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ABSTRACT 

 

This project was carried out to study the effects of using nanofluids as abrasive 

machining coolants. The objective of this project is to study the effect of nanocoolant on 

precision surface grinding, to investigate the performance of grinding of ductile iron 

based on response surface method and to develop optimization model for grinding 

parameters using artificial neural network technique. The abrasive machining process 

selected was surface grinding and it was carried out two different coolants which are 

conventional coolant and titanium dioxide nanocoolant. The selected inputs variables 

are table speed, depth of cut and type of grinding pattern which are single pass and 

multiple pass. The selected output parameters are temperature rise, surface roughness 

and material removal rate. The ANOVA test has been carried out to check the adequacy 

of the developed mathematical model. The second order mathematical model for MRR, 

surface roughness and temperature rise are developed based on response surface 

method. The artificial neural network model has been developed and analysis the 

performance parameters of grinding processes using two different types of coolant 

including the conventional as well as TiO2nanocoolant. The obtained results shows that 

nanofluids as grinding coolants produces the better surface finish, good value of 

material removal rate and acts effectively on minimizing grinding temperature. The 

developed ANN model can be used as a basis of grinding processes.  
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ABSTRAK 

 

Tujuan kajian ini dijalankan adalah untuk mengkaji kesan penggunaan cecair nano 

sebagai cecair penyejuk dalam proses abrasive machining. Objektif kajian ini adalah 

untuk mengkaji kesan penggunaan cecair nano dalam proses precision surface grinding, 

membuat kajian dalam prestasi grinding menggunakan ductile cast iron berpandukan 

response surface method dan untuk membina modal optimum bagi parameter yang telah 

dipilih menggunakan artificial neural network. Proses abrasive machining yang dipilih 

ialah precision surface grinding yang dilakukan menggunakan dua jenis cecair penyejuk 

yang berbeza iaitu cecair penyejuk konvensional dan cecair penyejuk nano titanium 

dioxide. Parameter input yang telah dipilih adalah kelajuan meja, kedalaman potongan 

dan corak grinding iaitu single pass dan multiple pass. Parameter yang dikaji pula 

adalah kenaikan suhu, kekasaran permukaan dan kadar pembuangan bahan. Analisa 

ANOVA juga dilakukan untuk membuat pengesahan ke atas model matematik yang 

dibina. Model matematik tahap dua yang dibina bagi setiap pembolehubah yang dikaji 

adalah dengan menggunakan RSM. Model ANN pula dibina untuk kedua-dua jenis 

cecair penyejuk yang berbeza bagi mengkaji kesan parameter yang berbeza. Daripada 

keputusan yang diperoleh, ia menunjukkan bahawa dengan menggunakan cecair 

penyejuk nano menghasilkan produk akhir yang baik dari segi surface finish, nilai yang 

memberangsangkan bagi MRR dan berkesan dalam meminimakan kenaikan suhu 

semasa proses grinding. 



ix 
 

TABLE OF CONTENTS 

 Page 

SUPERVISOR’S DECLARATION iii 

STUDENTS DECLARATION iv 

ACKNOWLEDGMENTS  vi 

ABSTRACT vii 

ABSTRAK  viii 

TABLE OF CONTENTS  ix 

LIST OF TABLES xii 

LIST OF FIGURES xiii 

LIST OF SYMBOLS xv 

LIST OF ABBREVIATIONS xvi 

 

CHAPTER 1  INTRODUCTION 

 

1.1 Introduction  

1.2 Problem Statement 

1.3 Objectives 

1.4 Scope of Project 

1.5 Organization of Report 

 

 

 

 

1 

3 

4 

4 

5 

CHAPTER 2  LITERATURE REVIEW 

 

2.1 Introduction 

2.2 Grinding Wheels  

2.3 Types of Grinding 

2.4 Grinding Variables 

2.5 Grinding Parameters 

 2.5.1 Surface Roughness 

 2.5.2 Grinding Temperature 

 2.5.3 Material Removal Rate (MRR) 

2.6 Nanofluids 

 

 

6 

6 

8 

11 

12 

12 

12 

13 

14 



x 
 

 2.6.1 Cooling Challenge 

 2.6.2 Nanofluids as Coolant 

 2.6.3 Titanium Dioxide 

2.7 Preparation of Nanofluids 

 2.7.1 Two steps Process 

 2.7.2 One step Process 

2.8 Artificial Neural Network Technique 

 

15 

16 

18 

19 

19 

20 

20 

 

CHAPTER 3  METHODOLOGY 

 

3.1 Introduction 

3.2 Workpiece Preparation 

3.3 Workpiece Composition 

3.4 Surface Grinding 

3.5 Nanocoolant Preparation 

3.6 Surface Roughness 

3.7 Grinding Temperature 

3.8 Design of Experiment (DOE) 

3.9 Response Surface Method 

3.10 Multilayer Perceptron Approach 

 

 

CHAPTER 4  RESULTS AND DISCUSSION 

 

4.1 Introduction 

4.2 Response Surface Method 

4.3 A Multilayer Perceptron Approach 

 4.3.1 Single Pass Grinding Pattern 

 4.3.2 Multiple Pass  Grinding Pattern 

4.4 Comparison between Conventional Coolant And 0.1% TiO2  

 Nanocoolant 

 4.4.1 Single Pass  Grinding Pattern 

 4.4.2 Multiple Pass  Grinding Pattern 

 

 

25 

26 

28 

29 

30 

30 

32 

32 

33 

36 

 

 

 

 

37 

37 

40 

40 

43 

45 

 

45 

47 



xi 
 

       

  

 

 

 

 

 

 

 

 

 

 

 

4.5 Microstructure Analysis 

 

48 

 

 

CHAPTER 5  CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

5.2 Recommendations 

 

 

 

51 

52 

REFERENCES 53 



xii 
 

LIST OF TABLES 

 

 

 

Table No. Title Page 

2.1 Thermal conductivity of various materials 17 

 

2.2 

 

3.1 

Comparison between microparticles and nanoparticles 

 

Design of Experiment  (DOE)  

 

18 

 

32 

4.1 ANOVA results of Variance analysis for second order surface 

roughness in single pass and multiple pass using 0.1% titanium 

dioxide water based nanocoolant 

39 

 

 

 

4.2 Comparison between experimental value and predicted value for 

0.1% TiO2nanocoolant with multiple pass grinding pattern 

40 

 

 

4.3 Comparison between experimental value and predicted value (0.1% 

TiO2)  

40 

 

 

4.4 Comparison between experimental value and predicted value (0.1% 

TiO2) for single pass grinding pattern 

42 

 

 

4.5 Comparison between experimental value and predicted value (0.1% 

TiO2) for multiple pass grinding pattern 

45 

 

 

4.6 Comparison of temperature, MRR, and surface roughness between 

conventional coolant and 0.1% TiO2 nanocoolant for single pass 

grinding 

46 

 

 

 

4.7 Comparison of temperature, MRR, and surface roughness between 

conventional coolant and 0.1% TiO2 nanocoolant for multiple pass 

grinding 

47 

 

 

 

   



xiii 
 

LIST OF FIGURES 

 

Figure No. Title Page 

2.1 Schematic illustration of surface grinding process 7 

 

2.2 Types of grinding 9 

 

2.3 Contact resistance due to constriction of flow lines 12 

 

2.4 Natural neurons (artist’s conception). 21 

 

2.5 An artificial neuron 22 

 

2.6 Architecture of an artificial neuron and a multilayered neural 

network 

 

24 

 

2.7 A Multilayer perceptron with two hidden layers 24 

 

3.1 Initial form of workpiece 26 

 

3.2 Desired form of workpiece 27 

 

3.3 Milling Process 28 

 

3.4 Precision surface grinder 29 

 

3.5 Aluminum oxide grinding wheel 29 

 

3.6 Preparation of nanocoolant 30 

 

3.7 Measuring surface roughness using a perthometer 31 

 

3.8 Scanning electron microscope  31 

 

3.9 Tagged input parameters and output data 36 

 

4.1 Surface roughness prediction plot 38 

 

4.2 Desired output and actual network output for single pass grinding 41 
 

4.3 Sensitivity analysis for single pass 41 
 

4.4 Effect of network outputs for single pass grinding 42 

 

4.5 Desired output and actual network output for multiple pass 

grinding pattern 

43 

 

 

4.6 Sensitivity about the mean for multiple pass grinding pattern 44 



xiv 
 

 

4.7 Network outputs for varied input table speed and depth of cut for 

multiple pass grinding pattern 

44 

 

 

4.8 0.1% TiO2 nanocoolant(200x magnification) 48 

 

4.9 Conventional Coolant (200x magnification) 49 

 

4.10 0.1% TiO2 nanocoolant (700x magnification) 50 

 

4.11 Conventional Coolant (700x magnification) 50 

 

 



xv 
 

LIST OF SYMBOLS 

 

 

Ra  Surface Roughness 



xvi 
 

LIST OF ABBREVIATIONS 

 

 

Al2O3  Aluminum Oxide 

ANN  Artificial Neural Network 

ANOVA Analysis of Variance 

CBN  Cubic Boron Nitride 

DOC  Depth of Cut 

DOE  Design of Experiment 

HTF  Heat Transfer Fluids 

ID  Internal Diameter 

MLP  Multilayer Perceptron 

MRR  Material Removal Rate 

RSM  Response Surface Methodology 

SEM  Scanning Electron Microscopy 

SiC  Silicon Carbide 

TiO2  Titanium Dioxide 

TS  Table speed 

 

 



1 
 

 

 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

Grinding is a material removal and surface generation process used to shape and 

finish components made of metals and other materials. The precision and surface finish 

obtained through grinding can be up to ten times better than with either turning or 

milling. Grinding employs an abrasive product, usually a rotating wheel brought into 

controlled contact with a work surface. The grinding wheel is composed of abrasive 

grains held together in a binder. Heat generation is an important factor in the grinding 

process. It can degrade the integrity of the wheel matrix and/or abrasive, reduce 

workpiece surface quality by causing thermal cracks or burning of the surface, introduce 

strength reducing tensile residual stresses, and creates dimensional inaccuracies. 

Temperature may also influence the grinding mechanism either by softening the 

material or by introducing phase transformations. This is one of the important output 

parameters that will be observed where it will be influenced widely on the usage of 

nanocoolants. A large volume of grinding fluid is most commonly used to flood the 

grinding zone, hoping to achieve tangible productivity targets while often neglecting the 

seemingly fewer tangible environmental safety hazards. In addition, the inherent high 

cost of disposalor recycling of the grinding fluid becomes another major concern, 

especially as the environmental regulations get stricter. Minimizing the quantity of 

cutting fluid is desirable in grinding. 

 

 Cooling is one of the most important technical challenges facing many diverse 

industries. Technological developments such as microelectronic devices with smaller 

(sub-100 nm) features and faster (multi-gigahertz) operating speeds, higher-power 
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engines and brighter optical devices are driving increased thermal loads, requiring 

advances in cooling. The conventional method for increasing heat dissipation is to 

increase the area available for exchanging heat with a heat transfer fluid. However, this 

approach requires an undesirable increase in the thermal management system’s size. 

There is an urgent need for new and innovative coolants with improved performance. 

The novel concept of ‘nanofluids’ – heat transfer fluids containing suspensions of 

nanoparticles – has been proposed as a means of meeting these challenges (Keblinski et 

al., 2005). Heattransfer fluids have many industrial and civil applications, including in 

transport, energy supply, air-conditioning and electronic cooling, etc. Research and 

development activities are being carried out to improve the heat transport properties of 

fluids. Solid metallic materials, such as silver, copper and iron, and non-metallic 

materials, such as alumina, CuO, SiC and carbon nanotubes, have much higher thermal 

conductivity's than HTFs (Maxwell, 1873). At the very beginning, solid particles of 

micrometer, even millimeter magnitudes were blended into the base fluids to make 

suspensions or slurries. However, large solid particles cause troublesome problems, 

such as abrasion of the surface, clogging the microchannels, eroding the pipeline and 

increasing the pressure drop, which substantially limits the practical applications. 

Actually, liquid suspension was primarily a theoretical treatment only of some 

theoretical interest, and subsequent studies by other researchers achieved minor success. 

The large size of the particles and the difficulty in production of small particles were 

limiting factors (Han, 2008). 

 

Nanofluids are solid-liquid composite materials consisting of solid nanoparticles 

with sizes typically of 1-100 nm suspended in liquid. Nanofluids have attracted great 

interest recently because of reports of greatly enhanced thermal properties. 

Conventional particle-liquid suspensions require high concentrations (>10%) of 

particles to achieve such enhancement (Das et al., 2008). Key features of nanofluids that 

have been reported to so far include thermal conductivities exceeding those of 

traditional solid/liquid suspensions; a nonlinear relationship between thermal 

conductivity and concentration in the case of nanofluids containing carbon nanotubes; 

strongly temperature-dependent thermal conductivity; and a significant increase in 

critical heat flux in boiling heat transfer. Each of these features is highly desirable for 

thermal systems; a stable and easily synthesized fluid with these attributes and 
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acceptable viscosity would be a strong candidate for the next generation of liquid 

coolants (Das et al., 2008). 

 

 In recent years, there is increasing interest in using artificial neural networks 

(ANNs) for modelling and optimization of machining process (Madic et al., 2011). 

Analytical models are developed based on many simplified assumptions. It is sometimes 

difficult to adjust the parameters of the above mentioned models according to the actual 

situation of the machining process. Therefore, an artificial neural networks can map the 

input/output relationships and possess massive parallel computing capability, have 

attracted much attention in research on machining processes. ANN provides significant 

advantages in solving processing problems that require real-time encoding and 

interpretation of relationships among variables of high-dimensional space. ANN has 

been extensively applied in modeling many metal-cutting operations such as turning, 

milling and drilling. The general ability of the network is actually dependent on three 

factors. These factors are the selection of the appropriate input/output parameters of the 

system, the distribution of the dataset, and the format of the presentation of the dataset 

to the network. The selection of the neuron number, hidden layers, activation function 

and training algorithm are very important to obtain the best results (Razak et al., 2010). 

 

1.2 PROBLEM STATEMENT 

 

Nowadays, nanotechnology is becoming a fast paced development in the science 

and engineering world. Cooling is one of the most important technical challenges facing 

many diverse industries. Technological developments suchas microelectronic devices 

with smaller (sub-100 nm) features and faster (multi-gigahertz) operating speeds, 

higher-power engines, and brighter optical devices are driving increased thermal loads, 

requiring advances in cooling. The same goes to the grinding process where it also 

requires the use of coolant to provide quality work. The conventional method for 

increasing heat dissipation is to increase the area available for exchanging heat with a 

heat transfer fluid. However, this approach requires an undesirable increase in the 

thermal management system’s size. There is an urgent need for new and innovative 

coolants with improved performance. The grinding method used in this experiment is 

surface grinding. Surface grinding produces flat, angular, or contoured surfaces by 
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feeding work in a horizontal plane beneath a rotating grinding wheel. Work is most 

often magnetically attached to the table, and may be ground by either a traversing or 

rotating movement of the table. Most surface grinding machines use a horizontal spindle 

which adjusts up and down allowing either the edge or the face of the wheel to contact 

the work. The novel concept of ‘nanofluids’ – heat transfer fluids containing 

suspensions of nanoparticles – has been proposed as a means of meeting these 

challenges. Nanofluids have the potential to be the next generation of coolants due to 

their higher thermal conductivities. The selection of appropriate base fluid is very 

critical in the application of nanoparticle based lubricants in grinding. A proper 

selection of the cutting parameters for machining to obtain performances similar to 

flood lubricated conditions is studied. The reason this title is chosen is because of the 

interest in the nanotechnology fields where it has been fast developing in the 

engineering field. 

 

1.3 OBJECTIVES OF THE PROJECT 

 

The objectives of the project are as follows: 

 

(i) To study the effect of titanium dioxide (TiO2) nanocoolant on precision 

surface grinding. 

(ii) To investigate the performance of grinding of ductile iron based on response 

surface method. 

(iii) To develop optimization model for grinding parameters using multilayer 

perceptron technique. 

 

1.4 SCOPE OF PROJECT  

 

The artificial neural network technique is used to prepare the design of 

experiments and find the optimum parameters. In the experiment, the material used is 

cast iron where it is grinded based on certain input parameters and the desired output 

parameters are observed. The input parameters of the experiment consist of four 

parameters includinggrinding pattern, table speed,depth of cut and type of coolant. The 

output parameters consist of three parameters including the surface roughness of the 
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workpiece, temperature and material removal rate. For this experiment, the grinding 

process using conventional coolant is carried out. After the data is collected, the 

grinding process is carried out using TiO2 nanocoolant. The both data collected, the 

surface roughness and material removal rate analysis is performed. Then, the data will 

be analyzed using response surface method and multilayer perceptron approach. 

 

1.5 ORGANIZATION OF REPORT 

 

Chapter 1 contains the introduction, problem statement, project objectives, scope 

of project and organization of report. Chapter 2 contains the literature review of the 

report based on studies of published papers and books that are related to the project. 

Chapter 3 is the methodology of the report which contains the methods used in 

completing the project. Chapter 4 contains the results and analysis obtained from the 

project. Chapter 5 is summarized the finding and recommended for future work.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1  INTRODUCTION 

 

 This chapter is briefly explained about the basic grinding process, the input 

parameters including the grinding patterns, table speed, depth of cut and type of coolant, 

the output parameters, including the surface roughness, grinding temperature and 

material removal rate and also the difference between conventional coolants and 

nanocoolants. Grinding is a material removal and surface generation process used to 

shape and finish components made of metals and other materials. The precision and 

surface finish obtained through grinding can be up to ten times better than with either 

turning or milling. Grinding employs an abrasive product, usually a rotating wheel 

brought into controlled contact with a work surface. The grinding wheel is composed of 

abrasive grains held together in a binder. These abrasive grains act as cutting tools, 

removing tiny chips of material from the work. As these abrasive grains wear and 

become dull, the added resistance leads to fracture of the grains or weakening of their 

bond. The dull pieces break away, revealing sharp new grains that continue cutting.  

 

2.2 GRINDING WHEELS 

 

Figure 2.1 shows schematic illustration of surface grinding process (Shen et al., 

2008). Grinding wheels are categorized by the type of abrasive they contain. The 

grinding process utilizes these abrasive particles as cutting edges in random contact with 

the material to be worked. The two major categories of grinding wheels are 

conventional and super-abrasive. The conventional grinding wheels are low 

performance and contain lower-cost abrasives such as aluminum oxide (Al2O3) and 



7 
 

silicon carbide (SiC). The super-abrasive wheels are higher performance and contain 

high-cost abrasives consisting of diamond or cubic boron nitride (CBN). In many 

applications, manufacturing industries cannot achieve their productivity goals with 

conventional grinding wheels. The use of a super abrasive grinding wheel is 

prohibitively expensive and complex for many machine shops. Therefore, a limited 

number of manufacturing companies are using super-abrasive wheels in their grinding 

operations (Krueger et al., 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Schematic illustration of surface grinding process (Shen et al., 2008) 

 

Most abrasives used in industry are synthetic. Aluminum oxide is used in three 

quarters of all grinding operations, and is primarily used to grind ferrousmetals. Next is 

silicon carbide, which is used for grinding softer, non-ferrousmetals and high density 

materials, such as cemented carbide or ceramics. Super abrasives, namely cubic boron 

nitride or "CBN" and diamond, are used inabout five percent of grinding. Hard ferrous 

materials are ground with "CBN" while non-ferrous materials and non-metals are best 

ground with diamond.The grain size of abrasive materials is important to the process. 

Large coarsegrains remove material faster, while smaller grains produce a finer 

finish.Wheels are graded according their strength and wear resistance. A "hard" wheelis 

one that resists the separation of its individual grains. One that is toohard will wear 

slowly and present dulled grains to the work and overheat,affecting the final finish. 

Another aspect of grinding wheels is their pore structure or density, which refers to the 
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porosity between individual grains. This pore structure creates spaces between the 

grains that provide coolant retention and areas for the chips to form. Dense wheels are 

best for harder materials, while more open densities are better for the softer metals.The 

three factors of grain size, bond type, and pore structure are closely related, and together 

determine how well a wheel will perform. Damaged wheels or even wheels suspected of 

being damaged should not be used.  

 

Wheel dressing and truing is done with special tools designed for that purpose. 

Although wheel dressing is often done manually between work cycles, some grinding 

machines perform the dressing task automatically.The application of coolants to the 

grinding process is important. Coolants reduce grinding machine power requirements, 

maintain work quality, stabilize part dimensions, and insure longer wheel life. Coolants 

are either emulsions, synthetic lubricants or special grinding oils. Coolants are applied 

by either flooding the work area or by high pressure jet streams. 

 

2.3 TYPES OF GRINDING 

 

There are many forms of grinding, but the four major industrial grinding processes are 

as follows: 

 

•  Cylindrical grinding 

• Internal grinding 

•  Centerless grinding 

•  Surface grinding 

 

These types of grinding are shown in Figure 2.2. In cylindrical grinding, the 

workpiece rotates about a fixed axis and the surfaces machined are concentric to that 

axis of rotation. Cylindrical grinding produces an external surface that may be either 

straight, tapered, or contoured. The basic components of a cylindrical grinder include a 

wheelhead, which incorporate the spindle and drive motor; a cross-slide, that moves the 

wheelhead to and from the workpiece; a headstock, which locates, holds, and drives the 

workpiece; and a tailstock, which holds the other end of the work. 
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                                   (a)   Cylindrical grinding 

 

A: rotation of grinding wheel  

B: work table rotation  

C: reciprocation of worktable  

D: Infeed 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Internal Diameter Grinding 

 

 

 

A: rotation of grinding wheel  

B: workpiece rotation 

C: reciprocation of worktable  

D: infeed 

 

 

(c) Centerless Grinding 

 

A: rotation of grinding wheel  

B: workpiece rotation 

C: reciprocation of worktable  

 

 

 

 

 

 

 

 

 

 

 

(d) Surface grinding 

 

A: rotation of grinding wheel  

B: reciprocation of worktable 

C: transverse feed 

D: downfeed 

 

 

Figure 2.2: Types of grinding 
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Internal diameter grinders (Figure 2.2(b)) finish the inside of a previously 

drilled, reamed, or bored hole, using small grinding wheels at high RPM. The principle 

elements of an internal grinding machine are the workhead, which holds the work and 

has its own drive, and the wheelhead, which is the internal grinding spindle. In addition 

to the rotary motions of work and wheel, an internal grinder has a traverse movement to 

bring the wheel to and from the work zone, and a reciprocating spindle movement for 

both the wheel's approach to the work surface and for the feed movement of the wheel 

during grinding. Several different internal contours can be produced within a workpiece 

using I.D.grinding. 

 

In centerless grinding (Figure 2.2(c)), the workpiece rotates between a grinding 

wheel and aregulating drive wheel. The work is supported from below by a fixed work-

rest blade. The two basic modes of centerless grinding are "thru-feed" and "in-feed". In 

the thru-feed mode, the work proceeds in the axialdirection through the slowly 

narrowing gap between the grinding wheel and the regulating wheel. Work is advanced 

by the axial force exerted on it by therotating surface of the regulating wheel. This is a 

highly productive form ofgrinding in that a number of workpieces can be ground 

simultaneously and in a continuous stream. The "infeed" mode is used for work with 

projecting heads that would prohibit "thru-feeding," the work is placed on the work-rest 

blade whileone wheel is retracted and fed to an end stop. The wheel is then brought 

back, reducing the gap between the wheels, grinding the work. 

 

Surface grinding (Figure 2.2 (d)) produces flat, angular, or contoured surfaces by 

feeding workin a horizontal plane beneath a rotating grinding wheel. Work is most often 

magnetically attached to the table, and may be ground by either a traversing or rotating 

movement of the table. Most surface grinding machines use a horizontal spindle which 

adjusts up and down allowing either the edge or the face of the wheel to contact the 

work. Workpiece surfaces produced by grinding are influenced by the following factors: 

 

•  Workpiece material - harder materials allow finer finishes 

•  Type of wheel - fine grains yield finer finishes 

•  Dressing procedure - improperly dressed wheels will mar the work surface 

•  Feed rate - finer finishes are obtained with slower feed rates 
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•  Machine rigidity - older, worn machines yield a poor quality finish 

•  Wheel condition - clogged wheels cannot produce a good finish 

•  Lubricant cleanliness - coolant filtration removes waste that could damage 

workpiece surface 

 

2.4  GRINDING VARIABLES 

 

 The grinding process consists of several variables or parameters that affect the 

results of the experiment. The parameters were selected based on their availability 

through equipments and machinery capability available. 

 

Grinding Pattern: There are two types of grinding pattern which are single pass and 

multiple pass. Single pass is defined when the grinding wheel passes along the grinding 

surface of the workpiece at a certain depth of cut only once. On the other hand, multiple 

pass is defined when the grinding wheel passes along the grinding surface of the 

workpiece ten times at a certain depth of cut. 

 

Depth of Cut: Depth of cut is the determination of the depth of the grinding wheel into 

the workpiece at y-axis or vertically. It is done at depths of 20 µm, 40 µm and 60 µm. 

 

Workpiecespeed: The workpiece speed is considered as a variable. There are three 

workpiece speed selected for this experiment which are 20, 30 and 40 m/s. 

 

Types of Coolant: Most grinding machines are equipped with coolant systems. The 

coolant is directed over the point of contact between the grinding wheel and the work. 

This prevents distortion of the workpiece due to uneven temperatures caused by the 

cutting action. In addition, coolant keeps the chips washed away from the grinding 

wheel and point of contact, thus permitting free cutting. In this project, two types of 

coolants are used which are 5% soluble oil water-based conventional coolant and 0.1% 

titanium dioxide nanocoolant. The grinding results using these two different coolants 

will then be compared to see the effect of using nanocoolants instead of conventional 

coolants. 
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2.5 GRINDING PARAMETERS 

 

 From the manipulated parameters, the selected response parameters are surface 

roughness, grinding temperature and material removal rate (MRR) are discussed in the 

following section. 

 

2.5.1 Surface Roughness 

 

 Characterization of surface topography is important in applications involving 

friction, lubrication, and wear (Thomas, 1999). In general, it has been found that friction 

increases with average roughness. The effect of roughness on lubrication has been 

studied to determine its impact on issues regarding lubrication of sliding surfaces, 

compliant surfaces, and roller bearing fatigue. Another area where surface roughness 

plays a critical role is contact resistance (Thomas, 1999). Thermal or electrical 

conduction between two surfaces in contact occurs only through certain regions. In the 

case of thermal conduction, the heat flow lines are squeezed together at the areas of 

contact, which results in a distortion of the isothermal lines, as illustrated in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Contact resistance due to constriction of flow lines (Thomas, 1999) 

 

2.5.2 Grinding Temperature 

 

 Heat generation is an important factor in the grinding process. It can degrade the 

integrity of the wheel matrix and/or abrasive, reduce workpiece surface quality by 
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causing thermal cracks or burning of the surface, introduce strengthreducing tensile 

residual stresses, and creates dimensional inaccuracies. Temperature may also influence 

the grinding mechanism, either by softening the material or by introducing phase 

transformations. This is one of the important output parameters that will be observed in 

this project where it will be influenced widely on the usage of nanocoolants. 

 

 When a grinding grit engages the workpiece, it first causes deformation. This 

stage is known as plowing. The stress level becomes great enough, chip formation 

begins. Finally, the chip breaks loose and is carried out of the grinding zone by grinding 

fluid. The fluid serves both to remove chips, collectively known as swarf, and to cool 

the workpiece. Cooling is often critical in grinding because a significant amount of heat 

is typically generated in the process. Heat is generated primarily by three actions. First 

is shearing or fracture of the workpiece during chip formation. Second is the friction of 

the chip sliding at the grit‟s rake face. Lastly, heat is generated along the portion of the 

grit worn flat either by truing or by previous passes through the workpiece. Heat 

generated by any of these means, when it is localized near the grit or in the chip, is 

known as hot-spot (flash) temperature. Each grit acts as an asperity heat source, with 

conduction serving to distribute the heat from individual grits and raise the overall 

temperature of the grinding surface. 

 

2.5.3 Material Removal Rate 

 

 Material removal rate is one the most important response parameter for abrasive 

machining. It is often desired to have maximum value of MRR. It is defined as the 

amount of mass removed from the workpiece over a period of time. In this experiment, 

MRR is calculated as Eq. (2.1) 

 

 timeGrinding

mass Final -mass Initial
MRR                                   (2.1) 
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2.6 NANOFLUIDS 

 

Heat transfer fluids (HTFs) have many industrial and civil applications, 

including in transport, energy supply, air-conditioning and electronic cooling, etc. 

Traditional HTFs, such as water, oils, glycols and fluorocarbons, however, have 

inherently poor heat transfer performance due to their low thermal conductivities. 

Research and development activities are being carried out to improve the heat transport 

properties of fluids. Solid metallic materials, such as silver, copper and iron, and non-

metallic materials, such as alumina, CuO, SiC and carbon nanotubes, have much higher 

thermal conductivities than HTFs. It is thus an innovative idea trying to enhance the 

thermal conductivity by adding solid particles into HTFs since Maxwell initiated it in 

1881 (Maxwell, 1873). At the very beginning, solid particles of micrometer, even 

millimeter magnitudes were blended into the base fluids to make suspensions or 

slurries. However, large solid particles cause troublesome problems, such as abrasion of 

the surface, clogging the microchannels, eroding the pipeline and increasing the 

pressure drop, which substantially limits the practical applications. Actually, liquid 

suspension was primarily a theoretical treatment only of some theoretical interest, and 

subsequent studies by other researchers achieved minor success. The large size of the 

particles and the difficulty in production of small particles were limiting factors (Han, 

2008). The situation changed when National Laboratory revisited this field with their 

nanoscale metallic particle and carbon nanotube suspensions (Choi and Eastman 1995; 

Eastman et al., 1997). They have tried to suspend various metals and metal oxides 

nanoparticles in several different fluids and the results are promising, however, many 

things remain elusive about these suspensions of nano-structured materials, which have 

been termed “nanofluids” (Das et al., 2008). 

  

Nanofluids are solid-liquid composite materials consisting of solid nanoparticles 

or nanofibers with sizes typically of 1-100 nm suspended in liquid. Nanofluids have 

attracted great interest recently because of reports of greatly enhanced thermal 

properties. For example, a small amount (<1% volume fraction) of Cu nanoparticles or 

carbon nanotubes dispersed in ethylene glycol or oil is reported to increase the 

inherently poor thermal conductivity of the liquid by 40% and 150%, respectively. 

Conventional particle-liquid suspensions require high concentrations (>10%) of 
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particles to achieve such enhancement (Das et al., 2008). However, problems of 

rheology and stability are amplified at high concentrations, precluding the widespread 

use of conventional slurries as heat transfer fluids. In some cases, the observed 

enhancement in thermal conductivity of nanofluids is orders of magnitude larger than 

predicted by well-established theories. Other perplexing results in this rapidly evolving 

field include a surprisingly strong temperature dependence of the thermal conductivity 

and a three-fold higher critical heat flux compared with the base fluids. These enhanced 

thermal properties are not merely of academic interest. When confirmed and found 

consistent, they would make nanofluids promising for applications in thermal 

management. Furthermore, suspensions of metal nanoparticles are also being developed 

for other purposes, such as medical applications, including cancer therapy. The 

interdisciplinary nature of nanofluid research presents a great opportunity for 

exploration and discovery at the frontiers of nanotechnology. 

 

2.6.1 Cooling Challenge 

  

Cooling is indispensable for maintaining the desired performance and reliability 

of a wide variety of products, such as computers, power electronics, car engines, and 

high-powered lasers or x-rays. With the unprecedented increase in heat loads (in some 

cases exceeding 25 kW) and heat fluxes (in some cases exceeding 2000 W/cm2) caused 

by more power and/or smaller feature sizes for these products, cooling is one of the top 

technical challenges facing high-tech industries such as microelectronics, transportation, 

manufacturing, metrology, and defense. The electronics industry has provided 

computers with faster speeds, smaller sizes, and expanded features, leading to ever-

increasing heat loads, heat fluxes, and localized hot spots at the chip and package levels. 

These thermal problems are also found in power electronics or optoelectronic devices. 

Air cooling is the most basic method for cooling electronic systems. However, heat 

fluxes over 100 W/cm
2
 in electronic devices and systems will necessitate the use of 

liquid cooling. Recently, single-phase liquid cooling technologies such as the 

microchannel heat sink, and two-phase liquid-cooling technologies such as heat pipes, 

thermosyphons, direct immersion cooling, and spray cooling for chip- or package-level 

cooling have emerged. Nanofluid technology offers a great potential for further 

development of high-performance, compact, cost-effective liquid cooling systems (Das 
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et al., 2008). In the transportation industry, cooling is a crucial issue because the trend 

toward higher engine power and exhaust-gas regulation or hybrid vehicles inevitably 

leads to larger radiators and increased frontal areas, resulting in additional aerodynamic 

drag and increased fuel consumption. A pressing need for cooling also exists in 

ultrahigh–heat-flux optical devices with brighter beams, such as high-powered x-rays 

(Das et al., 2008). 

 

2.6.2 Nanofluids as Coolant 

 

 Cooling is one of the most important technical challenges facing many diverse 

industries, including microelectronics, transportation, solid-state lighting, and 

manufacturing. Technological developments such as microelectronic devices with 

smaller (sub-100 nm) features and faster (multi-gigahertz) operating speeds, higher-

power engines, and brighter optical devices are driving increased thermal loads, 

requiring advances in cooling. The conventional method forincreasing heat dissipation 

is to increase the areaavailable for exchanging heat with a heat transferfluid. However, 

this approach requires an undesirableincrease in the thermal management system‟s size. 

There is therefore an urgent need for new andinnovative coolants with improved 

performance. The novel concept of „nanofluids‟ – heat transfer fluidscontaining 

suspensions of nanoparticles – has beenproposed as a means of meeting these 

challenges (Keblinski et al., 2005). The emergence of nanofluids as a new field of 

nanoscale heat transfer in liquids is related directly to miniaturization trends and 

nanotechnology. Modern nanotechnology can produce metallic or nonmetallic particles 

of nanometer dimensions. Nanomaterials have unique mechanical, optical, electrical, 

magnetic, and thermal properties. Nanofluids are engineered by suspending 

nanoparticles with average sizes below 100 nm in traditional heat transfer fluids such as 

water, oil, and ethylene glycol. A very small amount of guest nanoparticles, when 

dispersed uniformly and suspended stably in host fluids, can provide dramatic 

improvements in the thermal properties of host fluids. Table 2.1 shows the thermal 

conductivity of various materials (Wang et al., 2006). 
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Table 2.1: Thermal conductivity of various materials (Wang et al., 2006) 

 

Type Material Thermal conductivity 

(W/m.K)at 300k
 

Metallic solids Silver 429 

 Copper  401 

 Aluminum  237 

Nonmetallic solids Diamond  3300 

 Carbon nanotubes 3000 

 Silicon  148 

 

Metallic liquids 

Nonmetallic liquids 

Alumina (Al2O3) 

Sodium at 644K 

Water  

Ethylene glycol 

Engine oil 

40 

72.3 

0.613 

0.253 

0.145 

 

It is well known that at room temperature, metals in solid form have orders-of 

magnitude higher thermal conductivities than those of fluids (Touloukian et al., 1970). 

For example, the thermal conductivity of copper at room temperature is about 700 times 

greater than that of water and about 3000 times greater than that of engine oil as shown 

in Table 2.1. The thermal conductivity of metallic liquids is much greater than that of 

nonmetallic liquids. Therefore, the thermal conductivities of fluids that contain 

suspended solid metallic particles could be expected to be significantly higher than 

those of conventional heat transfer fluids.The basic concept of dispersing solids in fluids 

to enhance thermal conductivity is not new. Solid particles are added because they 

conduct heat much better than do liquids. The major problem with the use of large 

particles is the rapid settling of these particles in fluids. Other problems are abrasion and 

clogging. These problems are highly undesirable for many practical cooling 

applications. Nanofluids have pioneered in overcoming these problems by stably 

suspending in fluids nanometer-sized particles instead of millimeter- or micrometer-

sized particles. Compared with microparticles, nanoparticles stay suspended much 

longer and possess a much higher surface area. The surface/volume ratio of 

nanoparticles is 1000 times larger than that of microparticles. The high surface area of 

nanoparticles enhances the heat conduction of nanofluids since heat transfer occurs on 

the surface of the particle. The number of atoms present on the surface of nanoparticles, 

as opposed to the interior, is very large. Therefore, these unique properties of 

nanoparticles can be exploited to develop nanofluids with an unprecedented 



18 
 

combination of the two features most highly desired for heat transfer systems: extreme 

stability and ultrahigh thermal conductivity. Furthermore, because nanoparticles are so 

small, they may reduce erosion and clogging dramatically. Other benefits envisioned for 

nanofluids include decreased demand for pumping power, reduced inventory of heat 

transfer fluid, and significant energy savings.Because the key building block of 

nanofluids is nanoparticles (1000 times smaller than microparticles), the development of 

nanofluids became possible simply because of the advent of nanotechnology in general 

and the availability of nanoparticles in particular. Researchers in nanofluids exploit the 

unique properties of these tiny nanoparticles to develop stable and high-thermal-

conductivity heat transfer fluids. Stable suspension of small quantities of tiny particles 

makes conventional heat transfer fluids cool faster and thermal management systems 

smaller and lighter.Size is also an important physical variable in nanofluids because it 

can be used to tailor nanofluid thermal properties as well as the suspension stability of 

nanoparticles. Nanotechnogy offers excellent prospects for producing a new type of heat 

transfer fluid that has excellent thermal properties and cooling capacity, due primarily to 

novel nanoscale phenomena. Table 2.2 contrasts suspensions of microparticles and 

nanoparticles and shows the benefits of nanofluids containing nanoparticles. 

 

Table 2.2: Comparison between microparticles and nanoparticles 

 

Characteristic Microparticles Nanoparticles 

Stability Settle Stable (remain in suspension 

almost indefinitely) 

Surface/volume ratio 1 1000 times larger than that of 

microparticles 

Conductivity Low  High  

Clog in microchannel? Yes  No  

Erosion? Yes  No  

Pumping power Large  Small  

Nanoscale phenomena? No  Yes  

 

2.6.3 Titanium Dioxide 

 

Titanium Dioxide (TiO2) has a wide range of applications. Since its commercial 

production in the early twentieth century, it is used as a pigment in paints, coatings, 

sunscreens, ointments and toothpaste. TiO2is considered a “quality–of–life” product 
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with demand affected by gross domestic product in various regions of the world. 

Titanium dioxide pigments are inorganic chemical products used for imparting 

whiteness, brightness and opacity to a diverse range of applications and end–use 

markets. TiO2as a pigment derives value from its whitening properties and opacifying 

ability (commonly referred to as hiding power). As a result of TiO2's high refractive 

index rating, it can provide more hiding power than any other commercially available 

white pigment. Titanium dioxide is obtained from a variety of ores that contain ilmenite, 

rutile, anatase and leucoxene, which are mined from deposits located throughout the 

world. 

 

2.7 PREPARATION OF NANOFLUIDS 

  

Several studies, including the earliest investigations of nanofluids, used a two-

step method in which nanoparticles or nanotubes are first produced as a dry powder and 

then dispersed into a fluid in a second processing step. In contrast, the one-step method 

entails the synthesis of nanoparticles directly in the heat transfer fluid. 

 

2.7.1 Two step process 

 

 Several studies, including the earliest investigations of nanofluids, used a two-

step process (Lee et al., 1999) in which nanoparticles or nanotubes are first produced as 

a dry powder, often by inert gas condensation. Chemical vapor deposition has also been 

used to produce materials for use in nanofluids, particularly multiwalled carbon 

nanotubes. The nanoparticles or nanotubes are then dispersed into a fluid in a second 

processing step. Simple techniques such as ultrasonic agitation or the addition of 

surfactants to the fluids are sometimes used to minimize particle aggregation and 

improve dispersion behavior. Such a two-step process works well in some cases, such as 

nanofluids consisting of oxide nanoparticles dispersed in deionized water (Lee et al., 

1999). Less success has been found when producing nanofluids containing heavier 

metallic nanoparticles (Eastman et al., 1997). Since nanopowder synthesis techniques 

have already been scaled up to industrial production levels by several companies 

(Romano et al., 1997), there are potential economic advantages in using two-step 

synthesis methods that rely on the use of such powders. 



20 
 

2.7.2 One step process 

 

 Single-step nanofluid processing methods have also been developed. For 

example, nanofluids containing dispersed metal nanoparticles (Eastman et al., 2001) 

have been produced by a „directevaporation‟ technique (Yatsuya et al., 1978). As with 

the inert gas condensation technique, this involves the vaporization of a source material 

under vacuum conditions. An advantage of this technique is that nanoparticle 

agglomeration is minimized, while a disadvantage is that only low vapor pressure fluids 

are compatible with the process. Various single-step chemical synthesis techniques can 

also be employed to produce nanofluids. 

 

2.8 ARTIFICIAL NEURAL NETWORK TECHNIQUE 

 

One type of network sees the nodes as „artificial neurons‟. These are called 

artificial neural networks (ANNs). An artificial neuron is a computational model 

inspired in the natural neurons. Natural neurons receive signals through synapses 

located on the dendrites or membrane of the neuron. When the signals received are 

strong enough (surpass a certain threshold), the neuron is activated and emits a signal 

though the axon. This signal might be sent to another synapse, and might activate other 

neuronsas illustrated in Figure 2.4 (Sydenham and Thorn, 2005).The complexity of real 

neurons is highly abstracted when modelling artificial neurons. These basically consist 

of inputs (like synapses), which are multiplied by weights (strength of the respective 

signals), and then computed by a mathematical function which determines the activation 

of the neuron. Another function (which may be the identity) computes the output of the 

artificial neuron (sometimes in dependance of a certain threshold). ANNs combine 

artificial neurons in order to process information.  
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Figure 2.4: Natural neurons (artist‟s conception). 

 

The higher a weight of an artificial neuron is, the stronger the input which is 

multiplied by it will be. Weights can also be negative, so we can say that the signal is 

inhibited by the negative weight. Depending on the weights, the computation of the 

neuron will be different. By adjusting the weights of an artificial neuron we can obtain 

the output we want for specific inputs. But when we have an ANN of hundreds or 

thousands of neurons, it would be quite complicated to find by hand all the necessary 

weights. But we can find algorithms which can adjust the weights of the ANN in order 

to obtain the desired output from the network. This process of adjusting the weights is 

called learning or training. The number of types of ANNs and their uses is very high. 

Since the first neural model there have been developed hundreds of different models 

considered as ANNs. The differences in them might be the functions, the accepted 

values, the topology, the learning algorithms, etc. Also, there are many hybrid models 

where each neuron has more properties than the ones we are reviewing here. Because of 

matters of space, we will present only an ANN which learns using the backpropagation 

algorithm for learning the appropriate weights, since it is one of the most common 

models used in ANNs, and many others are based on it(Sydenham et al., 2005).Since 

the function of ANNs is to process information, they are used mainly in fields related 

with it. There are a wide variety of ANNs that are used to model real neural networks, 

and study behaviour and control in animals and machines, but also there are ANNs 

which are used for engineering purposes, such as pattern recognition, forecasting, and 

data compression (Sydenham and Thorn, 2005). 
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A typical artificial neuron and the modeling of a multilayered neural network are 

illustrated in Figure 2.5. Referring to Figure 2.5, the signal flow from inputs x1. . . xnis 

considered to be unidirectional, which are indicated by arrows, as is a neuron‟s output 

signal flow (O). The neuron output signalOis given by Eq. (2.11): 
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Figure 2.5: An artificial neuron 

 

Where wj is the weight vector, and the function f (net) is referred to as an 

activation (transfer) function. The variable net is defined as a scalar product of the 

weight and input vectors, 

 

nn

T xwxwxwnet  11                (2.12) 

 

Where T is the transpose of a matrix, and, in the simplest case, the output value O is 

computed as Eq. (2.13). 
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                               (2.13) 

 

Where θ is called the threshold level; and this type of node is called a linear threshold 

unit. 

Environmental modeling involves using a variety of approaches, possibly in 

combination. Choosing the most suitable approach depends on the complexity of the 

problem being addressed and the degree to which the problem is understood. Assuming 
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adequate data and computing resources and if a strong theoretical understanding of the 

problem is available then a full numerical model is perhaps the most desirable solution. 

However, in general, as the complexity of a problem increases the theoretical 

understanding decreases (due to ill-defined interactions between systems) and statistical 

approaches are required(Gardner et al., 1998). Recently, the multilayer perceptron has 

been shown to be effective alternatives to more traditional statistical techniques 

(Schalkoff, 1992).Primarily, it has been shown that the multilayer perceptron can be 

trained to approximate virtually any smooth, measurable function (Horniket al., 1989). 

Unlike other statistical techniques the multilayer perceptron makes no prior assumptions 

concerning the data distribution. It can model highly non-linear functions and can be 

trained to accurately generalise when presented with new, unseen data. These features 

of the multilayer perceptron make it an attractive alternative to developing numerical 

models, and also when choosing between statistical approaches. As will be seen the 

multilayer perceptron has many applications in the atmospheric sciences. The multilayer 

perceptron consists of a system of simple interconnected neurons, or nodes, as 

illustrated in Figure 2.6, which is representing a nonlinear mapping between an input 

vector and an output vector. The nodes are connected by weights and output signals 

which are a function of the sum of the inputs to the node modiÞed by a simple nonlinear 

transfer, or activation, function. It is the superposition of many simple nonlinear transfer 

functions that are described as being fully connected, with each nodeconnected to every 

node in the next and previous layer (Gardner et al., 1998). 

 

By selecting a suitable set of connecting weights and transfer functions, it has 

been shown that a multilayer perceptron can approximate any smooth, measurable 

function between the input and output vectors (Hornik et al., 1989). Multilayer 

perceptrons have the ability to learn through training. Figure 2.7 shows a multilayer 

perceptron with two hidden layers.Training requires a set of training data, which 

consists of a series of input and associated output vectors. During training the multilayer 

perceptron is repeatedly presented with the training data and the weights in the network 

are adjusted until the desired input-output mapping occurs. Multilayer perceptrons learn 

in a supervised manner. During training the output from the multilayer perceptron, for a 

given input vector, may not equal the desired output. An error signal is defined as the 

difference between the desired and actual output. Training uses the magnitude of this 
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error signal to determine to what degree the weights in the network should be adjusted 

so that the overall error of the multilayer perceptron is reduced. There are many 

algorithms that can be used to train a multilayer perceptron. Once trained with suitably 

representative training data the multilayer perceptron can generalise to new, unseen 

input data (Gardner et al., 1998). 

 

 

 

Figure 2.6: Architecture of an artificial neuron and a multilayered neural network. 

 

 

 

 

 

 

 

Figure 2.7: A multilayer perceptron with two hidden layers. 

 

Source: Gardner et al.(1998) 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

 This project is mainly about analyzing the effect of nanofluids as coolant on cast 

iron in grinding process. It is carried out based on several parameters which are type of 

grinding wheel, depth of cut and grinding pattern where we observe the output 

parameters which are surface roughness, grinding temperature and MRR. The 

experiment is designed using design of experiment method (DOE). DOE is a technique 

that enables designers to determine simultaneously the individual and interactive effects 

of many factors that could affect the output results in any design. DOE also provides a 

full insight of interaction between design elements; therefore, it helps turn any standard 

design into a robust one. In addition, the DOE tool comes with full supporting plots that 

enable designers to determine simultaneously the individual and interactive effects of 

many factors that could affect the output results in any design. Pareto plots, main effects 

and Interactions plots can be automatically displayed from the data display tool for 

study and investigation. However, DOE is illustrated using a manual calculations 

approach in order to allow you to observe how the analysis and results are calculated, 

and what these results mean. After generating several combinations of grinding 

parameters such as depth of cut, type of grinding wheel and grinding pattern, the 

experiment is conducted and run according to various combination. Data is then 

collected and lastly, the data will be analyzed using response surface method (RSM) and 

artificial neural network method (ANN) to determine the best optimum response on the 

output parameters. 
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3.2 WORKPIECE PREPARATION 

 

Firstly, the sample of ductile cast iron obtained from the foundry lab was in the 

condition as shown in Figure 3.1. It was machined using carbide cutting tool in dry end 

milling condition. Milling is the most common form of machining, a material removal 

process, which can create a variety of features on a part by cutting away the unwanted 

material. The milling process requires a milling machine, workpiece, fixture, and cutter. 

The workpiece is a piece of pre-shaped material that is secured to the fixture, which 

itself is attached to a platform inside the milling machine. The cutter is a cutting tool 

with sharp teeth that is also secured in the milling machine and rotates at high speeds. 

By feeding the workpiece into the rotating cutter, unwanted material is cut away from 

the workpiece in the form of small chips to create the desiredshape in Figure 3.2. 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Initial form of workpiece 

 

Milling is typically used to produce parts that are not axially symmetric and 

have many features, such as holes, slots, pockets, and even three-dimensional surface 

contours. Parts that are fabricated completely through milling often include components 

that are used in limited quantities, perhaps for prototypes, such as custom designed 

fasteners or brackets. Another application of milling is the fabrication of tooling for 
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other processes. For example, three-dimensional molds are typically milled. It is also 

commonly used as a secondary process to add or refine features on parts that 

manufactured using a different process. 

 

 

 

Figure 3.2: Desired form of workpiece 

 

Due to the high tolerances and surface finishes that milling can offer, it is ideal 

for adding precision features to a part whose basic shape already was formed. In 

milling, the speed and motion of the cutting tool were specified through several 

parameters. These parameters are selected for each operation based upon the workpiece 

material, tool material, tool size, and more. The spindle speed isdetermined using Eq. 

(3.1): 

 

𝑆𝑝𝑖𝑛𝑑𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 =  
𝑐 .𝑠 𝑋 1000

𝜋𝑑
                                  (3.1) 

 

Wherec.sis cutting speed and dis tool or cutter diameter. 

 

 Squaring process has been done to obtain workpiece with dimensions illustrated 

in figure 3.2. Machining problems associated with cast iron were drilling, milling, 
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turning and other machining processes. Most of the problems were due to the 

microstructure formation/changes during the machining process itself. As during the 

high pressure drilling operation, the matrix structure of the cast iron was changed 

actually due to stress transformation of the high carbon-retained austenite in the matrix 

into martensite (Griffin et al., 2007). Milling process is done using Partner milling 

machine with the guidance of a digital panel that indicates the distance for the x, y and z 

axis. The spindle speed is calculated and set constant and the feed rate is set 

automatically. As a result, a long square block of cast iron is obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Milling process 

 

3.3 WORKPIECE COMPOSITION 

 

 The determination of the composition of the workpiece is done using a 

spectrometer. The importance of the spectrometer as a scientific instrument is based on 

a simple but crucial fact. Light is emitted or absorbed when an electron changes its orbit 

within an individual atom. Because of this, the spectrometer is a powerful tool for 

investigating the structure of atoms. It is also a powerful tool for determining which 

atoms are present in a substance. 
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3.4 SURFACE GRINDING 

 

 The grinding process is performed using a precision surface grinder machine. 

Figure 3.4 shows the precision surface grinder. The grinding wheel used is aluminum 

oxide grinding wheel. Figure 3.5 presents aluminum oxide grinding wheel. The grinding 

process is done using two types of coolants which are conventional coolant and 

nanocoolant in order to study the different effects in grinding process of the two 

coolants. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Precision surface grinder 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5:Aluminum oxide grinding wheel. 
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3.5 NANOCOOLANT PREPARATION 

 

 The nanocoolant is prepared for the experiment is 0.1% titanium dioxide, TiO2 

nanocoolant. Figure 3.6 shows the preparation of nanocoolant. Preparation is carried out 

using the one step process. In this process the dispersion of nanoparticles is obtained by 

direct evaporation of the nanoparticle metal and condensation of the nanoparticles in the 

base liquid and is the best technique for metallic nanofluids. It is prepared by using 

distilled water as the base fluid and is mixed with 0.1% TiO2 in liquid form. 

 

 (a)Bottle of TiO2 nanoparticle   (b) Mixing process 

 

Figure 3.6: Preparation of Nanocoolant 

 

3.6 SURFACE ROUGHNESS 

 

 The roughness of the grinded surface is measured using a perthometer as shown 

is Figure 3.7. It is measured in two directions which are along the grinded surface and 

across the grinded surface. It is measured in micrometer (µm). Figure 3.8 shows the 

scanning electron microscope (SEM).  Itis carried out in order to study the surface 

topography of the workpiece in result to the grinding process using two different 

coolants. 
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Figure 3.7: Measuring surface roughness using a Perthometer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Scanning electron microscope  
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3.7 GRINDING TEMPERATURE 

 

 The grinding temperature is determined by comparing the difference between 

the initial temperature of the workpiece which is before grinding and the final 

temperature of the workpiece which is after grinding. The temperature is measured 

using a thermocouple which is located in a hole grinded at the side surface of the 

workpiece. 

 

3.8 DESIGN OF EXPERIMENT 

 

Any scientific investigation involves formulation of certain hypotheses whose 

validity is examined through the data generated from an experiment conducted for the 

purpose. Thus, experimentation becomes indispensable part of every scientific endeavor 

and designing an experiment is integrated component. Experimental design is the 

process of planning a study to meet specified objectives. Planning an experiment 

properly is very important in order to ensure that the right type of data and a sufficient 

sample size and power are available to answer the research questions of interest as 

clearly and efficiently as possible.For this study, the DOE is designed using the JMP 

software. The steps of creating the DOE are described as Table 3.1. 

 

Table 3.1:Design of Experiment (DOE) 

 

Run DOC TS Temperature 

rise 

MRR Ra 

1 20 20 - - - 

2 20 30 - - - 

3 20 40 - - - 

4 40 20 - - - 

5 40 30 - - - 

6 40 40 - - - 

7 60 20 - - - 

8 60 30 - - - 

9 60 40 - - - 
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3.9 RESPONSE SURFACE METHOD 

 

Response surface methodology (RSM) is a collection of statistical and 

mathematical techniques useful for developing, improving, and optimizing processes. 

The most extensive applications of RSM are in the particular situations where several 

input variables potentially influence some performance measure or quality characteristic 

of the process. Thus performance measure or quality characteristic is called the 

response. The input variables are sometimes called independent variables. The field of 

response surface methodology consists of the experimental strategy for exploring the 

space of the process or independent variables, empirical statistical modeling to develop 

an appropriate approximating relationship between the yield and the process variables, 

and optimization methods for finding the values of the process variables that produce 

desirable values of the response. In this report we will concentrate on the second 

strategy: statistical modeling to develop an appropriate approximating model between 

the response y and independent variables ξ1,ξ2,...,ξ k (Carley et al., 2004). 

 

In general, the relationship is expressed as Eq. (3.2): 

 

       kfy ,,, 21       (3.2) 

 

where the form of the true response function fis unknown and perhaps very complicated, 

and εis a term that represents other sources of variability not accounted for in f. Usually 

ε includes effects such as measurement error on the response, background noise, the 

effect of other variables, and so on. Usually εis treated as a statistical error, often 

assuming it to have a normal distribution with mean zero and variance σ
2
. Then 

 

        kk fEfEyE  ,,,,,, 2121  
  

(3.3) 

 

The variables ξ1, ξ2, ...,ξk in Eq.(3.3) are usually called the natural variables, because 

they are expressed in the natural units of measurement, such as degrees Celsius, pounds 

per square inch, etc. In much RSM work it is convenient to transform the natural 

variables to codedvariablesx1, x2,...,xk, which are usually defined to be dimensionless 
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with mean zero and the same standard deviation. In terms of the coded variables, the 

response function will be written as Eq. (3.4). 

 

     kxxxf ,,, 21        (3.4) 

 

Because the form of the true response function f is unknown, we must 

approximate it. In fact, successful use of RSM is critically dependent upon the 

experimenter’s ability to develop a suitable approximation for f.  Usually, a low-order 

polynomial in some relatively small region of the independent variable space is 

appropriate. In many cases, either a first-order or a second order model is used (Carley 

et al., 2004). The first-order model is likely to be appropriate when the experimenter is 

interested in approximating the true response surface over a relatively small region of 

the independentvariable space in a location where there is little curvature in f(Carley et 

al, 2004). For the case of two independent variables, the first-order model in terms of 

the coded variables is in Eq. (3.5). 

 

   
22110 xx        (3.5) 

 

The form of the first-order model in Eq. (3.5) is sometimes called a main effects 

model, because it includes only the main effects of the two variables x1 and x2. There is 

an interaction between these variables; it can be added to the model easily as follows: 

 

2112110 xxx    (3.6) 

   

This is the first-order model with interaction. Adding the interaction term 

introduces curvature into the response function(Carley et al., 2004). Often the curvature 

in the true response surface is strong enough that the first-order model (even with the 

interaction term included) is inadequate. A second-order model will likely be required 

in these situations. For the case of two variables, the second-order model is expressed as 

Eq. (3.7). 

 

2112

2

222

2

11122110 xxxxxx     (3.7) 
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This model would likely be useful as an approximation to the true response 

surface in a relatively small region. The second-order model is widely used in response 

surface methodology for several reasons: 

 

1.  The second-order model is very flexible. It can take on a wide variety of 

functional forms, so it will often work well as an approximation to the true 

response surface. 

2.  It is easy to estimate the parameters (the β’s) in the second-order model. The 

method of least squares can be used for this purpose. 

3.  There is considerable practical experience indicating that second-order models 

work well in solving real response surface problems. 

 

In general, the first-order model is in Eq. (3.8). 

 

    
kk xxx   22110

  (3.8) 

  

and the second-order model is in Eq. (3.9). 

 


 


i

k

j

jiij

k

j

jjj

k

j

jj xxxx
21

2

1

0   (3.9) 

 

In some infrequent situations, approximating polynomials of order greater than 

two are used. The general motivation for a polynomial approximation for the true 

response function f is based on the Taylor series expansion around the point x10, x20, 

...,xk0. Finally, let’s note that there is a close connection between RSM and linear 

regression analysis. For example, consider the model 

 

  kk xxxy 22110
    (3.10) 

 

The β’s are a set of unknown parameters. To estimate the values of these 

parameters, we must collect data on the system we are studying. Because, in general, 
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polynomial models are linear functions of the unknown β’s, we refer to the technique as 

linear regression analysis (Carley et al., 2004). 

 

3.10 MULTILAYER PERCEPTRON APPROACH 

 

 Multilayer perceptron (MLP) approach is an analysis method under Artificial 

Neural Networks. In this project, the analysis is done using the NeuroSolutions6 

software. It is done by keying the sets of the experimental data obtained from the 

experiments done in the lab. The columns of depth of cut and table speed are tagged as 

input while the columns of temperature rise, MRR and surface roughness are tagged as 

desired. Figure 3.9 shows the tagged input parameters to develop the MLP model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Tagged input parameters and output data 

 

The hidden layer for the optimization process is set to 1. The processing 

elements are set to 4 while SigmoidAxon is selected for transfer function. Momentum is 

selected for learning rule at 1.00000 value of step size and 0.7 for momentum value. 

Maximum epochs is set 30000 and Termination is set at MSE, minimum with Threshold 

of 0.000001.the data are then tested for regression for each training, cross validation and 

testing options. From then, the optimization model is obtained. 

Tag for 

Training 

Tag for 

Testing 

Tag for Cross 

Validation 

Tag as input Tag as desired 



 

 

 

CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

4.1 INTRODUCTION 

 

 This chapter presents the results obtained from the grinding process using two 

different types of coolants including the conventional coolant and nanocoolant for single 

pass and multiple pass grinding patterns. The selected parameters for this study are 

surface roughness, grinding temperature and material removal rate (MRR). The 

experimental data are analysed using response surface method and artificial neural 

network using a multilayer perceptron approach. Microstructure analysis using scanning 

electron microscope (SEM) is also included to observe the effects of different coolants 

of the material. 

 

4.2 REPONSE SURFACE METHOD 

 

 Equations(4.1)and (4.2) show the prediction equation that are obtained from 

performing RSM for surface roughness for single pass and multiple pass grinding using 

nanocoolant. Theseequations are used to calculate the prediction value that is to be 

compared with experimental value. 

 

𝑅𝑎 = 0.5087142857 + 0.09616667 ×  
 𝑇𝑆 − 30 

10
 + 0.0751667 ×   

𝐷𝑂𝐶 − 40

20
 

+  
𝑇𝑆 − 30

10
 ×  

𝐷𝑂𝐶 − 40

20
 × 0.02625 

+  
𝑇𝑆 − 30

10
×
𝑇𝑆 − 30

10
× −0.02792857 

+  
𝐷𝑂𝐶 − 40

20
×
𝐷𝑂𝐶 − 40

20
× −0.1479285714                                (4.1) 
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𝑅𝑎 = 0.2752857 + 0.00561667 ×  
 𝑇𝑆 − 30 

10
 + 0.051833 ×   

𝐷𝑂𝐶 − 40

20
 

+  
𝑇𝑆 − 30

10
 × 

𝐷𝑂𝐶 − 40

20
 × 0.00675 

+  
𝑇𝑆 − 30

10
×
𝑇𝑆 − 30

10
× −0.01107142857 

+  
𝐷𝑂𝐶 − 40

20
×
𝐷𝑂𝐶 − 40

20
× 0.05192857                       (4.2) 

 Figure 4.1 shows the prediction profile plot for surface roughness for single pass 

and multiple pass using 0.1% titanium dioxide as grinding coolant. The desired value 

for Rsq is above 0.90 where it proves the validity of mathematical models. 

 

 

(a) Single pass grinding 

 

(b) Multiple pass grinding 

 

Figure 4.1: Surface roughness prediction plot 
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From Table 4.1, it is observed that only the P-value of ANOVA for Temperature 

Rise exceeds 0.05 while the values for MRR and surface roughness is less than 0.05. 

For this to matter, the P-value for Lack of Fit is then observed. For the lack of fit, all the 

values are more than 0.05, whichis desired. Therefore, all the prediction equations for 

output response are valid. Table 4.2 shows the comparison between the actual and 

predicted results of grinding output parameters for TiO2nanocoolant with single pass 

grinding pattern. 

 

Table 4.1: ANOVA resultsVariance analysis for second order surface roughness in 

single pass and multiple pass using 0.1% titanium dioxide water based nanocoolant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 4.1, it is observed that only the P-value of ANOVA for Temperature 

Rise exceeds 0.05 while the values for MRR and surface roughness is less than 0.05. 

For this to matter, the P-value for lack of fit is then observed. For the lack of fit, all the 

values are more than 0.05 which desired. Therefore all the prediction equations for 

output response are valid. Table 4.3 shows the comparison results between the 

experimental and predicted value for TiO2 nanocoolant with multiple pass grinding 

pattern. 

 

Source Degree of 

freedom 

Sum of sq. F-static P-value 

Single pass grinding 

Model 5 0.1498406 11.966 0.0161 

Error 4 0.0100169   

C.Total 9 0.1598576   

Interaction 10    

Lack-of-Fit 3 0.00990449 29.3466 0.1347 

Pure Error 1 0.00011250   

Total 4 0.01001699   

Multi-pass grinding 

Model 5 0.04153661 24.0272 0.0044 

Error 4 0.00138299   

C.Total 9 0.04291960   

Interaction 10    

Lack-of-Fit 3 0.00137049 36.5463 0.1209 

Pure Error 1 0.00001250   

Total 4 0.00138299   
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Table 4.2: Comparison between experimental value and predicted value for 0.1% TiO2 

nanocoolant with multiple pass grinding pattern 

 

 

Table 4.3: Comparison between experimental value and predicted value (0.1% TiO2) 

 

 

4.3  MULTILAYER PERCEPTRON APPROACH 

 

4.3.1 Single Pass Grinding Pattern 

 

Figure 4.2 represents the comparison between desired output value and actual 

network. Figure 4.3 represents the sensitivity about the mean for single pass grinding 

pattern. As shown in the figure, the increment of both input variables which are table 

speed and depth of cut highly affects the temperature rise of the workpiece followed by 

MRR while the surface roughness is the least affected.Table 4.4 shows the comparison 

Table 

Speed 

(m/min) 

Depth 

of 

Cut 

(µm) 

Temperature rise 

(°C) 

MRR 

(g/sec) 

Surface Roughness 

(µm) 

Exp. Predicted Exp. Predicted Exp. Predicted 

20 20 0 -0.22381 0.178 0.166107 0.201 0.221488 

20 40 0 0.114286 0.435 0.380952 0.264 0.232857 

20 60 1 0.109524 0.541 0.65694 0.310 0.234655 

30 20 0 0.447619 0.312 0.451619 0.251 0.238524 

30 40 1 0.785714 0.781 0.724714 0.281 0.285643 

30 60 1 0.780952 0.813 1.058952 0.385 0.32319 

40 20 0 0.77619 0.714 0.536274 0.237 0.314988 

40 40 1 1.114286 0.952 0.867619 0.303 0.397857 

40 60 1 1.109524 1.310 1.260107 0.489 0.471155 

Table 

Speed 

(m/min) 

Depth 

of 

Cut 

(µm) 

Temperature rise 

(°C) 

MRR 

(g/sec) 

Surface Roughness 

(µm) 

Exp. Predicted Exp. Predicted Exp. Predicted 

20 20 0 -0.25952 0.02299 0.02284 0.226 0.22681 

20 40 0 0.352381 0.05172 0.031709 0.276 0.226048 

20 60 1 0.90714 0.06322 0.11404 0.336 0.235143 

30 20 0 0.352384 0.03846 0.059146 0.229 0.274048 

30 40 1 0.714286 0.08462 0.084744 0.284 0.287786 

30 60 1 1.019044 0.09077 0.183806 0.369 0.311381 

40 20 1 0.907146 0.10714 0.055944 0.233 0.337143 

40 40 1 1.019048 0.19048 0.098272 0.316 0.365381 

40 60 1 1.073806 0.21429 0.214064 0.401 0.403476 
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between the output parameters of desired value (predicted) and actual value 

(experimental) for single pass grinding pattern.Figure 4.4 indicates the effect of varied 

input value towards all three output parameters for single pass grinding pattern. It is 

observed that as the table speed increases, temperature rise and MRR value increases 

steadily while the surface roughness value also increases but in small increment. As the 

depth of cut increases, the temperature rise increases a lot while MRR and surface 

roughness increases steadily in small portions. 

 

 

 

Figure 4.2: Desired output and actual network output for single pass grinding 

 

 

 

Figure 4.3: Sensitivity analysis for single pass 
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Table 4.4: Comparison between experimental value and predicted value (0.1% TiO2) 

for single pass grinding pattern 

 

 

 

(a) Table speed 

 

(b) Depth of cut 

 

Figure 4.4: Effect of network outputs for single pass grinding 

Table 

Speed 

(m/min) 

Depth 

of 

Cut 

(µm) 

Temperature rise 

(°C) 

MRR 

(g/sec) 

Surface Roughness 

(µm) 

Exp. Predicted Exp. Predicted Exp. Predicted 

20 20 0 -0.0540739 0.178 0.21932251 0.201 0.21788301 

20 40 0 0.07946455 0.435 0.3830495 0.264 0.25120899 

20 60 1 0.9463876 0.541 0.5621653 0.310 0.31710736 

30 20 0 -0.028191 0.312 0.32618009 0.251 0.24245339 

30 40 1 0.96933321 0.781 0.76872709 0.281 0.28908126 

30 60 1 1.05191041 0.813 0.81456429 0.385 0.37242817 

40 20 0 0.95158659 0.714 0.8018772 0.237 0.320733 

40 40 1 1.04126467 0.952 0.83014882 0.303 0.32380495 

40 60 1 1.05119844 1.310 0.82710682 0.489 0.36369481 
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4.3.2 Multiple Pass Grinding Pattern  

 

Figure 4.5 represents the comparison between desired output value and actual 

network output for TiO2nanocoolant with multiple pass grinding pattern. Figure 4.6 

represents the sensitivity about the mean for multiple pass grinding pattern. As shown in 

the figure, the increment of both input variables which are table speed and depth of cut 

highly affects the temperature rise of the workpiece. After that it differs where after 

temperature rise, MRR is the second followed by surface roughness as table speed 

increases. But for the increment of depth of cut, it is the other way around where surface 

roughness is the second most affected and   the least affected is MRR. Table 4.5 shows 

the comparison of output value between desired value (predicted) and actual value 

(experimental) for multiple pass grinding patterns. Figure 4.7 indicates the effect of 

varied input value towards all three output parameters for multiple pass grinding 

patterns. It is observed that as the table speed and depth of cut increases, temperature 

rise increases steadily while the MRR and surface roughness values increases but in 

small increment. 

 

 

 

 

Figure 4.5: Desired output and actual network output for multiple pass grinding pattern 
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Figure 4.6: Sensitivity about the mean for multiple pass grinding pattern 

  

 

(a) Table speed 

 

(b) Depth of cut 

 

Figure 4.7: Network outputs for varied input depth of cut for multiple pass grinding 
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Table 4.5: Comparison between experimental value and predicted value (0.1% TiO2) 

for multiple pass grinding 

 

 

4.4 COMPARISON BETWEEN CONVENTIONALCOOLANT AND TiO2 

NANOCOOLANT 

 

4.4.1 Single Pass Grinding Pattern 

 

 Tables 4.6 shows the difference of all output responses between using 0.1% 

TiO2 nanocoolant and conventional coolant for single pass grinding pattern. For the 

temperature rise of the workpiece indicates the effectiveness of nanocoolant in 

absorbing heat. This is shown where the maximum temperature rise for nanocoolant is 

only 1°C while the maximum temperature rise for conventional coolant is 3°C. As 

observed in Table 4.6, the comparison of MRR value which is desired to be high does 

not really go to nanocoolant. Moreover, there is no significant difference for MRR value 

between the two coolants. Lastly,the surface roughness which is desired to be minimum, 

TiO2nanocoolant indicates better surface finish compared to conventional coolant. 

 

It indicates the difference of using TiO2 nanocoolant compared with 

conventional coolant. The output responses studied, which are grinding temperature, 

MRR and surface roughness all have been compared and analysed. The results show 

that TiO2 nanocoolant dominates in terms of grinding temperature where TiO2 

nanocoolant effectively conducts temperature with its high thermal conductivity 

property. By combining nano-sized particles with base fluids, results in fluids with 

improved thermal coonductivity which is effective as a coolant in abrasive machining 

Table 

Speed 

(m/min) 

DOC 

(µm) 

Temperature rise 

(°C) 

MRR 

(g/sec) 

Surface Roughness 

(µm) 

Exp. Predicted Exp. Predicted Exp. Predicted 

20 20 0 -0.0502149 0.02299 0.0231965 0.226 0.22598616 

20 40 0 0.01064569 0.05172 0.0516446 0.276 0.27594046 

20 60 1 0.98785565 0.06322 0.06337769 0.336 0.33647348 

30 20 0 0.00254025 0.03846 0.03840697 0.229 0.22843209 

30 40 1 0.99805915 0.08462 0.08476135 0.284 0.28421489 

30 60 1 1.05458394 0.09077 0.09013633 0.369 0.36746414 

40 20 1 0.86939214 0.10714 0.08620159 0.233 0.26333428 

40 40 1 1.05205992 0.19048 0.0871913 0.316 0.29940688 

40 60 1 1.05458241 0.21429 0.08740265 0.401 0.32547883 
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such as grinding. In terms of material removal rate (MRR) which is desired to be 

maximum, TiO2 nanocoolant achieves a slightly higher value compared to conventional 

coolant. Because of the nanosized particles, they are so small that they fill in the gaps in 

the grinding wheel which results in less friction and may affect the MRR of the process. 

This indicates there is not much difference in MRR value. 

 

Table 4.6: Comparison of temperature rise, MRR and surface roughnessbetween 

conventional coolant and 0.1% TiO2 nanocoolant for single pass grinding 

 

Workpiece Table Speed Depth of Cut 0.1% TiO2 

Nanocoolant 

Conv. 

Coolant 

Temperature Rise 

A 20 20 0 1 

B 20 40 0 1 

C 20 60 1 1 

D 30 20 0 1 

E 30 40 1 1 

F 30 60 1 1 

G 40 20 0 2 

H 40 40 1 2 

I 40 60 1 3 

Material removal rate 

A 20 20 0.178 0.179 

B 20 40 0.435 0.362 

C 20 60 0.541 0.533 

D 30 20 0.312 0.230 

E 30 40 0.781 0.472 

F 30 60 0.813 0.698 

G 40 20 0.714 0.329 

H 40 40 0.952 0.698 

I 40 60 1.310 1.131 

Surface Roughness 

A 20 20 0.201 0.205 

B 20 40 0.264 0.280 

C 20 60 0.310 0.316 

D 30 20 0.251 0.327 

E 30 40 0.281 0.445 

F 30 60 0.385 0.537 

G 40 20 0.237 0.326 

H 40 40 0.303 0.384 

I 40 60 0.489 0.542 
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4.4.2 Multiple Pass Grinding Pattern 

 

 Tables 4.7 shows the difference of all output responses between using 0.1% 

TiO2 nanocoolant and conventional coolant for multiple pass grinding pattern. For the 

temperature rise of the workpiece indicates the effectiveness of nanocoolant in 

absorbing heat. This is shown where the maximum temperature rise for nanocoolant is 

only 1°C while the maximum temperature rise for conventional coolant is 4°C.  

 

Table 4.7: Comparison of temperature rise, MRR and surface roughnessbetween 

conventional coolant and 0.1% TiO2 nanocoolant for multiple pass grinding 

 

Workpiece Table Speed Depth of Cut 0.1% TiO2 

Nanocoolant 

Conv. 

Coolant 

Temperature Rise 

A 20 20 0 1 

B 20 40 0 1 

C 20 60 1 1 

D 30 20 0 2 

E 30 40 1 2 

F 30 60 1 3 

G 40 20 1 3 

H 40 40 1 3 

I 40 60 1 4 

MRR 

A 20 20 0.02299 0.0234 

B 20 40 0.05172 0.0407 

C 20 60 0.06322 0.0589 

D 30 20 0.03846 0.0302 

E 30 40 0.08462 0.0534 

F 30 60 0.09077 0.0766 

G 40 20 0.10714 0.0457 

H 40 40 0.19048 0.0814 

I 40 60 0.21429 0.1160 

Surface Roughness 

A 20 20 0.226 0.238 

B 20 40 0.276 0.288 

C 20 60 0.336 0.344 

D 30 20 0.229 0.231 

E 30 40 0.284 0.272 

F 30 60 0.369 0.309 

G 40 20 0.233 0.289 

H 40 40 0.316 0.494 

I 40 60 0.401 0.572 
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 As observed in Table 4.7, the comparison of MRR value, which is desired to be 

high goes to nanocoolant. It can be seen that the MRR value for multiple pass grinding 

is much effective compared to single pass grinding in comparison to respected 

conventional coolant for respected grinding pattern. Lastly, it can be observed that the 

surface roughness is desired to be minimum, TiO2nanocoolant also indicates better 

surface finish compared to conventional coolant. 

 

Lastly, for surface roughness which is to minimize, TiO2 nanocoolant produces 

products with better surface finish and low value of surface roughness compared to 

conventional coolant. This is due to nanosized particles, which fill in the tiny gaps and 

voids which make the surface to be flatter and therefore, produces the good surface 

finish of products. Furthermore, because of the effective thermal conductance of the 

TiO2 nanocoolant which minimses the grinding temperature and results in no aggressive 

change in the microstructure that causes the low-quality surface finish. 

 

4.5 MICROSTRUCTURE ANALYSIS 

 

Figure 4.8 shows the workpiece grinded using 0.1% TiO2 nanocoolant surface 

microstructure at 200x magnification. It is observed that using nanocoolant produces 

much clean flat surfaces. Eventhough there is a void defect, but as a whole, the figure 

shows the potential of producing high quality surface finish products. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: 0.1% TiO2 nanocoolant(200x magnification) 

Flat surfaces 

void 
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Figure 4.9 shows the workpiece grinded using conventional coolant surface 

microstructure at 200x magnification. it is observed that using conventional coolant 

produces many grinding marks on the surface of the specimen. Figure 4.10 shows the 

surface microstructure of workpiece grinded using 0.1% TiO2 nanocoolant while 

Figure 4.11 shows the surface microstructure of workpiece grinded using conventional 

coolant at magnification of 700x. The difference between the two images are significant 

where Figure 4.10 shows better surface finish while Figure 4.11 shows a surface with 

many grinding marks and also some cracks on the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Conventional Coolant (200x magnification) 

Grinding 

marks 
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Figure 4.10: 0.1% TiO2 nanocoolant (700x magnification) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Conventional Coolant (700x magnification) 
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CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 CONCLUSIONS 

 

 From this experiment, the effects of selected of input parameters which are 

grinding pattern, depth of cut and table speed have been studied towards the output 

parameters including the temperature rise, surface roughness and material removal rate 

for both conventional coolant and titanium dioxide nanocoolant. According to the 

output parameters, it is desired that in order to select the optimum input parameter 

value. The selection is based on desired minimize the temperature rise, minimum 

surface roughness and maximum material removal rate.  

 

 For single passgrinding patterns, all three output parameters are more affected 

by depth of cut followed by the table speed. As table speed increases, grinding 

temperature and MRR increases steadily while surface roughness is nearly constant. 

However, as the depth of cut increases, grinding temperature increases the most 

followed by MRR and lastly is surface roughness. 

 

 For multiple pass grinding patterns, the grinding temperature and surface 

roughness are more influenced by the depth of cut compared to table speed while MRR 

is more affected by varying table speed compared to depth of cut. The increase in table 

speed causes the grinding temperature to increase dramatically while MRR and surface 

roughness are not affected by the increment. On the other hand, the increase of depth of 

cut also highly affects temperature difference, MRR also increases by a small amount 

while surface roughness is nearly constant. 
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 From the SEM images, it is concluded that nanocoolant produces better surface 

finish compared to use conventional fluid as the coolant. This study has shown that 

nanofluids are in a superior way in acting as grinding coolants compared to 

conventional coolants. This is shown in the data obtained from experiments on selected 

output parameters of temperature rise and surface roughness. This proves that by using 

nanofluids as coolants, the quality of the product in terms of surface finish increases 

while performs better in removing heat from the grinding process.  

 

5.2 RECOMMENDATIONS 

 

 From the study that has been done, a few recommendations have been made for 

potential future study: 

 

 Make comparison between different nanoparticles to obtainthe better 

performance.  

 Develop ways to ensure better stability for nanoparticles 

 Develop new synthesis methods necessary to make nanofluids more affordable. 
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