BEHAVIOUR OF FIBRE-REINFORCED CONCRETE STRUCTURES UNDER SEISMIC LOADING

A thesis submitted for the degree of

Doctor of Philosophy of the

Imperial College London

by

Sharifah Maszura Binti Syed Mohsin

Structures Section

Department of Civil and Environmental Engineering

Imperial College London

April 2012

 $\times 1$

PERPL UNIVERSITI M	ISTAKAAN ALAYSIA PAHANG].
No Petrojehan UE 7358 Tarikh 1 1 OCT 2012	No. Panggilan TA 444 .M37 2012	20
	Thesis	

ABSTRACT

· .

The present research is concerned with the modelling of the structural behaviour of steel fibre-reinforced concrete (SFRC) using non-linear finite-element (FE) analysis. Key structural response indicators such as load-deflection curves, strength, stiffness, ductility, energy absorption and cracking were examined. In particular, the potential for fibres to substitute for a reduction in conventional transverse reinforcement was studied. Such reduction is highly desirables in practice as it helps alleviate reinforcement congestion, often experienced in the seismic detailing of critical regions such as beam-column joints. Thus two key parameters were considered, namely reducing transverse reinforcement while increasing the amount of fibres. The reduction in conventional reinforcement was achieved mainly by increasing stirrups spacing (and also by reducing double-hoop arrangement commonly used in seismic detailing of joints).

The behaviour of SFRC structural elements was studied under both monotonic and reversed-cyclic loadings (the latter used to mimic seismic action). Emphasis was initially focused on the study of available experimental data describing the effect of steel fibres on the post-cracking response of concrete. Consequently the SFRC constitutive model proposed by Lok and Xiao (1999) was selected. The numerical model was calibrated against existing experimental data to ensure the reliability of the FE predictions. Subsequently, further analyses were carried out investigating three main case studies namely, simply supported beams, two-span continuous (i.e. statically-indeterminate) columns, and both exterior and interior beam-column joints. Parametric studies were carried out covering the full practical range of steel fibre dosages and appropriate amounts of reduction in conventional transverse reinforcement. The results show that steel fibres increase the load-carrying capacity and stiffness (thus enhancing response at both the serviceability and ultimate limit states, which are important design considerations). Fibres were found also to improve ductility (as well as altering the mode of failure from a brittle to a ductile one).

TABLE OF CONTENTS

•

ABSTRACT	4
ACKNOWLEDGEMENTS	5
LIST OF FIGURES	15
LIST OF TABLES	35
LIST OF SYMBOLS	40
CHAPTER 1: INTRODUCTION AND OBJECTIVES	46
1.1 Research background	46
1.2 Problem statement	47
1.3 Research aim, objectives and scope	49
1.4 Thesis outline	51
CHAPTER 2: LITERATURE REVIEW	53
2.1 Introduction	53
2.2 Overview of fibres	54
2.2.1 Basic properties and characteristics of SFRC	54
2.2.2 Behaviour of SFRC	56
2.2.3 Crack propagation	57
2.3 Constitutive models for SFRC	60
2.3.1 RILEM TC 162-TDF Recommendations for SFRC	60
2.3.2 Lim et al. (1987) proposed SFRC model	65
2.3.3 Murugappan et al. (1994) proposed SFRC model	67
2.3.4 Lok and Pei (1998) proposed SFRC model	68
2.3.5 Lok and Xiao (1999) proposed SFRC model	71
2.3.6 Barros and Figueiras (1999) proposed SFRC model	71
2.3.7 Barros and Figueiras (2001) proposed SFRC model	72
2.3.8 Barros et al. (2005) proposed SFRC model	75
2.3.9 Tlemat ^{a,b,c} et al. (2006) proposed SFRC model	76

3. .

į

2.4 Experimental investigation for SFRC under static loading	78
2.4.1 Monotonic loading	78
2.4.1.1 SFRC at the material level	78
2.4.1.2 At the structural level	80
2.4.2 Reversed-cyclic loading	84
2.5 Experimental investigation for SFRC under seismic loading	86
2.6 Summary	88
CHAPTER 3: METHODOLOGY: NON-LINEAR FE ANALYSIS OF	91
SFRC STRUCTURES	
3.1 Introduction	91
3.2 Constitutive models for SFRC	91
3.2.1 Background	91
3.2.2 Tension model	92
3.2.3 Compression model	93
3.2.4 Conclusions on SFRC constitutive models	93
3.3 Review of material models in ABAQUS software	94
3.3.1 Concrete models available in ABAQUS	95
3.3.1.1 Smeared cracking concrete model	96
3.3.1.2 Brittle cracking concrete model	98
3.3.1.3 Damaged plasticity concrete model	100
3.3.1.4 Concrete model selection	102
3.3.2 Steel model	103
3.3.3 Analysis procedure	104
3.3.3.1 Analysis modules	104
3.3.3.2 Model definition	105
3.3.4 Failure criterion	106
3.4 Seismic design considerations	107
3.5 Scope of case/parametric studies	109
3.5.1 Case study 1: Simply supported beams under monotonic and cyclic	110
loading	
3.5.2 Case study 2: Two-span continuous columns under monotonic and	111
cyclic loading	

3.5.3 Case study 3: Beam-column joints under cyclic loading	112
3.6 Summary	112
	115
CHAPTER 4: CASE STUDY 1: SIMPLY SUPPORTED BEAMS	114
UNDER MONOTONIC AND REVERSED-CYCLIC LOADING	
4.1 Introduction	- 114
4.2 Case Study 1(a): Calibration with Campione and Mangiavillano	115
(2008) tests	110
4.2.1 Results for beams under monotonic loading (Case Study 1(a)-M)	117
4.2.2 Results for beam under reversed-cyclic loading (Case Study 1(a)-C)	118
4.3 Case Study 1(a)-M: Parametric study on simply supported beams	120
under monotonic loading	120
4.3.1 Load-deflection curves	121
4.3.2 Strength	121
4.3.3 Ductility	121
4.3.4 Cracking pattern	127
4.3.4.1 Principal strain contours	127
4.3.4.2 Principal strain vectors	130
4.3.4.3 Deflected shapes	130
4.3.5 Comparative study with control specimen using non-dimensional	133
ratios	100
4.3.5.1 Strength ratio	134
4.3.5.2 Ductility ratio	135
4.3.5.3 Energy absorption ratio	136
4.3.6 Comparison between FE-based predictions and design calculations	136
4.4 Case Study 1(a)-C: Parametric study on simply supported beams	138
under reversed-cyclic loading	
4.4.1 Load-deflection curves	139
4.4.2 Strength	139
4.4.3 Ductility	145
4.4.4 Cracking pattern	145
4.4.4.1 Principal strain contours	145
4.4.4.2 Principal strain vectors	148

.

4.4.4.3 Deflected shapes	150
4.4.5 Comparative study with control specimen using non-dimensional	151
ratios	
4.4.5.1 Strength ratio	151
4.4.5.2 Ductility ratio	152
4.4.5.3 Energy absorption ratio	152
4.4.5.4 Number of cycles ratio	153
4.5 Case Study 1(b): Calibration with Campione et al. (2006)	154
experimental work	
4.6 Case Study 1(b): Parametric study on shear failure of simply	158
supported beams under monotonic loading	
4.6.1 Load-deflection curves	159
4.6.2 Strength	159
4.6.3 Ductility	162
4.6.4 Cracking patterns	163
4.6.4.1 Principal strain contours	163
4.6.4.2 Principal strain vectors	166
4.6.4.3 Deflected shapes	167
4.6.5 Comparative study with control specimen using non-dimensional ratios	169
4.6.5.1 Strength ratio	169
4.6.5.2 Ductility ratio	170
4.6.5.3 Energy absorption	171
4.6.6 Comparison between FE-based predictions and design calculations	172
4.7 Conclusions	174
CHAPTER 5: CASE STUDY 2: TWO-SPAN CONTINUOUS SFRC	177
COLUMN UNDER MONOTONIC AND REVERSED-CYCLIC	
LOADING	
5.1 Introduction	177
5.2 Calibration with experimental data	178
5.2.1 Results for column under monotonic loading	181
5.2.2 Results for column under reversed-cyclic loading	183

. .

5.3 Case Study 2(a): Parametric study of SFRC column under	186
monotonic loading	100
5.3.1 Strength	187
5.3.2 Ductility	189
5.3.3 Cracking pattern	193
5.3.3.1 Principal strain contours	193
5.3.3.2 Principal strain vectors	106
5.3.3.3 Deflected shapes	190
5.3.4 Comparative study with control specimen using non-dimensional	198
ratios	170
5.3.4.1 Strength ratio	198
5.3.4.2 Ductility ratio	· 200
5.3.4.3 Energy absorption ratio	200
5.3.5 Comparison between FE results and analytical calculation	201
5.4 Case Study 2(b): Parametric study analysed under combined axial	205
force and reversed-cyclic loading	205
5.4.1 Strength	205
5.4.2 Ductility	205
5.4.3 Cracking pattern	200
5.4.3.1 Principal strain contours	210
5.4.3.2 Principal strain vectors	211
5.4.3.3 Deflected shapes	213
5.4.4 Comparative study with control specimen using non-dimensional	215
ratios	215
5.4.4.1 Strength ratio	215
5.4.4.2 Ductility ratio	216
5.4.4.3 Energy absorption ratio	217
5.4.4.4 Number of cycles analysed ratio	218
5.5 Conclusions	218
CHAPTER 6. CASE STUDY 2. DEAM COLVERED	
REVERSED-CVCLIC LOADING	220
6.1 Introduction	
	220

 experimental data (Bayasi and Gebman, 2002) 6.2.1 Experimental setup 6.2.2 FE analysis input data 6.2.3 Results of calibration work 6.3 Case Study 3(a): Parametric study on exterior beam-column joint under reversed-cyclic loading 6.3.1 Load-deflection curves 6.3.2 Strength 6.3.3 Ductility 6.3.4 Cracking pattern 6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours 	221
 6.2.1 Experimental setup 6.2.2 FE analysis input data 6.2.3 Results of calibration work 6.3 Case Study 3(a): Parametric study on exterior beam-column joint under reversed-cyclic loading 6.3.1 Load-deflection curves 6.3.2 Strength 6.3.3 Ductility 6.3.4 Cracking pattern 6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours 	
 6.2.2 FE analysis input data 6.2.3 Results of calibration work 6.3 Case Study 3(a): Parametric study on exterior beam-column joint under reversed-cyclic loading 6.3.1 Load-deflection curves 6.3.2 Strength 6.3.3 Ductility 6.3.4 Cracking pattern 6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours 	221
 6.2.3 Results of calibration work 6.3 Case Study 3(a): Parametric study on exterior beam-column joint under reversed-cyclic loading 6.3.1 Load-deflection curves 6.3.2 Strength 6.3.3 Ductility 6.3.4 Cracking pattern 6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours 	222
 6.3 Case Study 3(a): Parametric study on exterior beam-column joint under reversed-cyclic loading 6.3.1 Load-deflection curves 6.3.2 Strength 6.3.3 Ductility 6.3.4 Cracking pattern 6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours 	224
under reversed-cyclic loading 6.3.1 Load-deflection curves 6.3.2 Strength 6.3.3 Ductility 6.3.4 Cracking pattern 6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours	226
 6.3.1 Load-deflection curves 6.3.2 Strength 6.3.3 Ductility 6.3.4 Cracking pattern 6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours 	-20
 6.3.2 Strength 6.3.3 Ductility 6.3.4 Cracking pattern 6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours 	227
 6.3.3 Ductility 6.3.4 Cracking pattern 6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours 	227
 6.3.4 Cracking pattern 6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours 	232
6.3.4.1 Principal stress contours 6.3.4.2 Principal strain contours	236
6.3.4.2 Principal strain contours	236
	239
6.3.4.3 Principal strain vectors	241
6.3.4.4 Deflected shapes	242
6.3.5 Comparative study with control specimen using non-dimensional	244
ratio	
6.3.5.1 Strength ratio	244
6.3.5.2 Ductility ratio	245
6.3.5.3 Energy absorption ratio	246
6.3.5.4 Number of the cycles ratio	247
6.4 Case Study 3(b): Interior beam-column joint - Calibration with	248
experimental data (Filiatrault et al, 1995)	
6.4.1 Experimental setup	248
6.4.2 FE analysis input data	251
6.4.3 Results of calibration work	253
6.5 Case Study 3(b): Parametric study on interior beam-column joint	259
under reversed-cyclic loading	
6.5.1 Storey shear-drift curves	261
6.5.2 Strength	266
6.5.3 Ductility	266
6.5.4 Cracking pattern	269
6.5.4.1 Principal stress contours	269

6.5.4.2 Principal strain contours	272
6.5.4.3 Principal strain vectors	274
6.5.4.4 Deflected shapes	275
6.5.5 Comparative study with control specimen using non-dimensional	276
ratios	
6.5.5.1 Strength ratio	277
6.5.5.2 Ductility ratio	278
6.5.5.3 Energy absorption ratio	279
6.5.5.4 Number of cycles	280
6.6 Conclusions	280
CHAPTER 7: RECOMMENDATIONS FOR DESIGN	101
7.1 Introduction	283
7.2 Case Study 1: Simply-supported beams	283
7.3 Case Study 2: Two-span continuous columns	284
7.4 Case Study 3: Beam-column joints	288
7.5 Summary of design recommendations	290 293
CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS	204
8.1 Summary of research work	294
8.2 Summary of conclusions	294
8.3 Recommendations for future work	296
	299
REFERENCES	302
APPENDIX A: MODEL CALIBRATION WORK	310
A.1 Background	310
A.2 Ductile failure: Hughes and Speirs (1982)	311
A.2.1 Experimental data and analysis procedure	211
A.2.2 Discussion of ABAQUS simulation results	212
A.3 Brittle failure: Bresler and Scordelis (1963)	212
A.3.1 Experimental data and analysis procedure	312 312
A.3.2 Discussion of ABAQUS simulation results	51Z
	515

TABLE OF CONTENTS

A.4 Three-point bending test (tensile failure): Barros et al (2005)	314
A.4.1 Experimental data and analysis procedure	314
A.4.2 Discussion of ABAQUS simulation results	315
A.5 Four-point bending test (tensile failure): Tlemat ^{a;b} et al (2006)	317
A.5.1 Experimental data and analysis procedure	317
A.5.2 Discussion of ABAQUS simulation results	319
A.6 Three-point bending test (tensile failure): Barros and Figueiras	321
(1999)	521
A.6.1 Experimental data and analysis procedure	321
A.6.1 Discussion of ABAQUS simulation results	323
A.7 Four-point bending test (tensile failure): Trottier and Banthia (1994)	324
A.7.1 Experimental data and analysis procedure	324
A.7.2 Discussion of ABAQUS Simulation Results	325
A.8 Four-point bending test: Cho and Kim (2003)	326
A.8.1 Experimental data and analysis procedure	326
A.8.2 Discussion of ABAQUS simulation results	328
A.9 Four-point bending test: Oh et al (1998)	320
A.9.1 Experimental data and analysis procedure	329
A.9.2 Discussion of ABAQUS simulation results	331
A.10 Four-point bending test: Sharma (1986)	332
A.10.1 Experimental data and analysis procedure	332
A.10.2 Discussion of ABAQUS simulation results	333
A.11 Conclusions	334
	554
APPENDIX B: DESIGN CALCULATION	335
B.1 Shear capacity	335
B.2. Bending moment capacity	338
	550

LIST OF FIGURES

Figure 1.1: Examples of the shapes available for steel fibres	47
Figure 2.1: Types of steel fibres (adapted from Concrete Society, 2007)	55
Figure 2.2: Relationship between (a) Moment-curvature response and (b) Tensile stress-strain behaviour (adapted from Lok and Xiao, 1999)	57
Figure 2.3: Schematic representation of changes in crack geometry and stress fields associated with crack extension (adapted from Kotsovos & Pavlović, 1995)	58
Figure 2.4: The principle of single and multiple cracking. The specimens are loaded in uniaxial tension and the schematic load versus deformation (P- δ) relationship is shown together with the cracking pattern (a) single cracking (or tension softening) (b multiple cracking (or strain hardening) (adapted from RILEM TC 162-TDF, 2002)	59
Figure 2.5: Stress distribution for SFRC sections (adapted from Tlemat et al, 2006)	59
Figure 2.6: Arrangement for standard bending test on small notched beams (adopted from RILEM TC 162-TDF ^c Recommendation, 2003)	61
Figure 2.7: Load-deflection diagram (adapted from RILEM TC 162-TDF Recommendation, 2000)	61
2.8: Stress-strain diagram (RILEM TC 162-TDF Recommendation, 2000)	62
Figure 2.9: Stress-strain diagram and size factor, κ_h (adapted from RILEM TC 162-TDF ^a Recommendation, 2003)	63
Figure 2.10: Geometry and loading of the bending test (adapted from RILEM TC 162-TDF ^c Recommendation, 2003)	65
Figure 2.11: Load – CMOD diagram (RILEM TC 162-TDF ^a Recommendation, 2003)	65
Figure 2.12: Composite stress-strain relations in tension (Lim et al., 1987)	66
Figure 2.13: Composite stress-strain relations in tension (Murugappan et al, 1994)	67
Figure 2.14: Compressive stress-strain relationship for SFRC (Lok and Pei, 1998)	68
Figure 2.15: Tensile stress-strain relationship for SFRC (Lok and Pei, 1998)	69

Figure 2.16: Constitutive stress-strain relationship (Lok and Xiao, 1999)	71
Figure 2.17: Compression stress-strain diagram (Barros and Figueiras, 1999)	71
Figure 2.18: Tensile stress-strain diagram (Barros and Figueiras, 1999)	75 77
Figure 2.19: Tri-linear softening diagram for hooked-ends SFRC (Barros and	74
Figueiras, 2001)	13
Figure 2.20: Proposed uni-axial tensile stress-strain model for mesh 25 mm (Tlemat ^b	77
et al., 2006)	//
Figure 2.21: Proposed uni-axial tensile stress-strain model (Tlemat ^c et. al, 2006)	78
Figure 3.1: Uniaxial behaviour of plain concrete (adapted from ABAQUS, 2007)	96
Figure 3.2: Tension stiffening model (adapted from ABAQUS, 2007)	96
Figure 3.3: Yield and failure surface in plane stress (adapted from ABAQUS, 2007)	97
Figure 3.4: Shear retention model (adapted from ABAQUS, 2007)	98
Figure 3.5: Rankine criterion in plane stress (adapted from ABAQUS, 2007)	99
Figure 3.6: Post-failure stress-strain curve. (adapted from ABAQUS, 2007)	99
Figure 3.7: Piece-wise linear form of the shear retention model (adapted from ABAQUS, 2007)	100
Figure 3.8: Illustration of the definition of the cracking strain (\tilde{e}^{ck}) used for the	100
definition of tension stiffening data (adapted from ABAOUS 2007)	100
Figure 3.9: Definition of the compressive inelastic (or crushing) strain $(\tilde{\varepsilon}_{t}^{in})$ used for	101
the definition of compression hardening data (adapted from ABAOUS, 2007)	
Figure 3.10: Uni-axial load cycle (tension-compression-tension) assuming default	101
values for the stiffness recovery factors: $w = 0$ and $w = 1$ (adapted from ABAOUS)	101
2007)	
Figure 3.11: Stress-strain relations for steel material	100
Figure 3.12: RC beam modelled using stringer reinforcement (advected 6	103
ABAQUS, 2007)	104
Figure 3.13: Example of boundary conditions for one guarter of a notched because	105
(a) 2D and (b) 3D models	102
igure 3.14: Example of FE mesh refinement sizes for 2D model for (a) find (b)	107
a a a b	106

medium and (c) coarse meshes

Figure 3.15: Capacity design for unbraced frames: (a) overall view and (b) forces at	107
a beam-column joint, axial forces not shown (adapted from Booth and Key, 2006)	
Figure 3.16: Simply supported beams case	110
Figure 3.17: Two-span continuous column case	111
Figure 3.18: Beam-column joint case showing (a) exterior and (b) interior joints	112
Figure 4.1: Dimensions and loading arrangement of the beams (adapted from	115
Campione and Mangiavillano, 2008)	
Figure 4.2: Quarter of the beam modelled in ABAQUS with defined boundary	116
condition along symmetrical (a) front and (b) side views; and (c) FE mesh	
Figure 4.3: Tensile stress-strain diagram adopted for calibration work of Campione	116
and Mangiavillano (2008) beams	
Figure 4.4: Loading histories input for (a) monotonic and (b) reversed-cyclic loading	117
Figure 4.5: Load-deflection curves for calibration work in Case Study 1(a)-M	117
Figure 4.6: Kinetic energy plots to determine failure for beams analysed under	118
monotonic loading in Case Study 1(a)-M	
Figure 4.7: Load-deflection hysteresis loops for calibration work in Case Study 1(a)-	119
C	
Figure 4.8: Kinetic energy plots to determine failure for beams analysed under	119
monotonic loading in Case Study 1(a)-C	
Figure 4.9: Tensile stress-strain relations for Case Study 1(a) for different fibre	120
volume fractions (V_f)	
Figure 4.10: Load-deflection curves for Case Study 1(a)-M beams with $SI = 0\%$	122
Figure 4.11: Load-deflection curves for Case Study $1(a)$ -M beams with $SI = 50\%$	122
Figure 4.12: Load-deflection curves for Case Study 1(a)-M beams with $SI = 100\%$	122
Figure 4.13: Load-deflection curves for Case Study 1(a)-M beams with $SI = 200\%$	123
Figure 4.14: Tensile strain in concrete at the mid-span crack opening region at the	125
bottom of the beam ($\varepsilon_{c,c}$) for Case Study 1 (a)-M with $SI = 50\%$	
Figure 4.15: Tensile strain in steel bar at the mid-span crack opening region at the	125
bottom of the beam ($\varepsilon_{b,s}$) for Case Study 1 (a)-M beam with $SI = 50\%$	

Figure 4.16: Load-deflection curve for Case Study 1 (a) series $SI = 50\%$ (shown up	126
to a deflection of 4 mm)	
Figure 4.17: Principal strain contours for Case Study $1(a)$ -M with $SI = 0\%$ for (a)	128
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.18: Principal strain contours for Case Study 1(a)-M with $SI = 50\%$ for (a)	129
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.19: Principal strain contours for Case Study 1(a)-M with $SI = 100\%$ for (a)	129
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.20Principal strain contours for Case Study $1(a)$ -M with $SI = 200\%$ for (a)	130
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.21: Principal strain vectors for Case Study 1(a)-M with $SI = 0\%$ for (a)	130
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.22: Principal strain vectors for Case Study $1(a)$ -M with $SI = 50\%$ for (a)	131
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.23: Principal strain vectors for Case Study $1(a)$ -M with $SI = 100\%$ for (a)	131
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.24: Principal strain vectors for Case Study $1(a)$ -M with $SI = 200\%$ for (a)	131
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.25: Deflected shapes for Case Study 1(a)-M with $SI = 0\%$ for (a) $V_f =$	132
0%, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.26: Deflected shapes for Case Study 1(a)-M with $SI = 50\%$ for (a)	132
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.27: Deflected shapes for Case Study 1(a)-M with $SI = 100\%$ for (a)	133
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.28: Deflected shapes for Case Study 1(a)-M with $SI = 200\%$ for (a)	133
$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.29: Ratio of maximum load to that of the control specimen ($SI = 0\%$, $V_f =$	134
0%) versus steel fibre volume fraction graph for Case Study 1(a)-M	
Figure 4.30: Ratio of yield load to that of the control specimen ($SI = 0\%, V_f = 0\%$)	134
- , , , , , , , , , , , , , , , , , , ,	

versus steel fibre volume fraction graph for Case Study 1(a)-M

Figure 4.31: Ratio of ductility ratio to that of the control specimen (SI = 0%, $V_f = 134$ 0%) versus steel fibre volume fraction graph for Case Study 1(a)-M

(a)-w

Figure 4.32: Ratio of energy absorption to that of the control specimen (SI = 136 0%, $V_f = 0$ %) versus steel fibre volume fraction graph for Case Study 1(a)-M

Figure 4.33: The loading condition, bending moment (M) and shear force (V) 136 diagram from Case Study 1(a)

Figure 4.34: Load-deflection curves for Case Study 1(a)-C for beams with SI = 0% 139

Figure 4.35: Load-deflection curves for Case Study 1(a)-C for beams with SI = 50% 140 Figure 4.36: Load-deflection curves for Case Study 1(a)-C for beams with SI = 140100%

Figure 4.37: Load-deflection curves for Case Study 1(a)-C for beams with SI = 140 200%

Figure 4.38: Load-deflection curves for Case Study 1(a)-C beams with SI = 0% and 141 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 4.39: Load-deflection curves for Case Study 1(a)-C beams with SI = 50% 142 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 4.40: Load-deflection curves for Case Study 1(a)-C beams with SI = 100% 143 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 4.41: Load-deflection curves for Case Study 1(a)-C beams with SI = 200% 144 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 4.42: Principal strain contours for Case Study 1(a)-C beams with SI = 0% 146 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 4.43: Principal strain contours for Case Study 1(a)-C beams with SI = 50% 146 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 4.44: Principal strain contours for Case Study 1(a)-C beams with SI = 100% 147 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 4.45: Principal strain contours for Case Study 1(a)-C beams with SI = 147200% and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 4.46: Principal strain vectors for Case Study 1(a)-C beams with SI = 0% and 148

(a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.47: Principal strain vectors for Case Study 1(a)-C beams with SI = 50%149 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.48: Principal strain vectors for Case Study 1(a)-C beams with SI = 100%149 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.49: Principal strain vectors for Case Study 1(a)-C beams with SI = 200%149 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.50: Deflected shapes for Case Study 1(a)-C beams with SI = 0% and (a) 150 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.51: Deflected shapes for Case Study 1(a)-C beams with SI = 50% and (a) 150 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.52: Deflected shapes for Case Study 1(a)-C beams with SI = 100% and (a) 150 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.53: Deflected shapes for Case Study 1(a)-C beams with SI = 200% and (a) 151 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.54: Ratio between the maximum load of each beam and that of the control 151 specimen (SI = 0%, $V_f = 0\%$) versus steel fibre volume fraction for Case Study 1(a)-C

Figure 4.55: Ratio between the ductility ratio of each beam and that of the control 152 specimen ($SI = 0\%, V_f = 0\%$) versus steel fibre volume fraction for Case Study 1(a)-C

Figure 4.56: Ratio between the energy absorption of each beam and that of the 153 control specimen (SI = 0%, $V_f = 0\%$) versus steel fibre volume fraction for Case Study 1(a)-C

Figure 4.57: Ratio between the maximum number of cycles obtained before failure 154 of each beam and that of the control specimen (SI = 0%, $V_f = 0\%$) versus steel fibre volume fraction for Case Study 1(a)-C

Figure 4.58: Dimensions, loading arrangement and reinforcement detailing of the 154 beams (adapted Campione et al, 2006)

Figure 4.59: Symmetrical half of the beam modelled using ABAQUS with (a) 155

defined boundary conditions at middle-side view (plane of symmetry) and (b) FE	
mesh	
Figure 4.60: Load history input data for Case Study 1(b)	155
Figure 4.61: Tensile stress-strain diagram adopted for calibration work of Campione	156
et al. (2006) beams	
Figure 4.62: Calibration results for Case Study 1(b) for beams (a) with stirrups (i.e.	156
S) and (b) without stirrups (i.e. NS) analysed under monotonic loading	
Figure 4.63: Kinetic energy plots to determine failure for calibration work in Case	157
Study 1(b)	
Figure 4.64: Stress-strain relations in tension for parametric studies of Case Study	158
1(b)	
Figure 4.65: Load-deflection curves for Case Study 1(b) with $SI = 0\%$	160
Figure 4.66: Load-deflection curves for Case Study 1(b) with $SI = 50\%$	160
Figure 4.67: Load-deflection curves for Case Study 1(b) with $SI = 100\%$	160
Figure 4.68: Load-deflection curves for Case Study 1(b) with no stirrups (NS)	161
Figure 4.69: Principal strain contours for Case Study 1(b) beams with $SI = 0\%$ and	164
(a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.70: Principal strain contours for Case Study 1(b) beams with $SI = 50\%$ and	164
(a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.71: Principal strain contours for Case Study 1(b) beams with $SI = 100\%$	165
and ((a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.72: Principal strain contours for Case Study 1(b) beams with no stirrups	165
(<i>NS</i>) and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.73: Principal strain vectors for Case Study 1(b) beams with $SI = 0\%$ and	166
(a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.74: Principal strain vectors for Case Study 1(b) beams with $SI = 50\%$ and	167
(a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.75: Principal strain vectors for Case Study 1(b) beams with $SI = 100\%$ and	167
(a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 4.76: Principal strain vectors for Case Study 1(b) beams with no stirrups (NS)	167

and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 4.77: Deflected shapes for Case Study 1(b) beams with SI = 0% and (a) 168 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.78: Deflected shapes for Case Study 1(b) beams with SI = 50% and (a) 168 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.79: Deflected shapes for Case Study 1(b) beams with SI = 100% and (a) 168 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.80: Deflected shapes for Case Study 1(b) beams with no stirrups (NS) and 168 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 4.81: Ratio between the maximum load and that in the control specimen 169 $(SI = 0\%, V_f = 0\%)$ versus steel fibre volume fraction for Case Study 1(b) Figure 4.82: Ratio between the yield load and that in the control specimen (SI =170 0%, $V_f = 0\%$) versus steel fibre volume fraction for Case Study 1(b) Figure 4.83: Ratio between the ductility ratio in each beam and that in the control 170 specimen (SI = 0%, $V_f = 0\%$) versus steel fibre volume fraction for Case Study 1(b) Figure 4.84: Ratio between the energy absorption in each column and that in the 171 control specimen (SI = 0%, $V_f = 0\%$) versus steel fibre volume ratio for Case Study 1(b)

Figure 4.85: Shear force (V) and bending moment (M) diagrams for Case Study 1(b) 172

Figure 5.1: Dimensions, loading arrangement and reinforcement detailing of the 178 column (adapted from Kotsovos et al, 2007)

Figure 5.2: (a) constant axial force and (b) monotonic loading , 179

Figure 5.3: (a) constant axial force and (b) reversed-cyclic loading 179

Figure 5.4: Symmetrical half of the column modelled in FE model in ABAQUS 180

Figure 5.5: Tensile stress-strain diagram adopted for calibration work of Kotsovos et 180 al (2007) SFRC columns

Figure 5.6: Calibration results comparison for the column analysed under monotonic 181 loading

Figure 5.7: Kinetic energy plots to determine failure for the column analysed under 182

monotonic loading

Figure 5.8: Principal (a) stress and (b) strain contour distribution, (c) principal strain 183 direction distribution and (d) deformation shape of the column analysed under monotonic loading

Figure 5.9: Calibration results comparison for the column analysed under reversed- 184 cyclic loading

Figure 5.10: Kinetic energy figure to determine failure under reversed-cyclic loading 185 Figure 5.11: Principal (a) stress and (b) strain contours, (c) principal strain vectors 185 and (d) deflected shape for the column analysed under monotonic loading

Figure 5.12: Tensile stress-strain relations for Case Study 2 for different fibre 186 volume fractions (V_f)

- Figure 5.13: Load-deflection curve for Case Study 2(a) column with SI = 0% 188
- Figure 5.14: Load-deflection curve for Case Study 2(a) column with SI = 50% 188
- Figure 5.15: Load-deflection curve for Case Study 2(a) column with SI = 100% 188

Figure 5.16: Principal strain contours and vectors for Case Study 2(a) column with 191 SI = 0% at at $\delta_y = 9.3 \ mm$ for: (a) $V_f = 0\%$, (b) $V_f = 1.5\%$, and (c) $V_f = 2.5\%$

Figure 5.17: Principal strain contours and vectors for Case Study 2(a) column with 192 SI = 0% at $\delta_{max} = 34.2 \ mm$ for: (a) $V_f = 0\%$, (b) $V_f = 1.5\%$, and (c) $V_f = 2.5\%$

Figure 5.18: Principal strain contours and vectors for Case Study 2(a) column with 193 SI = 0% at $V_f = 39.4 \text{ mm}$ for: (a) $V_f = 0\%$, (b) $V_f = 1.5\%$, and (c) $V_f = 2.5\%$

Figure 5.19: Principal strain contours for Case Study 2(a) column with SI = 0% for 194 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.20: Principal strain contours for Case Study 2(a) column with SI = 50% for 195 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.21: Principal strain contours for Case Study 2(a) column with SI = 100% 195 for (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.22: Principal strain vectors for Case Study 2(a) column with SI = 0% for 196 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.23: Principal strain vectors for Case Study 2(a) column with SI = 50% for 196 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

$V_f = 2.5\%$

Figure 5.39: Load-deflection curve for Case Study 2(b) column with SI = 50% for 208 each fibre fraction: (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.40: Load-deflection curve for Case Study 2(b) column with SI = 100% for 209 each fibre fraction: (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.41: Principal strain contours for Case Study 2(b) column with SI = 0% for 211 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.42: Principal strain contours for Case Study 2(b) column with SI = 50% for 212 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.43: Principal strain contours for Case Study 2(b) column with SI = 100% 212 for (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.44: Principal strain vectors for Case Study 2(b) column with SI = 0% for 214 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.45: Principal strain vectors for Case Study 2(b) column with SI = 50% for 214 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.46: Principal strain vectors for Case Study 2(b) column with SI = 100% for 214 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.47: Deflected shapes for Case Study 2(b) column with SI = 0% for (a) 215 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.48: Deflected shapes for Case Study 2(b) column with SI = 50% for (a) 215 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.49: Deflected shapes for Case Study 2(b) column with SI = 100% for (a) 215 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$

Figure 5.50: Ratio between the maximum load and that in the control column 216 $(SI = 0\%, V_f = 0\%)$ versus steel fibre volume fraction graph for Case Study 2(b)

Figure 5.51: Ratio between the ductility ratio in each column and that in the control 216 column ($SI = 0\%, V_f = 0\%$) versus steel fibre volume fraction graph for Case

Study 2(b)

Figure 5.52: Ratio between the energy absorption in each column and that in the 218 control column (SI = 0%, $V_f = 0\%$) versus steel fibre volume fraction graph for Case Study 2(b)

Figure 5.53: Ratio between the maximum number of cycles before failure in each 218 column and that in the control column (SI = 0%, $V_f = 0\%$) versus steel fibre volume fraction graph for Case Study 2(b)

Figure 6.1: Dimensions and steel reinforcement details for (a) full-scale and (b) $\frac{1}{2}$ -222 scale exterior beam-column joint (adopted from Bayasi and Gebman, 2002) Figure 6.2: Tensile stress-stain diagram for SFRC adopted for the calibration work 222 of the Bayasi and Gebman (2002) beam-column joints Figure 6.3: Stress-stain diagram for conventional steel reinforcement adopted for the 223 calibration work of the Bayasi and Gebman (2002) beam-column joints Figure 6.4: ABAQUS input data for reversed-cyclic loading 223 Figure 6.5: Load-deflection hysteresis loops for calibration work in Case Study 3(a) 224 Figure 6.6: Kinetic energy graph for calibration work in Case Study 3(a) 225 Figure 6.7: Stress-strain relations in tension for Case Study 3(a) 226 Figure 6.8: Load-deflection curve for Case Study 3(a) for specimens with SI = 0%228 Figure 6.9: Load-deflection curve for Case Study 3(a) for specimens with SI = 50%228 Figure 6.10: Load-deflection curves for Case Study 3(a) for specimens with SI =228 100% Figure 6.11: Load-deflection curve for Case Study 3(a) for specimens with SI = 0%229 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.12: Load-deflection curve for Case Study 3(a) for specimens with SI = 50%230 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.13: Load-deflection curve for Case Study 3(a) for specimens with SI =231 100% and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.14: Principal strain contours and vectors for exterior joints with SI = 0%234 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 2\%$ at $\delta_y = 6.25 mm$

Figure 6.15: Principal strain contours and vectors for exterior joints with SI = 0%234 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 2\%$ at $\delta_2 = 12.5 mm$ Figure 6.16: Principal strain contours and vectors for exterior joints with SI = 0%235 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 2\%$ taken at $\delta_3 = 24.9 mm$ Figure 6.17: Principal strain contours and vectors for exterior joints with SI = 0%235 and (a) $V_f = 1\%$ at $\delta_4 = 49.9 \ mm$ Figure 6.18: Principal stress contours for Case Study 3(a) joints with SI = 0% and 237 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.19: Principal stress contours for Case Study (a) joints with SI = 50% and 237 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.20: Principal stress contours for Case Study 3(a) joints with SI = 100% and 238 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.21: Principal strain contours for Case Study 3(a) joints with SI = 0% and 239 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.22: Principal strain contours for Case Study 3(a) joints with SI = 50% and 240 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.23: Principal strain contours for Case Study 3(a) joints with SI = 100% and 240 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.24: Principal strain vectors for Case Study 3(a) joints with SI = 0% and (a) 241 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.25: Principal strain vectors for Case Study 3(a) joints with SI = 50% and 242 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.26: Principal strain vectors for Case Study 3(a) joints with SI = 100% and 242 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.27: Deflected shapes for Case Study 3(a) joints with SI = 0% and ((a) 243 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.28: Deflected shapes for Case Study 3(a) joints with SI = 50% and ((a) 243 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.29: Deflected shapes for Case Study 3(a) joints with SI = 100% and (a) 243

Figure 6.48: Principal (a) stress contour, (b) strain contour, (c) strain vectors and (d) 257 deflected shape for Specimen S1 Figure 6.49: Principal (a) stress contour, (b) strain contour, (c) strain vectors and (d) 258 deflected shape for Specimen S2 Figure 6.50: Principal (a) stress contour, (b) strain contour, (c) strain vectors and (d) 258 deflected shape for Specimen S3 Figure 6.51: Stress-strain relations in tension for the Case Study 3(b) 260 Figure 6.52: ABAQUS history input for the parametric study in the Case Study 3(b) 261 Figure 6.53: Storey shear-drift curve for Case Study 3(b) joints with single stirrups 262 Figure 6.54 Storey shear-drift curve for Case Study 3(b) joints with SI = 50%262 Figure 6.55: Storey shear-drift curve for Case Study 3(b) joints with SI = 100%262 Figure 6.56: Storey shear-drift curve for Case Study 3(b) joints with single stirrups 263 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.57: Storey shear-drift curve for Case Study 3(b) joints with SI = 50% and 264 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.58: Storey shear-drift curve for Case Study 3(b) joints with SI = 100% and 265 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.59: Principal strain contour and vectors for joints with SI = 50% and (a) 267 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 2\%$ taken from storey drift at $\Delta_y = 28.6$ mm Figure 6.60: Principal strain contour and vectors for joints with SI = 50% (a) 268 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 2\%$ taken at $\Delta_{max} = 69.4$ mm Figure 6.61: Principal strain contours and vectors for joints with SI = 50% and ((a) 269 $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 2\%$ taken at $\Delta_u = 100.2 \text{ mm}$ Figure 6.62: Principal stress contours for Case Study 3(b) joints with single stirrups 270 and (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.63: Principal stress contours for Case Study 3(b) joints with SI = 50% and 271 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.64: Principal stress contours for Case Study 3(b) joints with SI = 100% and 271 (a) $V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$ Figure 6.65: Principal strain contours for Case Study 3(b) joints with single stirrups 272

$V_f = 0\%$, (b) $V_f = 1\%$, (c) $V_f = 1.5\%$, (d) $V_f = 2\%$ and (e) $V_f = 2.5\%$	
Figure 6.30: Ratio of maximum load to that of the control specimen (SI = 0%, V_f =	244
0%) versus fibre volume fraction for Case Study 3(a)	
Figure 6.31: Ratio of yield load to that of the control specimen ($SI = 0\%, V_f = 0\%$)	245
versus fibre volume fraction for Case Study 3(a)	
Figure 6.32: Ratio of ductility ratio to that of the control specimen ($SI = 0\%$, $V_f =$	246
0%) versus fibre volume fraction for Case Study 3(a)	
Figure 6.33: Ratio of energy absorption to that of the control specimen ($SI =$	247
0%, $V_f = 0\%$) versus fibre volume fraction for Case Study 3(a)	
Figure 6.34: Ratio of number of cycles to that of the control specimen ($SI =$	248
0%, $V_f = 0$ %) versus fibre volume fraction for Case Study 3(a)	
Figure 6.35: Prototype building (Adopted from Filiatrault et al, 1995	248
Figure 6.36: Details of the beam-column joints showing (a) specimens S1 and S3.	249
(b) specimen S2, (c) column cross-section and d) beam cross-section (adopted from	
Filiatrault et al, 1995)	
Figure 6.37: Loading arrangement of in cyclic (left) and reversed cyclic (right)	250
loading	
Figure 6.38: Beam-column joint modelled using ABAQUS with boundary condition	251
and reinforcement details for specimens (a) S1 and S3, (b) S2 and (c) mesh adopted	
Figure 6.39: Tensile stress-strain diagram for plain and fibre-reinforced concrete	252
adopted in the calibration work for Filiatrault et al (1995) beam-column joints	
Figure 6.40: Stress-strain diagram for conventional steel reinforcement bars adopted	252
in the calibration work for Filiatrault et al (1995) beam-column joints	
Figure 6.41: ABAQUS history input for calibration work	253
Figure 6.42: Storey shear-storey drift curves comparison for Specimen S1	254
Figure 6.43: Storey shear-storey drift curves comparison for Specimen S2	254
Figure 6.44: Storey shear-storey drift curves comparison for Specimen S3	254
Figure 6.45: Kinetic energy graph for Specimen S1	256
Figure 6.46: Kinetic energy graph for Specimen S2	256
rigure 6.47: Kinetic energy graph for Specimen S3	256

.