 Results for column under monotonic loading 181
5.2.2 Results for column under reversed-cyclic loading 183
5.3 Case Study 2(a): Parametric study of SFRC column under 186 monotonic loading
5.3.1 Strength 187
5.3.2 Ductility 189
5.3.3 Cracking pattern 193
5.3.3.1 Principal strain contours 194
5.3.3.2 Principal strain vectors 196
5.3.3.3 Deflected shapes 197
5.3.4 Comparative study with control specimen using non-dimensional 198 ratios
5.3.4.1 Strength ratio 198
5.3.4.2 Ductility ratio 200
5.3.4.3 Energy absorption ratio 201
5.3.5 Comparison between FE results and analytical calculation 203
5.4 Case Study 2(b): Parametric study analysed under combined axial 205 force and reversed-cyclic loading
5.4.1 Strength 205
5.4.2 Ductility 208
5.4.3 Cracking pattern 210
5.4.3.1 Principal strain contours 211
5.4.3.2 Principal strain vectors 213
5.4.3.3 Deflected shapes 214
5.4.4 Comparative study with control specimen using non-dimensional 215 ratios
5.4.4.1 Strength ratio 215
5.4.4.2 Ductility ratio 216
5.4.4.3 Energy absorption ratio 217
5.4.4.4 Number of cycles analysed ratio 218
5.5 Conclusions 218
CHAPTER 6: CASE STUDY 3: BEAM-COLUMN JOINTS UNDER 220 REVERSED-CYCLIC LOADING
6.1 Introduction220
6.2 Case Study 3(a): Exterior beam-column joint - Calibration with 221 experimental data (Bayasi and Gebman, 2002)
6.2.1 Experimental setup 221
6.2.2 FE analysis input data 222
6.2.3 Results of calibration work 224
6.3 Case Study 3(a): Parametric study on exterior beam-column joint 226 under reversed-cyclic loading
6.3.1 Load-deflection curves 227
6.3.2 Strength 227
6.3.3 Ductility 232
6.3.4 Cracking pattern 236
6.3.4.1 Principal stress contours 236
6.3.4.2 Principal strain contours 239
6.3.4.3 Principal strain vectors 241
6.3.4.4 Deflected shapes 242
6.3.5 Comparative study with control specimen using non-dimensional 244 ratio
6.3.5.1 Strength ratio 244
6.3.5.2 Ductility ratio 245
6.3.5.3 Energy absorption ratio 246
6.3.5.4 Number of the cycles ratio 247
6.4 Case Study 3(b): Interior beam-column joint - Calibration with 248 experimental data (Filiatrault et al, 1995)
6.4.1 Experimental setup 248
6.4.2 FE analysis input data 251
6.4.3 Results of calibration work 253
6.5 Case Study 3(b): Parametric study on interior beam-column joint 259 under reversed-cyclic loading
6.5.1 Storey shear-drift curves 261
6.5.2 Strength 266
6.5.3 Ductility 266
6.5.4 Cracking pattern 269
6.5.4.1 Principal stress contours 269
6.5.4.2 Principal strain contours 272
6.5.4.3 Principal strain vectors 274
6.5.4.4 Deflected shapes 275
6.5.5 Comparative study with control specimen using non-dimensional 276 ratios
6.5.5.1 Strength ratio 277
6.5.5.2 Ductility ratio 278
6.5.5.3 Energy absorption ratio 279
6.5.5.4 Number of cycles 280
6.6 Conclusions 280
CHAPTER 7: RECOMMENDATIONS FOR DESIGN 283
7.1 Introduction 283
7.2 Case Study 1: Simply-supported beams 284
7.3 Case Study 2: Two-span continuous columns 288
7.4 Case Study 3: Beam-column joints 290
7.5 Summary of design recommendations 293
CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 294
8.1 Summary of research work 294
8.2 Summary of conclusions 296
8.3 Recommendations for future work 299
REFERENCES 302
APPENDIX A: MODEL CALIBRATION WORK 310
A. 1 Background 310
A. 2 Ductile failure: Hughes and Śpeirs (1982) 311
A.2.1 Experimental data and analysis procedure 311
A.2.2 Discussion of ABAQUS simulation results 312
A. 3 Brittle failure: Bresler and Scordelis (1963) 312
A.3.1 Experimental data and analysis procedure 312
A.3.2 Discussion of ABAQUS simulation results 313
A. 4 Three-point bending test (tensile failure): Barros et al (2005) 314
A.4.1 Experimental data and analysis procedure 314
A.4.2 Discussion of ABAQUS simulation results 315
A. 5 Four-point bending test (tensile failure): Tlemat ${ }^{\text {a;b }}$ et al (2006) 317
A.5.1 Experimental data and analysis procedure 317
A.5.2 Discussion of ABAQUS simulation results 319
A. 6 Three-point bending test (tensile failure): Barros and Figueiras 321 (1999)
A.6.1 Experimental data and analysis procedure 321
A.6.1 Discussion of ABAQUS simulation results 323
A. 7 Four-point bending test (tensile failure): Trottier and Banthia (1994) 324
A.7.1 Experimental data and analysis procedure 324
A.7.2 Discussion of ABAQUS Simulation Results 325
A. 8 Four-point bending test: Cho and Kim (2003) 326
A.8.1 Experimental data and analysis procedure 326
A.8.2 Discussion of ABAQUS simulation results 328
A. 9 Four-point bending test: Oh et al (1998) 329
A.9.1 Experimental data and analysis procedure 329
A.9.2 Discussion of ABAQUS simulation results 331
A. 10 Four-point bending test: Sharma (1986) 332
A.10.1 Experimental data and analysis procedure 332
A.10.2 Discussion of ABAQUS simulation results 333
A. 11 Conclusions 334
APPENDIX B: DESIGN CALCULATION 335
B. 1 Shear capacity 335
B.2. Bending moment capacity 338

LIST OF FIGURES

Figure 1.1: Examples of the shapes available for steel fibres

Figure 2.1: Types of steel fibres (adapted from Concrete Society, 2007)55

Figure 2.2: Relationship between (a) Moment-curvature response and (b) Tensile 57 stress-strain behaviour (adapted from Lok and Xiao, 1999)
Figure 2.3: Schematic representation of changes in crack geometry and stress fields58 associated with crack extension (adapted from Kotsovos \& Pavlović, 1995)
Figure 2.4: The principle of single and multiple cracking. The specimens are loaded in uniaxial tension and the schematic load versus deformation ($\mathrm{P}-\delta$) relationship is shown together with the cracking pattern (a) single cracking (or tension softening) (b multiple cracking (or strain hardening) (adapted from RILEM TC 162-TDF, 2002)

Figure 2.5: Stress distribution for SFRC sections (adapted from Tlemat et al, 2006)
Figure 2.6: Arrangement for standard bending test on small notched beams (adopted61 from RILEM TC 162-TDF ${ }^{\text {c }}$ Recommendation, 2003)
Figure 2.7: Load-deflection diagram (adapted from RILEM TC 162-TDF 61 Recommendation, 2000)
2.8: Stress-strain diagram (RILEM TC 162-TDF Recommendation, 2000) 62

Figure 2.9: Stress-strain diagram and size factor, κ_{h} (adapted from RILEM TC 162 -63 TDF ${ }^{\text {a }}$ Recommendation, 2003)

Figure 2.10: Geometry and loading of the bending test (adapted from RILEM TC 162-TDF ${ }^{\mathrm{c}}$ Recommendation, 2003)
Figure 2.11: Load - CMOD diagram (RILEM TC 162-TDF ${ }^{\text {a }}$ Recommendation,65 2003)

Figure 2.12: Composite stress-strain relations in tension (Lim et al., 1987)
Figure 2.13: Composite stress-strain relations in tension (Murugappan et al, 1994) . 67
Figure 2.14: Compressive stress-strain relationship for SFRC (Lok and Pei, 1998) 68
Figure 2.15: Tensile stress-strain relationship for SFRC (Lok and Pei, 1998) 69

Figure 2.16: Constitutive stress-strain relationship (Lok and Xiao, 1999)
Figure 2.17: Compression stress-strain diagram (Barros and Figueiras, 1999)
Figure 2.18: Tensile stress-strain diagram (Barros and Figueiras, 1999)
Figure 2.19: Tri-linear softening diagram for hooked-ends SFRC (Barros and 74 Figueiras, 2001)

Figure 2.20: Proposed uni-axial tensile stress-strain model for mesh 25 mm (Tlemat ${ }^{\text {b }}$ et al., 2006)

Figure 2.21: Proposed uni-axial tensile stress-strain model (Tlemat ${ }^{\text {c }}$ et. al, 2006)

Figure 3.1: Uniaxial behaviour of plain concrete (adapted from ABAQUS, 2007)
Figure 3.2: Tension stiffening model (adapted from ABAQUS, 2007)
Figure 3.3: Yield and failure surface in plane stress (adapted from ABAQUS, 2007)
Figure 3.4: Shear retention model (adapted from ABAQUS, 2007) 98
Figure 3.5: Rankine criterion in plane stress (adapted from ABAQUS, 2007) 99
Figure 3.6: Post-failure stress-strain curve. (adapted from ABAQUS, 2007) 99
Figure 3.7: Piece-wise linear form of the shear retention model (adapted from 100 ABAQUS, 2007)

Figure 3.8: Illustration of the definition of the cracking strain ($\tilde{\varepsilon}_{t}^{c k}$) used for the 100 definition of tension stiffening data (adapted from ABAQUS, 2007)
Figure 3.9: Definition of the compressive inelastic (or crushing) strain ($\tilde{\varepsilon}_{t}^{i n}$) used for the definition of compression hardening data (adapted from ABAQUS, 2007)
Figure 3.10: Uni-axial load cycle (tension-compression-tension) assuming default values for the stiffness recovery factors: $w_{t}=0$ and $w_{c}=1$ (adapted from ABAQUS, 2007)

Figure 3.11: Stress-strain relations for steel material
Figure 3.12: RC beam modelled using stringer reinforcement (adapted from 104 ABAQUS, 2007)

Figure 3.13: Example of boundary conditions for one quarter of a notched beam in105
(a) 2 D and (b) 3D models

Figure 3.14: Example of FE mesh refinement sizes for 2D model for (a) fine, (b) 106
medium and (c) coarse meshes
Figure 3.15: Capacity design for unbraced frames: (a) overall view and (b) forces at 107 a beam-column joint, axial forces not shown (adapted from Booth and Key, 2006)
Figure 3.16: Simply supported beams case 110
Figure 3.17: Two-span continuous column case 111
Figure 3.18: Beam-column joint case showing (a) exterior and (b) interior joints 112

Figure 4.1: Dimensions and loading arrangement of the beams (adapted from Campione and Mangiavillano, 2008)
Figure 4.2: Quarter of the beam modelled in ABAQUS with defined boundary 116 condition along symmetrical (a) front and (b) side views; and (c) FE mesh

Figure 4.3: Tensile stress-strain diagram adopted for calibration work of Campione and Mangiavillano (2008) beams

Figure 4.4: Loading histories input for (a) monotonic and (b) reversed-cyclic loading
Figure 4.5: Load-deflection curves for calibration work in Case Study 1(a)-M 117
Figure 4.6: Kinetic energy plots to determine failure for beams analysed under 118 monotonic loading in Case Study 1(a)-M
Figure 4.7: Load-deflection hysteresis loops for calibration work in Case Study 1(a)C

Figure 4.8: Kinetic energy plots to determine failure for beams analysed under monotonic loading in Case Study 1(a)-C
Figure 4.9: Tensile stress-strain relations for Case Study 1(a) for different fibre volume fractions (V_{f})

Figure 4.10: Load-deflection curves for Case Study 1(a)-M beanas with $S I=0 \%$
Figure 4.11: Load-deflection curves for Case Study 1(a)-M beams with $S I=50 \% \quad 122$
Figure 4.12: Load-deflection curves for Case Study 1(a)-M beams with $S I=100 \% \quad 122$
Figure 4.13: Load-deflection curves for Case Study 1(a)-M beams with $S I=200 \% \quad 123$
Figure 4.14: Tensile strain in concrete at the mid-span crack opening region at the 125
bottom of the beam ($\varepsilon_{\mathrm{c}, \mathrm{c}}$) for Case Study 1 (a)-M with $S I=50 \%$
Figure 4.15: Tensile strain in steel bar at the mid-span crack opening region at the 125 bottom of the beam $\left(\varepsilon_{b, s}\right)$ for Case Study 1 (a)-M beam with $S I=50 \%$

Figure 4.16: Load-deflection curve for Case Study 1 (a) series $S I=50 \%$ (shown up 126 to a deflection of 4 mm)

Figure 4.17: Principal strain contours for Case Study 1(a)-M with $S I=0 \%$ for (a) 128 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.18: Principal strain contours for Case Study 1(a)-M with $S I=50 \%$ for (a) 129 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.19: Principal strain contours for Case Study 1(a)-M with $S I=100 \%$ for (a) 129 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.20Principal strain contours for Case Study 1(a)-M with $S I=200 \%$ for (a) 130 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.21: Principal strain vectors for Case Study 1(a)-M with $S I=0 \%$ for (a) 130 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.22: Principal strain vectors for Case Study 1(a)-M with $S I=50 \%$ for (a) 131
$V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.23: Principal strain vectors for Case Study 1(a)-M with $S I=100 \%$ for (a) 131
$V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.24: Principal strain vectors for Case Study 1(a)-M with $S I=200 \%$ for (a) 131
$V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.25: Deflected shapes for Case Study 1(a)-M with $S I=0 \%$ for (a) $V_{f}=132$ 0%, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.26: Deflected shapes for Case Study 1(a)-M with $S I=50 \%$ for (a) 132 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.27: Deflected shapes for Case Study 1(a)-M with $\cdot S I=100 \%$ for (a) 133 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.28: Deflected shapes for Case Study 1(a)-M with SI $=200 \%$ for (a) 133 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.29: Ratio of maximum load to that of the control specimen $\left(S I=0 \%, V_{f}=134\right.$ 0%) versus steel fibre volume fraction graph for Case Study 1(a)-M
Figure 4.30: Ratio of yield load to that of the control specimen $\left(S I=0 \%, V_{f}=0 \%\right) \quad 134$
versus steel fibre volume fraction graph for Case Study 1(a)-M
Figure 4.31: Ratio of ductility ratio to that of the control specimen $\left(S I=0 \%, V_{f}=134\right.$ 0%) versus steel fibre volume fraction graph for Case Study 1(a)-M
Figure 4.32: Ratio of energy absorption to that of the control specimen $(S I=$
$0 \%, V_{f}=0 \%$) versus steel fibre volume fraction graph for Case Study 1(a)-M
Figure 4.33: The loading condition, bending moment (M) and shear force (V) diagram from Case Study 1(a)

Figure 4.34: Load-deflection curves for Case Study 1(a)-C for beams with $S I=0 \%$
Figure 4.35: Load-deflection curves for Case Study 1(a)-C for beams with $S I=50 \% \quad 140$
Figure 4.36: Load-deflection curves for Case Study 1(a)-C for beams with $S I=140$ 100%

Figure 4.37: Load-deflection curves for Case Study 1(a)-C for beams with $S I=140$ 200%

Figure 4.38: Load-deflection curves for Case Study 1(a)-C beams with $S I=0 \%$ and
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 4.39: Load-deflection curves for Case Study 1(a)-C beams with $S I=50 \%$ and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.40: Load-deflection curves for Case Study 1(a)-C beams with $S I=100 \%$ and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.41: Load-deflection curves for Case Study 1(a)-C beams with $S I=200 \%$ and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.42: Principal strain contours for Case Study 1(a)-C beams with $S I=0 \%$
and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.43: Principal strain contours for Case Study 1(a)-C beams with $S I=50 \% \quad 146$ and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.44: Principal strain contours for Case Study 1(a)-C beáms with $S I=100 \%$ and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.45: Principal strain contours for Case Study 1(a)-C beams with $S I=$
200% and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.46: Principal strain vectors for Case Study 1(a)-C beams with $S I=0 \%$ and
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 4.47: Principal strain vectors for Case Study 1(a)-C beams with SI $=50 \%$
and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.48: Principal strain vectors for Case Study 1(a)-C beams with $S I=100 \%$
and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.49: Principal strain vectors for Case Study 1(a)-C beams with $S I=200 \%$
and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.50: Deflected shapes for Case Study 1(a)-C beams with $S I=0 \%$ and (a) 150
$V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.51: Deflected shapes for Case Study 1(a)-C beams with $S I=50 \%$ and (a) 150
$V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.52: Deflected shapes for Case Study 1(a)-C beams with $S I=100 \%$ and (a) 150
$V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.53: Deflected shapes for Case Study 1(a)-C beams with $S I=200 \%$ and (a)
$V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.54: Ratio between the maximum load of each beam and that of the control
specimen ($S I=0 \%, V_{f}=0 \%$) versus steel fibre volume fraction for Case Study 1(a)-C

Figure 4.55: Ratio between the ductility ratio of each beam and that of the control specimen ($S I=0 \%, V_{f}=0 \%$) versus steel fibre volume fraction for Case Study 1(a)-C

Figure 4.56: Ratio between the energy absorption of each beam and that of the control specimen ($S I=0 \%, V_{f}=0 \%$) versus steel fibre volume fraction for Case Study 1(a)-C

Figure 4.57: Ratio between the maximum number of cycles obtained before failure of each beam and that of the control specimen ($S I=0 \%, V_{f}=\hat{0} \%$) versus steel fibre volume fraction for Case Study 1(a)-C
Figure 4.58: Dimensions, loading arrangement and reinforcement detailing of the beams (adapted Campione et al, 2006)
Figure 4.59: Symmetrical half of the beam modelled using ABAQUS with (a) 155
defined boundary conditions at middle-side view (plane of symmetry) and (b) FE mesh

Figure 4.60: Load history input data for Case Study 1(b)
Figure 4.61: Tensile stress-strain diagram adopted for calibration work of Campione
et al. (2006) beams
Figure 4.62: Calibration results for Case Study 1(b) for beams (a) with stirrups (i.e.
S) and (b) without stirrups (i.e. NS) analysed under monotonic ioading

Figure 4.63: Kinetic energy plots to determine failure for calibration work in Case
Study 1(b)
Figure 4.64: Stress-strain relations in tension for parametric studies of Case Study 1(b)
Figure 4.65: Load-deflection curves for Case Study 1 (b) with $S I=0 \%$
Figure 4.66: Load-deflection curves for Case Study 1(b) with $S I=50 \%$
Figure 4.67: Load-deflection curves for Case Study 1(b) with $S I=100 \%$
Figure 4.68: Load-deflection curves for Case Study 1(b) with no stirrups ($N S$)
Figure 4.69: Principal strain contours for Case Study 1(b) beams with $S I=0 \%$ and
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d)
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 4.70: Principal strain contours for Case Study 1(b) beams with $S I=50 \%$ and
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 4.71: Principal strain contours for Case Study 1(b) beams with $S I=100 \%$ and ((a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.72: Principal strain contours for Case Study 1 (b) beams with no stirrups
(NS) and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.73: Principal strain vectors for Case Study 1(b) beanis with $S I=0 \%$ and
(a) $V_{f}=0 \%$,
(b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 4.74: Principal strain vectors for Case Study 1(b) beams with $S I=50 \%$ and
(a) $V_{f}=0 \%$, (b)
(b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 4.75: Principal strain vectors for Case Study 1 (b) beams with $S I=100 \%$ and
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 4.76: Principal strain vectors for Case Study 1(b) beams with no stirrups (NS)
and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.77: Deflected shapes for Case Study 1(b) beams with $S I=0 \%$ and (a) 168 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.78: Deflected shapes for Case Study 1(b) beams with $S I=50 \%$ and (a) 168 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.79: Deflected shapes for Case Study 1(b) beams with $S I=100 \%$ and (a) 168 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 4.80: Deflected shapes for Case Study 1(b) beams with no stirrups $(N S)$ and
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 4.81: Ratio between the maximum load and that in the control specimen
($S I=0 \%, V_{f}=0 \%$) versus steel fibre volume fraction for Case Study 1 (b)
Figure 4.82: Ratio between the yield load and that in the control specimen ($S I=$ $0 \%, V_{f}=0 \%$) versus steel fibre volume fraction for Case Study 1(b)

Figure 4.83: Ratio between the ductility ratio in each beam and that in the control
specimen ($S I=0 \%, V_{f}=0 \%$) versus steel fibre volume fraction for Case Study 1(b)
Figure 4.84: Ratio between the energy absorption in each column and that in the
control specimen ($S I=0 \%, V_{f}=0 \%$) versus steel fibre volume ratio for Case Study 1(b)

Figure 4.85: Shear force (V) and bending moment (M) diagrams for Case Study 1 (b)

Figure 5.1: Dimensions, loading arrangement and reinforcement detailing of the column (adapted from Kotsovos et al, 2007)
Figure 5.2: (a) constant axial force and (b) monotonic loading
Figure 5.3: (a) constant axial force and (b) reversed-cyclic loading
Figure 5.4: Symmetrical half of the column modelled in FE model in ABAQUS
Figure 5.5: Tensile stress-strain diagram adopted for calibration‘work of Kotsovos et
al (2007) SFRC columns
Figure 5.6: Calibration results comparison for the column analysed under monotonic loading

Figure 5.7: Kinetic energy plots to determine failure for the column analysed under
monotonic loading
Figure 5.8: Principal (a) stress and (b) strain contour distribution, (c) principal strain
direction distribution and (d) deformation shape of the column analysed under monotonic loading
Figure 5.9: Calibration results comparison for the column analysed under reversed-
cyclic loading
Figure 5.10: Kinetic energy figure to determine failure under reversed-cyclic loading
Figure 5.11: Principal (a) stress and (b) strain contours, (c) principal strain vectors
and (d) deflected shape for the column analysed under monotonic loading
Figure 5.12: Tensile stress-strain relations for Case Study 2 for different fibre volume fractions $\left(V_{f}\right)$
Figure 5.13: Load-deflection curve for Case Study 2(a) column with $S I=0 \%$
Figure 5.14: Load-deflection curve for Case Study 2(a) column with $S I=50 \%$
Figure 5.15: Load-deflection curve for Case Study 2(a) column with $S I=100 \%$
Figure 5.16: Principal strain contours and vectors for Case Study 2(a) column with
$S I=0 \%$ at at $\delta_{y}=9.3 \mathrm{~mm}$ for: (a) $V_{f}=0 \%$, (b) $V_{f}=1.5 \%$, and (c) $V_{f}=2.5 \%$
Figure 5.17: Principal strain contours and vectors for Case Study 2(a) column with
$S I=0 \%$ at $\delta_{\max }=34.2 \mathrm{~mm}$ for: (a) $V_{f}=0 \%$, (b) $V_{f}=1.5 \%$, and (c) $V_{f}=2.5 \%$
Figure 5.18: Principal strain contours and vectors for Case Study 2(a) column with
$S I=0 \%$ at $V_{f}=39.4 \mathrm{~mm}$ for: (a) $V_{f}=0 \%$, (b) $V_{f}=1.5 \%$, and (c) $V_{f}=2.5 \%$
Figure 5.19: Principal strain contours for Case Study 2(a) column with $S I=0 \%$ for
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 5.20: Principal strain contours for Case Study 2(a) column with $S I=50 \%$ for
(a) $V_{f}=0 \%$,
(b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}^{\prime}=2.5 \%$

Figure 5.21: Principal strain contours for Case Study 2(a) column with $S I=100 \%$ for (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 5.22: Principal strain vectors for Case Study 2(a) column with $S I=0 \%$ for
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 5.23: Principal strain vectors for Case Study 2(a) column with $S I=50 \%$ for
(a) $V_{f}=0 \%$,
(b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
$V_{f}=2.5 \%$
Figure 5.39: Load-deflection curve for Case Study 2(b) column with $S I=50 \%$ for
each fibre fraction: (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 5.40: Load-deflection curve for Case Study 2(b) column with $S I=100 \%$ for
each fibre fraction: (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 5.41: Principal strain contours for Case Study 2(b) column with $S I=0 \%$ for
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 5.42: Principal strain contours for Case Study 2(b) column with $S I=50 \%$ for
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 5.43: Principal strain contours for Case Study 2(b) column with $S I=100 \%$
for (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 5.44: Principal strain vectors for Case Study 2(b) column with $S I=0 \%$ for
(a) $V_{f}=0 \%$,
(b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 5.45: Principal strain vectors for Case Study 2(b) column with $S I=50 \%$ for
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 5.46: Principal strain vectors for Case Study 2(b) column with $S I=100 \%$ for
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 5.47: Deflected shapes for Case Study 2(b) column with $S I=0 \%$ for (a) 215
$V_{f}=0 \%,(\mathrm{~b}) V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 5.48: Deflected shapesfor Case Study 2(b) column with $S I=50 \%$ for (a) 215 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 5.49: Deflected shapesfor Case Study 2(b) column with $S I=100 \%$ for (a) 215 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 5.50: Ratio between the maximum load and that in the control column ($S I=0 \%, V_{f}=0 \%$) versus steel fibre volume fraction graph for Case Study 2(b)
Figure 5.51: Ratio between the ductility ratio in each column and that in the control column ($S I=0 \%, V_{f}=0 \%$) versus steel fibre volume fraction graph for Case

Study 2(b)

Figure 5.52: Ratio between the energy absorption in each column and that in the control column ($\mathrm{Sl}=0 \%, V_{f}=0 \%$) versus steel fibre volume fraction graph for Case Study 2(b)
Figure 5.53: Ratio between the maximum number of cycles before failure in each column and that in the control column ($S I=0 \%, V_{f}=0 \%$) versus steel fibre volume fraction graph for Case Study 2(b)

Figure 6.1: Dimensions and steel reinforcement details for (a) full-scale and (b) $1 / 2$ scale exterior beam-column joint (adopted from Bayasi and Gebman, 2002)
Figure 6.2: Tensile stress-stain diagram for SFRC adopted for the calibration work of the Bayasi and Gebman (2002) beam-column joints
Figure 6.3: Stress-stain diagram for conventional steel reinforcement adopted for the calibration work of the Bayasi and Gebman (2002) beam-column joints
Figure 6.4: ABAQUS input data for reversed-cyclic loading
Figure 6.5: Load-deflection hysteresis loops for calibration work in Case Study 3(a)
Figure 6.6: Kinetic energy graph for calibration work in Case Study 3(a)
Figure 6.7: Stress-strain relations in tension for Case Study 3(a)
Figure 6.8: Load-deflection curve for Case Study 3(a) for specimens with $S I=0 \%$
Figure 6.9: Load-deflection curve for Case Study 3(a) for specimens with $S I=50 \%$
Figure 6.10: Load-deflection curves for Case Study 3(a) for specimens with $S I=$
Figure 6.11: Load-deflection curve for Case Study 3(a) for specimens with $S I=0 \%$
and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 6.12: Load-deflection curve for Case Study 3(a) for specimens with $S I=50 \%$
and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 6.13: Load-deflection curve for Case Study 3(a) for specimens with $S I=$
100% and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 6.14: Principal strain contours and vectors for exterior joints with $S I=0 \% \quad 234$ and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=2 \%$ at $\delta_{y}=6.25 \mathrm{~mm}$

Figure 6.15: Principal strain contours and vectors for exterior joints with $S I=0 \%$
and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=2 \%$ at $\delta_{2}=12.5 \mathrm{~mm}$
Figure 6.16: Principal strain contours and vectors for exterior joints with $S I=0 \%$
and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=2 \%$ taken at $\delta_{3}=24.9 \mathrm{~mm}$
Figure 6.17: Principal strain contours and vectors for exterior joints with $S I=0 \%$
and (a) $V_{f}=1 \%$ at $\delta_{4}=49.9 \mathrm{~mm}$
Figure 6.18: Principal stress contours for Case Study 3(a) joints with $S I=0 \%$ and
(a) $V_{f}=0 \%$,
(b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.19: Principal stress contours for Case Study (a) joints with $S I=50 \%$ and
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.20: Principal stress contours for Case Study 3(a) joints with $S I=100 \%$ and
(a) $V_{f}=0 \%$,
(b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.21: Principal strain contours for Case Study 3(a) joints with $S I=0 \%$ and
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.22: Principal strain contours for Case Study 3(a) joints with $S I=50 \%$ and
(a) $V_{f}=0 \%$,
(b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.23: Principal strain contours for Case Study 3(a) joints with $S I=100 \%$ and
(a) $V_{f}=0 \%$, (b)
(b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.24: Principal strain vectors for Case Study 3(a) joints with $S I=0 \%$ and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 6.25: Principal strain vectors for Case Study 3(a) joints with $S I=50 \%$ and
(a) $V_{f}=0 \%$, (b)
(b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.26: Principal strain vectors for Case Study 3(a) joints with $S I=100 \%$ and
(a) $V_{f}=0 \%$,
(b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.27: Deflected shapes for Case Study 3(a) joints with $S I=0 \%$ and ((a) 243 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f} \dot{=} 2.5 \%$
Figure 6.28: Deflected shapes for Case Study 3(a) joints with $S I=50 \%$ and ((a) 243 $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 6.29: Deflected shapes for Case Study 3(a) joints with $S I=100 \%$ and (a) 243

Figure 6.48: Principal (a) stress contour, (b) strain contour, (c) strain vectors and (d) deflected shape for Specimen S1
Figure 6.49: Principal (a) stress contour, (b) strain contour, (c) strain vectors and (d) 258 deflected shape for Specimen S2

Figure 6.50: Principal (a) stress contour, (b) strain contour, (c) strain vectors and (d) 258 deflected shape for Specimen S3

Figure 6.51: Stress-strain relations in tension for the Case Study 3(b)
Figure 6.52: ABAQUS history input for the parametric study in the Case Study 3(b) 261
Figure 6.53: Storey shear-drift curve for Case Study 3(b) joints with single stirrups 262
Figure 6.54 Storey shear-drift curve for Case Study 3(b) joints with $S I=50 \% \quad 262$
Figure 6.55: Storey shear-drift curve for Case Study 3(b) joints with $S I=100 \%$
Figure 6.56: Storey shear-drift curve for Case Study 3(b) joints with single stirrups 263
and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 6.57: Storey shear-drift curve for Case Study 3(b) joints with $S I=50 \%$ and
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.58: Storey shear-drift curve for Case Study 3(b) joints with $S I=100 \%$ and
(a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$,
(c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.59: Principal strain contour and vectors for joints with $S I=50 \%$ and (a)
$V_{f}=0 \%,(\mathrm{~b}) V_{f}=1 \%$, (c) $V_{f}=2 \%$ taken from storey drift at $\Delta_{\mathrm{y}}=28.6 \mathrm{~mm}$
Figure 6.60: Principal strain contour and vectors for joints with $S I=50 \%$ (a) 268
$V_{f}=0 \%,(\mathrm{~b}) V_{f}=1 \%$, (c) $V_{f}=2 \%$ taken at $\Delta_{\max }=69.4 \mathrm{~mm}$
Figure 6.61: Principal strain contours and vectors for joints with $S I=50 \%$ and ((a) 269
$V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=2 \%$ taken at $\Delta_{\mathrm{u}}=100.2 \mathrm{~mm}$
Figure 6.62: Principal stress contours for Case Study 3(b) joints with single stirrups 270 and (a) $V_{f}=0 \%$, (b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$, (d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$
Figure 6.63: Principal stress contours for Case Study 3(b) joints with $S I=50 \%$ and
(a) $V_{f}=0 \%$,
(b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.64: Principal stress contours for Case Study 3(b) joints with $S I=100 \%$ and

$$
\begin{equation*}
\text { (a) } V_{f}=0 \% \text {, (b) } V_{f}=1 \% \text {, (c) } V_{f}=1.5 \% \text {, (d) } V_{f}=2 \% \text { and (e) } V_{f}=2.5 \% \tag{271}
\end{equation*}
$$

Figure 6.65: Principal strain contours for Case Study 3(b) joints with single stirrups
$V_{f}=0 \%$,
(b) $V_{f}=1 \%$, (c) $V_{f}=1.5 \%$,
(d) $V_{f}=2 \%$ and (e) $V_{f}=2.5 \%$

Figure 6.30: Ratio of maximum load to that of the control specimen ($\mathrm{SI}=0 \%, V_{f}=244$ 0%) versus fibre volume fraction for Case Study 3(a)
Figure 6.31: Ratio of yield load to that of the control specimen $\left(S I=0 \%, V_{f}=0 \%\right) \quad 245$ versus fibre volume fraction for Case Study 3(a)
Figure 6.32: Ratio of ductility ratio to that of the control specimen $\left(S I=0 \%, V_{f}=246\right.$ 0%) versus fibre volume fraction for Case Study 3(a)
Figure 6.33: Ratio of energy absorption to that of the control specimen $(S I=247$ $0 \%, V_{f}=0 \%$) versus fibre volume fraction for Case Study 3(a)
Figure 6.34: Ratio of number of cycles to that of the control specimen $(S I=248$ $0 \%, V_{f}=0 \%$) versus fibre volume fraction for Case Study 3(a)
Figure 6.35: Prototype building (Adopted from Filiatrault et al, 1995248
Figure 6.36: Details of the beam-column joints showing (a) specimens S1 and S3, 249
(b) specimen S 2 , (c) column cross-section and d) beam cross-section (adopted from Filiatrault et al, 1995)
Figure 6.37: Loading arrangement of in cyclic (left) and reversed cyclic (right) 250
loading
Figure 6.38: Beam-column joint modelled using ABAQUS with boundary condition 251 and reinforcement details for specimens (a) S1 and S3, (b) S2 and (c) mesh adopted Figure 6.39: Tensile stress-strain diagram for plain and fibre-reinforced concrete 252 adopted in the calibration work for Filiatrault et al (1995) beam-column joints Figure 6.40: Stress-strain diagram for conventional steel reinforcement bars adopted 252 in the calibration work for Filiatrault et al (1995) beam-column joints
Figure 6.41: ABAQUS history input for calibration work $\quad 253$
Figure 6.42: Storey shear-storey drift curves comparison for Specimen S1 254
$\begin{array}{lll}\text { Figure 6.43: Storey shear-storey drift c̣urves comparison for Specimen S2 } & 254\end{array}$
$\begin{array}{ll}\text { Figure 6.44: Storey shear-storey drift curves comparison for Specimen S3 } & 254\end{array}$
$\begin{array}{ll}\text { Figure 6.45: Kinetic energy graph for Specimen S1 } & 256\end{array}$
$\begin{array}{ll}\text { Figure 6.46: Kinetic energy graph for Specimen S2 } & 256 \\ \text { Figur } & 256\end{array}$
$\begin{array}{ll}\text { Figure 6.47: Kinetic energy graph for Specimen S3 } & 256 \\ 256\end{array}$

