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ABSTRACT 

According to Malaysians Unite for Road Safety (MUFORS) online survey, human 

error, for example, improper vehicle deviation or unintentional lane change is one of the 

main causes of traffic accident. Lane shift in traffic can be complex and dangerous. This 

study aims at developing a fast, low-cost, and sophisticated system with the ability to detect 

unexpected lane changes that may reduce the probability of a vehicle straying out of lane. 

Various road models to identify the lanes have been explored including straight-line, B-

snack, linear-parabolic model, and deformable model. Most lane models, either simple or 

lack of flexibility or complex, may cause heavy computation in processing the time needed. 

The feature of roadway has certain degree of curvature and constraints, for instance, no 

sudden road turn is the design for road safety driving. A short segment of a long curve with 

a relatively low curvature is approximated as a straight line, based on this point, the 

important contribution of this thesis presents a lane detection algorithm using E-MAXIMA 

transformation and improved Hough transform which is the algorithm with great efficiency, 

high robustness and also at low cost to detect road lane markings. First of all, the region of 

interest from input image to reduce the searching space is defined; then the image into near 

field-of-view and the far field-of-view is divided. In the near field-of-view, Hough 

transform will be applied to detect lane markers after image noise filtering and lane features 

extraction by E-MAXIMA. The experimental results based on collected video data under 

complex illumination conditions had proved that the proposed algorithm is able to detect 

the road lane marking efficiently achieving a correction rate of 95.33%. The process time 

on average is 32 ms/f, namely every second can deal with 31.25 frames that demonstrate 

superior and robust results compared to other existing methods. To conclude, the work 

done in this thesis may apply to autonomous driving navigation and driving security 

assistance. The potential of such a system is further linked to the system with the vehicles’ 

turn signal, whereby the system will be able to detect an unintentional drift out of the lane. 
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ABSTRAK 

Menurut kaji selidik oleh Malaysia Unit for Road Safety (MUFORS), kesilapan 

manusia seperti kereta terkeluar dari lorong atau teralih dari lorong asal merupakan punca 

utama berlakunya kemalangan jalan raya. Teralih kenderaan semasa memandu adalah satu 

perbuatan yang bahaya dan komplek. Kajian ini bertujuan membina satu sistem yang cepat, 

canggih, dan murah serta berkeupayaan untuk mengesan perubahan lorong yang tidak 

dijangka. Sistem ini dapat mengurangkan kebarangkalian kenderaan terkeluar daripada 

lorong. Pelbagai model jalan telah dikenalpasti dalam kajian ini termasuk garis lurus, B-

snack, model parabola-lurus, dan model bolehubah bentuk. Kebanyakan model tidak terkira 

yang mudah atau kurang fleksbiliti atau kompleks akan mengambil masa yang lama dalam 

proses pengiraan oleh perisian. Biasanya, semasa merekabentuk jalan untuk memandu 

dengan selamat, ciri-ciri jalan mempunyai tahap kelengkungan dan kekangan tertentu dan 

tindak terdapat belokan secara tiba-tiba.Satu segmen yang pendek bagi satu lengkungan 

yang panjang boleh diandaikan sebagai garisan yang lurus. Berpandukan kepada andaian 

tersebut, thesis ini dapat memberi sumbangan dengan mengemukakan satu algoritma 

pengesanan lorong. Algoritma pengesanan lorong tersebut dibentuk dengan mengunakan 

tranformasi E-MAXIMA dan menambahbaik trasformasi Hough. Tranformasi Hough 

merupakan algoritma yang cekap, mempunyai fungsi mengasingkan ganguan dan murah 

untuk mengesan tanda-tanda lorong. Pada permulaan, tentukan dan iktirafkan kawasan 

yang diminati dengan memasukan imej bagi mengurangkan skop pencarian. Selepas itu, 

bahagikan kawasan imej kepada pandangan dekat dan jauh. Bagi kawasan pandangan dekat, 

Hough transform akan digunakan untuk mengesan tanda-tanda di jalan selepas ganguan 

ditapis dan diasingkan oleh E-MAXIMA. Keputusan eksperimen yang berdasarkan kepada 

data dari video, yang dikumpul bawah keadaan illuminasi yang kompleks, telah 

membuktikan algoritma yang dicadang boleh mengesan tanda lorong jalan raya dengan 

cekap sehingga mencapai kadar pembetulan sebanyak 95.33 %. Purata masa proses ialah 

32ms/f, iaitu algoritma ini boleh menangani 31.25 bingkai tayangan setiap saat dan telah 

membuktikan bahawa keputusan yang didapati dengan cara ini adalah lebih baik dan tepat 

berbanding dengan cara lain. Kesimpulannya, hasil penemuan tesis ini boleh diaplikasikan 

kepada navigasi autonomi memandu dan bantuan memandu secara selamat. Sistem ini 

berpotensi bergabung dengan sistem isyarat perubahan belokkan kenderaan, dimana sistem 

ini dapat mengesan terkeluarnya kenderaan dari lorongasal. Penyelidikan selanjutnya 

adalah untuk megaitkan system tersebut dengan penukaran isyarat kenderaan dan kajian 

tentang perhubungan geometri pada jalan yang sangat tidak rata supaya mengurangkan 

kemalangan jalan raya.   
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CHAPTER 1  

 

 

INTRODUCTION 

 

1.1 INTRODUCTION  

Image processing has been found in many applications in the electronic industries. 

The field of autonomous vehicles and driver support has received attention. Lane detection 

technologies are the branch of intelligent driver assistance system used to warn a driver 

when the vehicle begins to veer out of its lane. The purpose is to lessen possibility of traffic 

accidents, to monitor the position of a car effectively and to contribute to further 

development of autonomous navigation technology. 

The subject in this thesis is about algorithms of lane extraction, detection and 

location which are based on digital video sensor. It is relatively advantageous than other 

type of sensors like Radar and infrared. It has a lower cost, more mature applications, and 

can provided rich visualized information. However those road information provided by 

video is disorderly and not standardized, thereby a number of extra approaches are needed 

to extract the specific features of lane markings, which is a crucial subject. A reliable 

detection algorithm has been keeping exploring in research area.  

This project presents simulations to analyze the driving control for autonomous 

vehicle using image processing technology to detect road lane. The approach provided here 

is based on E-MAXIMA and improved Hough Transform to extract the features of 

structured roads. The near field-of-view scope adopts a straight line model to accelerate the 

speed of data calculation and to find the fitting line. Prior-knowledge is used in lane finding 

process to efficiently decrease Hough space efficiently, thus enhancing its robustness by 
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improving the processing speed. The algorithm gave a good result in detecting straight and 

smooth curvature lane on the highway even when the lane was affected by shadow.  

Furthermore, RANSAC and Progressive Probabilistic Hough Transform (PPHT) are 

used as alternative technologies to implement lines detection function, for comparing 

purpose. The advantages and disadvantages were explored by observing the algorithms 

performance under similar experimental conditions. The methods have been tested on 

collected video data. Experimental results demonstrated that the efficiency and robustness 

of the purposed algorithms is ideal.  

The important contribution of this study is the development of vehicle lane 

detection and tracking algorithm based on E-MAXIMA and Hough transform. Major 

consideration in this research includes resolving speedy detection of lane markings and 

locating accurate vehicle position. To develop a high precision, simple computation and 

strong adaptability algorithm are applied for real-time requirements.  

1.2 MOTIVATION 

Malaysia is paying a heavy price due to road accidents, and the cost to the economy 

2010 year was about RM9.3bil (Malaysia Road Safety Department, 2010). Recent statistics 

shows that the number of fatalities in Malaysia has increased to 6,872 deaths in last year. 

Bukit Aman Internal Security and Public Order Department revealed that the total number 

of road accidents has increased to 414,421(MUFORS, 2011). In a separate online survey by 

the Malaysians Unit for Road Safety (MUFORS), 61.6% of the respondents believed that 

human error, for instance, improper vehicle deviation or unintentional lane change is one of 

the main causes of road carnages. 

Changing lanes in traffic can be complex and dangerous, and such detection system 

may reduce the probability of a vehicle straying out of lane. To prevent a vehicle veering 

out of lane, technique for driving assistance is vitally important, particularly the Lane 

Markings Detection System which has a significant market potential and high practical 
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value. The U.S. National Highway Traffic Safety Administration (NHTSA) began studying 

whether to mandate lane detection systems on automobiles (Rothschild, 2012). The study 

of lane detection technique is moving towards comprehensiveness, generalization, and 

digitalization. 

1.3 PROBLEM STATEMENT  

Lane detection is commonly used to determine some geometric parameters 

including the shape and width of the lane region, the lane markings position, and analysis 

of derivation angle. Existing techniques in the study of lane detection technology have a 

diversified angle in analysis and possess a variety of disadvantages. The complicated road 

condition experimental results have been far from ideal. To build up a systematic criteria 

and comprehensive solution for safety driving is still a long way to go. The main focus is 

how to improve the efficiency and accuracy of an algorithm. 

The proposed approaches aim to confirm high stability in noise conditions, change 

of illumination and outside noise from other vehicles. There are several technical 

challenges to road detection which is needed to be understood, analyzed and solved: 

(i) .  On the side of the road shadows projected by trees, buildings, bridges to the 

surface can interfuse edges information and the irregular form of blot or 

reflections of wet road can also create non-road edges. In these cases, it would 

be difficult to eliminate interfered edge information and well preserved useful 

edge information. 

(ii).  Lane markings can be frayed or smudged with years since edges will be faded. 

The bumping and shaking of vehicles or poor weather can produce blurred 

images. Moving vehicles, pedestrians or obstacles appear on the road will 

conceal part of the markings. How can we distinguish the lane markings from 

the obstacles?  
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(iii).  Review on previous research, the critical technical difficulties of lane 

detection is conflict between robustness and the real-time applicability. In 

point of robustness, algorithms should be able to work under variety 

illumination and weather that is resulted by the complicated computation 

process. On the other hand, the real-time applicability request algorithms are 

able to complete detection process less than spans of one second. Thus, in 

order to satisfy the need of real-time requirement and robustness still needs 

lots of research work. 

1.4 OBJECTIVES OF THIS STUDY 

The objective is to develop and design an algorithm for efficient and effective road 

lane detection which can increase the comfort and safety of traffic participants. In order to 

minimize the accidents, the main cause of collision, that is, driver errors, is addressed. The 

present study will analyze the situation and relevant departure information. This research is 

implemented on autonomous navigation and assistance on the visually impaired can 

decrease the number of traffic accidents. The specific objectives of this research are:  

(i) .  To detect road lanes in different environmental conditions in the presence of 

noise on the road. 

(ii).  To prove the optimal edge detection operators for lane detection purpose and 

to obtain the best automatic threshold under different lighting conditions. 

(iii).  Improve performance of standard Hough and verify it by mathematical 

operations which means a simulation should be implemented. 

1.5 SCOPE OF THE STUDY 

The central theme of this thesis is to design and implement a reliable solution for 

real time lane detection. This research is based on a computer vision by a single video 

camera as an input sensor. Autonomous vehicles and driving assistance based on computer 

vision is a comprehensive topic. The scope of this research covers the following items: 
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(i) .  Achieve recognition by extracting specific features of lane markings painted on 

the road surface with recognizable painted lane markings via video sensor. 

(ii).  By analyzing the relevance of the lane positions between the adjacent frames, 

we can use the information obtained to guide the detection of the next frame. 

(iii).  Find a lane model that explains the features found in the current image and 

the previous frames. 

(iv).  Detect and track the vehicle’s location and counting distance between 

vehicle and lane marks. 

(v).  Determine and analyze the “derivation behavior” of the host vehicle. 

1.6 STRUCTURE OF THE THESIS 

 Chapter 1 provides a brief introduction and research background of the lane 

detection system. This is followed by the problem statement, objective of the system and 

scope of the study.  

Chapter 2 reviews the relevant literature, discusses the current adopted widely 

technologies and offers a classification based on the different computation techniques or 

different objects, such as color, texture, edges or shape. 

Chapter 3 introduces the image pre-processing technologies used in this Lane 

Detection system (LD) and illuminates working theory of improved Hough and RANSAC 

algorithms. The lane detection process of the designed LD system will be presented and 

technical reasoning and feasibility of adapting straight lane model will be discussed. 

Chapter 4 describes the experiments conducted in the designed LD system. The 

comparative results of different algorithms and analysis are presented. The final chapter 

summarizes the limitations of the system and suggestions for future research will be made. 

 



  

CHAPTER 2   

 

 

LITERATURE REVIEW 

 

2.1 INTRODUCTION   

Extensive techniques have been developed to detect lane markings in the related 

field of autonomous vehicles and driver support technologies. This chapter presents an 

overview of the foremost techniques used by these researchers. Image-processing methods 

used in traffic applications will be reviewed and then group them according to the type of 

technologies applied. An evaluation of the advantages and disadvantages from general 

needs will be conducted. The evaluation result will help position our work in the context of 

previous research and creating 'research space'. 

Till now a large number of Lane Detection systems have been developed by diverse 

types of sensors, for example: radar and infrared sensors, inductive loop, and microwave 

detectors. Comparing with video sensors, serious drawbacks of those sensors are high 

installation and maintenance expense. On the contrary, video sensors offer a relatively 

inexpensive cost, as well as slight traffic disruption. 

The commercial use of video sensors is increasing. Our work in this research will be 

concentrated on developing LD algorithms via video sensors. Generally the LD system 

based on video sensors can be divided by monocular vision (one eye camera) and binocular 

vision (two-eye camera). Moreover, according to different detection algorithms, current 

research can be categorized under three types: a) the Lane-region based methods, b) the 

feature-driven methods and c) the model-driven methods (Obradović, Konjović, Pap et al., 

2012), (Y. Fan, Zhang, Li, Zhang, et al., 2011),(Kastrinaki, Zervakis, & Kalaitzakis et al., 
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2003).The lane-region segmentation based method can be also modeled as an image 

segmentation issue which is the process of partitioning an image into road and non-road 

segments based on particular features. The feature-driven methods estimate the road by 

intensity, color, texture, edge strength or ridge. The other model-driven methods actually 

can be considered as a matching process that is to compare deformable template or 

parameterized shapes with observed images. 

2.2 LD SYSTEM BASED ON MONOCULAR AND BINOCULARS VISION 

Commonly, current active vision-based LD system can be grouped by different 

number of video sensors, e.g. monocular and binocular vision. Monocular vision system in 

W. He et al., (2011), Schreiber, Alefs, & Clabian et al. (2005) has one video camera sensor 

fixed on the rear mirror to collect road surface information. Binocular vision (Lipski et al., 

2008) (Rios Cabrera, Tuytelaars, & Van Gool, 2011) had fixed two cameras in the front-

right and front-left side of the vehicle that can be integrated to take pictures from two sides 

of lane edge at short ranges. By this way, camera shooting towards the road and image can 

be captured quickly, at the same time it eliminates useless background information during 

image acquisition phrase. 

 The limitations of such system based on two/multi-camera sensors need to process 

huge amounts of real-time images. It will request complex hardware support, otherwise it 

will slow down the computation speed, raise the complexity of process algorithm; 

furthermore, synchronization of analyzing results in each frame from different camera 

sensors would be very difficult, sometimes leading to miss detection. 

2.3 THE LANE-REGION SEGMENTATION BASED METHODS  

The lane-region segmentation based methods can be defined as a graph partitioning 

technique, which subdivides an image into its constituent road and/or non-road segments 

based on the road regions with similar attributes (Ben Romdhane, Hammami, & Ben-

Abdallah, 2011) (Kastrinaki et al., 2003). It is typically used to extract the lane positions. 
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The segmentation results can simplify the content of images to make road information more 

meaningful and easier to analyze. Several lane-region analysis methods are discussed in 

this subsection which are based on basic properties or detect the lane with the changing 

intensity distribution along the region of a lane such as the thresholding of luminance, color 

component, and watersheds. Another category of segmentation is accomplished via flood-

fill the road region using predefined criteria, such as region growing method. 

2.3.1 Luminance Thresholding 

Several analytic algorithms to the setting of a luminance threshold have been 

proposed. The process is to create binary images depending on the value of pixels. 

Individual pixels in an image are marked as two dominant models, object and background 

pixels. Threshold T extracts the objects from the background. Any point (x,y) in the image 

at which f(x,y)>T is called an object point; otherwise their value is smaller than T which is 

labeled as a background point (Gonzalez & Woods, 2008). The segmented image, g(x,y), is 

given by 

 (   )  {
       (   )   
       (   )   

 

As noted in the previous equation, under the condition that the intensity distribution 

of objects and background pixels are readily distinguishable, a single (global) threshold can 

get a good segmentation result. Besides, Otsu’s method is very common to select the 

optimum threshold value. Liu et al. (2012) have reported that the Otsu method is better than 

the global thresholding technique among their experimental results. Another approach to 

luminance threshold selection is to find the smallest point of the histogram between its 

bimodal peaks. Zhang & Wu (2009) used two histogram images to create two different 

calculation directions, horizontal and vertical histogram. The original image is segmented 

twice by row and column thresholds separately. 
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When a different threshold is used for different regions in the image it is called the 

adaptive threshold. This paper (Z. Li, Cai, Xie et al., 2012) is to describe a method using an 

adaptive threshold approach for real-time automated extraction of the road markings. 

The method of applied multiple threshold segmentation (H. Wang & Shao, 2011) is 

used instead of single threshold. All parts of lane marker points are collected by using a set 

of consecutive thresholds. Consecutive threshold segmentation uses multiple thresholds and 

collects useful information from each segmented image. A white line segment will be 

selected as part of lane marker points if its length satisfies certain length range. Using 

consecutive threshold method can separate lanes and background but less flexible for 

complex data. Under uneven illumination conditions, threshold selection would be a major 

challenge. 

Usually a successful segmentation is highly dependent on the choice of thresholds. 

Global (single) thresholding works on different scope of image. It can be expected to be 

successful in highly contrast environments. Its advantages are simple and the applicability 

is strong. Those pictures with even illuminance using global thresholding can achieve a 

good segmentation result. Its disadvantages are low capacity of resistance noise and less 

sensitive to the intensity variation of the grey image. Adaptive thresholding, also called 

local thresholding, has improved anti-noise. However, segmentation errors can be occurred 

when neighborhood subdivision is filled by objects or background pixels. Multiple or 

consecutive thresholds are applicable to complex background image, which increases the 

flexibility of thresholds selection at the same time increases the complexity of algorithms. 

In general, multilevel thresholding is less stable, mostly because it is very difficult to 

determine thresholds that are adequately separated objects.  

2.3.2 Texture anisotropy 

Existent approaches to texture, instead of gray value, can be a useful feature for lane 

region segmentation. The texture of the road is normally smoother than that of the 
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environment (Jeong & Nedevschi, 2005). The proposed method is carried out on the sub 

images by a composed gray and texture based feature vector. The gray feature vector works 

in the pre-classification phase, and the texture feature vector is applied after the 

classification is performed. The proposed method using in this paper is dexterous to lane 

detection but the weakness shows in the strong variant environment. The feature vector of 

the object and the background become similar when the entire image, for example, dark or 

bright. In this case, the miss detection of the road region can easily occur (Kang, Kidono, 

Naito, & Ninomiya, 2008). Filter banks are used to measure texture properties in the image. 

Each pixel records the local response of a different filter. Pixels with similar responses 

indicate regions with similar textures.  

Since the road surface is smooth and differs significantly from objects (vehicles) 

and background, texture–based segmentation is possible to identify the road region area 

from other background. However, the detection result often shows instable results that were 

caused by too much segmentation in objects of interest where similar textures seemed to 

end up in different areas. Moreover, in highway scenario, texture of one lane does not have 

much difference from the near or next lane. Practically, it is not very feasible to measure 

texture properties in highway scene. 

2.3.3 The region growing method 

The Region-growing method is to divide a digital image into multiple portions 

depending on similar properties such as pixel intensity, gray level texture, or color. The 

first step is to select initial seed points from the lane-region. Then the initial regions are 

grown from these initial seeds which are determined by the definite location of regions. It is 

an iterative process, that is, keep searching for similarity from neighboring pixels until road 

boundaries are allocated to the region.  

According to Song & Civco (2004), the image is classified into two groups of 

categories: a road and a non-road group. The road group image was segmented into 
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geometrically homogeneous objects using a region growing technique based on shape 

information. Amo, Martinez, & Torre, (2006) have presented the applicability of a 

combined approach consisting of region growing and competition to extract roads. An 

initial simple model is deformed by using region growing techniques to obtain a rough road 

approximation. The extraction result is able to obtain the road centerline and the road sides.  

The trouble with the region growing method is that road gaps caused by shadow or 

obscuring land features can stop the region growing early, producing erroneous 

segmentation results. For lane markings detection purpose, the method is not explicit to 

localized target objects, instead, it takes a devious way to acquire lane markings by seeking 

road region first, and extra computation time would be required. 

2.3.4 The Watershed Transform 

One of the important tools in image segmentation is the watershed transformation. 

The approach in X. Yu et al. (1992) was based on mathematical morphological 

segmentation to locate the lane edges in the image. The watershed is given by considering 

the graph of image as a topographic surface. By applying the watershed of the gradient 

image a mask is created. Then depending on the filtered mask the watershed finds road 

edges. This technique has the advantage of not requiring any threshold for the gradient 

magnitudes and no geometrical model is necessary. It has the disadvantage of not imposing 

any global constraints on the lane edge shapes.  

 Beucher & Bilodeau (1994) had worked on road segmentation and obstacle 

detection based on watersheds. Their technique consists of applying a temporal filter for 

noise reduction, followed by edge detection and watershed segmentation. Such methods 

demand a relatively high computational cost, and the resulting road boundaries are typically 

jagged. 
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2.4 THE FEATURE-BASED METHODS  

The feature-based methods search the lanes from the road images by extracting the 

low-level features. Those low-level features of road are basic features that can be extracted 

automatically from an image without any shape information (Nixon & Aguado, 2008)  

The most noticeable features supporting the estimation of the road course are 

intensity, color, texture, edge strength, edge direction and height-over-ground (Franks, 

Loose et al. 2007). Some road detection approaches based on color features will be 

reviewed firstly. Those approaches are marked image pixels into road markings based on 

particular color features. A color space is a mathematical representation of a set of colors. 

The three most popular color models are a) RGB (used in computer graphics); b) YUV, or 

YCbCr used in video systems; and c) CMYK used in color printing. However, none of 

these color spaces are directly related to the intuitive notions of hue, saturation, and 

brightness. This resulted in developing other models, such as HSI and HSV, to simplify 

programming, processing, and manipulation. 

2.4.1 RGB color model  

The use of color in image processing is motivated by one principal factor: color is a 

powerful descriptor that often simplifies objects identification and extraction from a 

background (Gonzalez & Woods, 2008). Researchers have used contrasting color and 

intensity on the road surface as important and preferred analytical elements to distinguish 

lane markings on the road surface. In the RGB color model, the features are defined by the 

spectral components of the illumination at the red, green and blue bands. At each pixel, the 

classification can be performed directly on the (R, G, B) bands.  

Chiu & Lin (2005) had made some attempts in vision based lane detection by RGB 

color model. The researcher has discovered a threshold using statistical method in a color 

image. This is used to distinguish possible lane boundary from the road. Generally most of 

the road is near the color of dark gray. Although it is not exactly gray, it is still in a certain 
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range. Under the RGB color model, a pixel said to be gray is with the property VR =VG 

=VB. And, it is nearly white when V approaches 255 and is nearly black when approaches 

0. However, on the real road, it is not exactly the color of gray when it is repaired or adding 

some other colors due to the reflection of light. Furthermore, the color of a scene may vary 

with time. All R, G and B values are required to distinguish the different thresholds with 

time and environmental change.  

The determination of the threshold value would be a difficult issue when using the 

color feature. For general road, the gray level value of the road is 100-130, and its shadow 

or sunlight would be changed in various scales. The apparent color of an object is neither 

static nor constant. Under those factors of affection, such kind of systems might get 

inconsistent detection result.  

2.4.2 Hue-Saturation-Intensity model 

RGB color model does not correspond to the way that people recognize colors. 

Therefore, the HSI and HSV color models are commonly used. The previous paper (Tan, 

Hong, Chang, & Shneier, 2006) (Y. He, Wang, & Zhang, 2004) had shown that HSI color 

spaces may offer advantages in terms of robustness against changes in illumination. The 

performance of RGB and HSI in identifying the road and road sign has been verified in this 

research (Jau, Teh, & Ng, 2008). The conclusion declares that the HSI color model is much 

more suited for traffic image detection because it has hue property that is not influenced by 

lighting condition and HSI color segmentation process shows more correct than color 

identification made by the RGB color segmentation. 

 Sun et al. (2006) conducted a color analysis of road scene images using HSI colors 

modeling which full color images are converted into HSI color representation. The Hue 

component describes the color itself in the form of an angle between (0, 360) and the range 

of the S component is (0, 1). The intensity range is between (0,1) and 0 means black, 1 

means white, as shown in Figure 2.1. In HSI-based analysis, simple thresholds with 
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saturation and intensity values avoid influences of brightness on the road. HSI color model 

has relative simpler thresholds but problems with HSI color segmentation arise when the 

illumination has a non-white color such as yellow or red that is found in most street lights 

which can affect the camera’s observation, as a result, it falls outside the required color 

range. 

In this study Chiu & Lin (2005) and Sun et al., (2006) conducted research on color 

analysis of road scene images using HSI with simple threshold. Full color images are 

converted into HSI color representation. This paper states that HSI model could perform 

segmentation of lane-markings, adaptive for different lane-marking colors, indeed it can 

consume lower computational costs compared with using the RGB model. 

 

Figure 2.1：The HSI color space 

source: The HSI color space ("The HSI color space," 2011) 
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The feature-based detection algorithms based on color are insufficient to detect the 

target independently. Typically it is with the needs of other assistive technology. The 

apparent color of an object is not consistent in the real world with time change, thus, the 

image segmentation based on color requires special treatment and normalization to ensure 

consistency of the segmentation results. Once the illuminant color or reflectivity of road 

has change in an image, it can easily lead to unsatisfactory results. 

2.4.3 Edge detection 

Many other approaches to image interpretation are based on edges, since analysis 

based on edge detection is insensitive to change in the overall illumination level. Edge 

detection highlights the contrast of image. Detecting contrast, which is different in intensity, 

can emphasize the boundaries of features within an image, since this is where image 

contrast occurs. 

Lane edges in an image are the boundary between two lanes. Edge detection 

methods are available in the literatures such as Sobel (1978), Prewitt (1970) and Kirsch 

(1971). Detectors calculate the first directional derivative to ascertain the locations of the 

edges. The Canny detector (Canny, 1986), which is a Gaussian edge detector, is one of the 

most popular edge detectors in the literature and it has been widely used in many 

applications (Ali, 2001; Hongjian, 2002). Although the Gaussian detectors exhibit 

relatively better performance, they are computationally much more complex than classical 

derivative based edge detectors (Yu  ̈ksel, 2007) and more sensitive to noise. 

2.4.4 Ridge detection 

Different with edges-based on opposite gradient direction, a lane line is defined as 

points between two parallel edge segments. A ridge is the center of the line itself while 

smoothing has been treated. The ridge detection is to capture the major axis of symmetry of 

an elongated object. 
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Figure 2.2 Lane markings resemble mountains; their ridges correspond to the center lines 

of the lane markings  

López et al. (2005) explored a different low–level image descriptor, namely, the 

ridges. The center lines of the long bright structures appearing in grey–level road images 

are the lane markings. Their ridges are the longitudinal center of the painted line, as shown 

in Figure 2.2. Ridges stand for a measure of how much a pixel neighborhood resembles a 

ridge. In this work, smoothing applied by different levels depends on the image row, the 

objective of which is to avoid smoothing away from the line segments. 

The ridges measure presents an invariance under grey–level transforms of the input 

image which helps lane detection in presence of shadows, however, a major disadvantage 

of this method is that ridges also enhance some non–spurious irregularities of the asphalt 

grey–level and that the Gaussian pre-smoothing kernel must be carefully tuned so as to 

produce a connected ridge structures. 

2.4.5 The Inverse Perspective Mapping 

The perspective view of image somehow appears to enlarge or extend the actual 

space, or give the effect of distance to actual shape of road. For this reason, the image needs 

to go through a pre-processing stage to remedy the distortion using a transformation 

technique known as the inverse perspective mapping (IPM). IPM (Borkar, Hayes, & Smith 

et al., 2009) (Sehestedt, Kodagoda, Alempijevic et al., 2007) relied on top-view (birds-eye) 
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images. This method has obtained lane orientation in the world coordinates so as to give the 

impression of road height, width, and depth. It can convert the top-view images (camera 

calibration) into a two-dimensional surface. With the specific acquisition conditions 

(camera position, orientation, optics etc), the IPM transform can be adopted for this treating 

(Pomerleau, 1995). 

Borkar et al. (2009) extended this work by incorporating an IPM, applying a 

Kalman filter to help smooth the output of the lane tracker. IPM is used to change the 

captured images from a camera perspective to a bird’s-eye view, as shown in Figure 2.3. 

With this transformation, lane detection becomes a problem of detecting a pair of parallel 

lines that are generally separated by a given, fixed distance. In addition, this transformation 

enables a mapping between pixels in the image plane to world co-ordinates (feet). IPM aids 

in simplifying the process of finding candidate lane markers. The camera’s intrinsic and 

extrinsic parameters are necessary to ensure an accurate transformation. 

 

Figure 2.3 Inverse perspective mapping transforms a camera perspective image into a 

bird’s-eye view image. 

Source: Borkar, Hayes et al. (2009) 
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Sehestedt et al.(2007) had presented a lane detection tracking algorithm based on 

weak models, which is implemented by a particle filter with the aim of tracking the 

multiple lane markings. The idea of the proposed method is to use an inverse perspective 

mapped (IPM) image to run a particle set from the bottom to the top and observe the 

presence of lane markings in each line. Furthermore, the filter is able to track multiple lines 

and to store each estimated line as a trail. This will produce a correct data association, e.g. 

every detected piece of lane marking are associated to one trail, which then represents the 

marking of one lane by a clustered particle filter. To decrease the computational effort, in 

this implementation 200x400 pixels resolution is adopted. As the top-view images are 

generated during the process, an accurate calibration of the camera, that is, a stable running 

environment for the system, as well as powerful calculation ability, is needed. 

The IPM is used to produce a perspective effect and to force a similar distribution of 

information within the image plane. Road markings or objects of the same size appear 

smaller in the image as they move away from the camera coordinate system. The approach 

based on the IPM transform has the drawback that the movements of the vehicle (pitch and 

roll) do not allow to detect reliably if the obstacles at distances are higher than 50 meters 

which means it needs camera calibration in real time. 

2.5 THE MODEL-BASED METHODS 

The model-based technology is to compare portions of images to match with 

deformable templates or parameterized shapes. It uses parameters to represent objects that 

attempts to control mathematical models to fit road shape. The matching process moves the 

template image to all possible positions in the source image in order to find the best match 

between the mathematical model and the image. Matching is done on a pixel-by-pixel basis. 

To describe different road structure, several methods have been presented here from 

straight lines (Kaliyaperumal, Lakshmanan, & Kluge et al., 2001) (Schreiber et al., 2005) to 

(Jung & Kelber et al., 2004) (J. Wang, Gu, Zhang, & Zhang et al., 2010) and B-spline curve 

model (Y. Wang, Teoh, & Shen et al., 2004). 
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2.5.1 A linear-parabolic lane model 

Using a linear-parabolic lane boundary model is proposed in this paper (Jung & 

Kelber, 2004). This model is a combination of a linear function in the near field, and a 

parabolic function in the far field. Locally, the road is assumed to be straight, the far field is 

considered as incoming curves. This model combines the robustness of the linear model 

with the flexibility of the parabolic model. Although the method appears to be robust under 

a variety of conditions, that is straight and curve road, it still cannot applied to some road 

structures, such as T intersection. It needs to use two models, linear and parabolic, to 

archive the straight line and fit curved parts of the road which is definitely led to extra 

calculation work. 

2.5.2 Likelihood Of Image Shape 

Kreucher, Lakshmanan, and Kluge (Kreucher, Lakshmanan, & Kluge et al., 1998) 

designed a curve road model LOIS (Likelihood Of Image Shape), which uses a deformable 

template approach to detect the lane. All possible lane edges are obtained in the observed 

image that is described by a parametric family of shapes. A likelihood function measures 

how well an object shape matches. Lane detection is performed by finding the lane shape 

parameters that maximize likelihood of the shape parameters. Previous articles on LOIS 

focus solely on lane detection where the vehicle is located around the center of two lanes. 

This paper's contribution is using a Kalman filter to predict the future values of vehicle's 

location which simultaneously will consider the previous observed ones. The location is 

measured in terms of offset values to the right and left lane markings. If location of the 

vehicle on the road as determined by LOIS is within one meter, no matter whether it is the 

left or right lane marking or if the vehicle’s path as predicted by the Kalman filter leads to a 

distance less than 0.8 meters from edge of the lane markings within one second, then a lane 

crossing warning is emitted. This approach provides a powerful means for lane crossing 

detection but it may not satisfy the real time purpose. 
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2.5.3 Non Uniform B-Spline 

With reference to Truong, Lee, Heo, Yum, & Kim et al. (2008), Non- Uniform B-

Spline (NUBS) interpolation method is used to construct left and right lane-markings of the 

road. Skeleton image obtained from the original one will be, selected to control the points 

for NUBS interpolation in constructing road boundaries. A new formulation is called 

vector-lane concept to extract control points. Calculate 3 angles for each lane-marking 

using four scan lines based on these control points obtained in the scanning lines is shown 

in Figure 2.4. 

The advantages is that NUBS Interpolation can construct exactly any curve lane and 

overcome discontinuous lane markings problem. If there are very strong noises occurred, 

algorithm will be failed to detect the lane-marking. 

 

Figure 2.4 Modeling for road-lane-curvature estimation 

Source: (Truong et al., 2008) 
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2.5.4 B-Snake based lane model 

With reference to Truong et al., (2008), a B-Snake based lane model is used to 

describe the perspective effect of parallel lines. Canny/Hough Estimation of Vanishing 

Points (CHEVP) provides a good initial position for the B-Snake lane model by assuming 

that the two sides of the road boundaries are parallel, and a set of control points are used to 

describe the mid-line of the road. It is able to detect a wider range of lane structures than 

other lane models such as straight and parabolic models. Instead of detecting two sides of 

lane markings, the mid-line of the lane is described by a set of control points. The problem 

is most of time it is not the strongest line in the images. The mid-line is commonly covered 

by a car in front of the camera whereby the robustness of this algorithm might be affected. 

Even with the enough flexibility of modeling the arbitrary shape of road, heave 

commutation time of this algorithm will not be able to suit the real-time system which has a 

high demand of efficiency. 

How to choose and maintain an appropriate shape model is a challenge subject for 

these techniques. Some templates are more sophisticated at the unstructured road but curve 

fitting usually needs more parameters to estimate that long complicated process and easy to 

do miss-detection. The simple straight line model is the best fitting for high speed request 

because of its less calculation time and better robustness on resisting noise. The complex 

model is more flexible and can work for more different situations but it usually costs 

intensive computational time and tough calculation. In the following subsection, the 

straight line model is discussed. 

2.5.5 The RANSAC (Random Sample And Consensus) algorithm 

The RANSAC (Random Sample And Consensus) algorithm is a method to estimate 

the parameters of a chosen model starting from a set of data contaminated by outliers. The 

algorithm selects random subsets from the original data and uses them to obtain trial fits to 

the model: the best fits to the model are those which have maximum consensus with the 
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data set. The improved line detection algorithm can locate the road lane markings. Many 

studies of lane marking detection have been conducted, some of them using RANSAC 

(López et al., 2005) (Borkar et al., 2009; Kim, 2008) as line detectors and experiments help 

illustrate this effective method. 

2.5.6 The Hough Transform 

The Hough transform is a technique which can be used to detect lines, curves and 

ellipses. It is used for lane detection in most literatures for its line detection capability. The 

well-known Standard Hough Transform (SHT) and Progressive Probabilistic Hough 

Transform (PPHT) are the most efficient algorithms (Nguyen, Dai Pham, & Jeon, 2008). 

The algorithm consists of the initial road edge detection and the follow-up tracking of road 

borders. The main advantage of the Hough transform technique is that it is tolerant of gaps 

in feature boundary descriptions but it is relatively affected by image noise (Q. Li, Zheng, 

& Cheng, 2004) and computation cost still has space to improve.  

Q. Li et al. (2004) had proposed a model which uses an adaptive Hough Transform. 

The images are first converted into grayscale using only the R and G channels of the color 

image. They have ignored the B channel relying on the good contrast of red and green 

channels with respect to the white and yellow lane markings. The grayscale image passed 

through with very low threshold Sobel edge detection. Afterwards, they applied a special 

HT which they call RHT (Randomized HT). The pixels of RHT are sampled randomly 

according to their gradient magnitudes. This method ensures robust and accurate detection 

of lane markings especially noisy images. The 3D Hough space is reduced to two 

dimensions for simplifying the problem and reducing the high computational cost of HT. 

The experiments have proven better results compared to other lane detection techniques. 

According to J. Wang, Wu, Liang, & Xi, (2010), the random Hough transform 

(RHT) is employed to obtain the edge of the road. Get the road image at the beginning, and 

then pre-process the image.  
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.  

Figure 2.5: An example of ROI 

Source: (J. Wang, Wu, et al., 2010) 

Firstly calculate the ROI based on the priori, moreover, carry through the RHT on the ROI 

to get the follow-up frames’ road edge. The follow-up frames ROI can be worked out based 

on the located road of the last frame. In Figure 2.5, an example of RO is an output in the 

video processing and the lane parts enclosed by the border are ROI. ROI calculation used in 

this paper can filter out most background information. However, the ROI would be slipped 

out of the trace area in a curve road, accordingly lead to an inaccurate detection result. 

B. Yu & Jain (1997) also used Hough Transform to detect the lane boundaries. This 

work additionally considers the pavements at the sideways. The boundaries of the 

pavement can be treated as a classified continuous line. This paper has put special attention 

on the boundaries of pavement which can be treated as a classified continuous line. The 

SHT is used to find lane boundaries with a parabolic model. Road pavement types, lane 

structures and weather conditions have carefully been investigated. They have applied the 

SHT several times from a low resolution to the desired resolution images. They call this 

method multi-resolution SHT, and they have proven it to reduce the computational cost of 

SHT while preserving the accuracy. The proposed system is only tested with 34 grayscale 
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images of size 256 x 240. The experiments show that the system is capable of handling 

images of different qualities, paved and unpaved roads, marked and unmarked roads. 

2.5.7 Other extensions to the HT 

The motivation for extending the HT is clear: keep the performance, but improve 

the speed (Nixon & Aguado, 2008).These approaches have included:  

Kernel-based Hough transform operates on clusters of approximately collinear 

pixels. The voting process is weighted using oriented elliptical-Gaussian kernels to 

accelerate the process (Fernandes & Oliveira, 2008). An iterative randomized Hough 

transform (IRHT) is developed for detection of incomplete ellipses in images with strong 

noise (Lu & Tan, 2008). The IRHT iteratively applies the randomized Hough transform 

(RHT) to a region of interest in the image space. It is expected that as the RHT is iteratively 

applied within each newly estimated ellipse, the noise pixels are gradually excluded and 

better estimations obtained. This led to the development of the iterative RHT. 

The Randomized HT (Xu, Oja, & Kultanen, 1990) uses a random search of the 

accumulator space and pyramidal techniques. One main problem with techniques which do 

not search the full accumulator space but a reduced space to save speed is that the wrong 

shape can be extracted (Yuen, Princen, Illingworth, & Kittler, 1990), a problem known as 

phantom shape location. These approaches can also be used (with some variations) to 

improve speed of performance in template matching.  

2.6 CONCLUSION 

Overall, Model-driven approaches are powerful methods, having great research 

value for the analysis of road edges and markings. The Hough Transform has become the 

most widely used approach in model-driven approaches. There have been many approaches 

aimed at improving the performance of the SHT. It is admitted generally that the standard 
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Hough Transform has a very large computational cost associated with its voting scheme, 

which has prevented the performance of the system to achieve real-time request.  

The desirable features of SHT technique are: first SHT must be able to resist 

random image noise in certain degree as random noise points usually contribute a very low 

level of counts in the accumulator. Second, SHT must be able to recognize aimed objects 

with a slight warp since its independent combination of evidence, the size and localization 

of peak values in the accumulator provides a measure of similarity of shape. Third, SHT 

must be able to tolerate the gap occlusion which is a severe problem for most shape 

detection techniques but the SHT tackles gracefully because the size of a parameter peak is 

directly proportional to the number of matching boundary and template points. The 

principal disadvantage is low computational speed and high storage request. The major 

computational cost of the algorithm is to build up the large accumulator space.  

In this thesis, the standard Hough is improved by reducing search space and 

decreasing parameters space size based on prior-knowledge. Consequently, the 

computation and massive storage requirement is alleviated. 

 



  

CHAPTER 3  

 

 

METHODOLOGY  

In this chapter, a lane detection algorithm built around the Hough, Progressive 

Probabilistic Hough Transform and RANSAC algorithm are presented. The architecture is 

shown in Figure 3.1; each of the key process technologies will be explained and the basic 

theory will be discussed. 

 

Figure 3.1 The main algorithm flow-chart 
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Figure 3.2 A representation of data acquisition 

 Source: (Internet) 

After collecting and analyzing the latest research materials concerning lane 

detection technologies, a lane detection approach is provided here based on E-MAXIMA 

and improved Hough transform to extract the features of a structured road. In image pre-

processing, the closer field-of-view scope is defined as a straight line model. Furthermore, 

the best fitting line prior-knowledge is used in lane finding process to efficiently decrease 

Hough space, thus enhancing the program’s robustness and speed of process. 

3.1 DATA ACQUISITION 

The selection of a suitable experimental data is the first of a series of difficult 

problems faced in developing a lane detection system. The type and quality of data 

collected directly affect the subsequent processing method and outcome. 48 test videos 

have been selected in this experiment, each approximately 20 seconds long – in total about 

24,000 frames. The video was recorded under real-time driving situation. The fixed CMOS 

camera was installed between the front windscreen and the rear-view mirror, as seen in 

Figure 3.2. 



28 

 

3.1.1 Image processing platform 

In order to prove the effect and usability of proposed algorithms, video samples 

were collected outdoor. The image processing platform (hardware and software) are 

introduced here. The video was processed on a conventional PC environment. The 

hardware parts for running the simulation is listed in Table 3.1 with video specifications 

taken from the camera sensor in Table 3.2. 

Table 3.1 Hardware specifications  

Hardware Specifications 

Processor  Intel (R) Core ((TM) i3-2100 CPU @3.10 GHz 

3.10 GHz 

Memory 4.00 Gigabyte 

Cache 3624 Megabyte 

Hard Disk 300 Gigabyte 

Chip Set ATI Radeon HD 3450- Dell Optiplex 

 

Table 3.2 Videos specifications 

Video Specifications 

Format  Mp4/AVI 

Length 20 sec 

Frame-width 640  

Frame-Height 480  

Frame rate 28f/s 

3.1.2 Python and MATLAB 

MATLAB (Rafael, Gonzalez, Richard, & Steven L, 2004) is a programming 

environment ideal for technical computing that requires a large use of arrays or graphical 

data for analysis. The syntax of the programming code is very similar to C, and is also very 
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forgiving for errors made by the programmer. It is an interpreted language whose basic data 

element is an array that does not require dimensioning. This allows formulating the 

solutions to many technical computing problems, especially those involving matrix 

representations like image processing. The most powerful aspects of MATLAB are that 

many commonly used functions are already built-in to the program. For example, array-

sorting algorithms, algorithms are quickly and easily implemented because of this feature. 

It allows MATLAB to be a very useful environment for testing out approaches to solving 

problems before committing them to C or Java, or other programming languages. The main 

intention of this application is to verify if the algorithm could be done for lane detection. 

Although MATLAB is widely used in academic and research institutions, the defect 

of MATALB is an closed source software, and some functions in the toolboxes are 

wrapped which give difficult to modify or improve MATLAB functions. There’s therefore 

the need of a low-cost –open-source software. Python can be an alternatives tool. . 

 Python is an open-source object-oriented programming language, free to use. It has 

efficient high-level data structures and effective approach. The feasibility of our algorithms 

is validated by both Python and MATLAB. 

3.1.3 Data collection 

A number of criteria must be satisfied in data collection process. First, the data must 

contain sufficiently driving situation in different traffic density level. Second, natural 

scenery factors must be considered such as outdoor lighting and weather. Third, road 

structures are relatively abundant covering isolated roads, metro and highway. Fourth, 

noise, shadow, road surface cracks, driving vehicles and background objects will be 

examined. The details of outdoor data collections are listed in Table 3.3. 
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Table 3.3 The outdoor pre-conditions of Data collection 

Preconditions Description 

Car speed 100km/h~120km/h 

Road conditions multiple /isolated lane 

Road shapes Straight/curve  

Capture time 8am, 10 am, 12noon, 2pm, 10pm 

Weather Rainy, Sunny, Cloudy, Dusty 

 

3.2 REGION OF INTEREST SELECTION  

Data collection from the camera between the front windscreen and the rear-view 

mirror where is the source of image frames delivered to the image process unit. When the 

camera lens direction is parallel to the ground, the image frames taken can be divided by 

the foreground and background fields. Choosing an appropriate ROI will not only minimize 

the search area in images but also diminish the interference from extraneous objects. The 

farthest objects in the image frames, which are above the horizon, consist mainly of clouds, 

sky, hills or far distance objects, would be considered as less interested region for lane 

detection purpose. The greatest region of interest extends from the bottom line of the image 

frame to around 15 meters in front of the vehicle, where all the important objects are 

located, like lane markings, pedestrians and other vehicles.  

In Wu (2010) and Wu, Chen, Chang, Chen, & Chung et al. (2007), dynamic ROI 

had been used. Researchers firstly calculated the ROI based on the initial boundary 

conditions on priori-frames. The subsequent frames’ ROI was figured out based on the 

detected road lane of the previous frame, but in this sort of approaches any miss-detection 

happened on the beginning of the video stream will lead to a wrong ROI calculation. 

Therefore all sequenced detection based on that incorrect region would almost cause 

disastrous results when driving on the highway. 



31 

 

In this thesis, images are obtained by a camera with image dimensions of 640 × 480 

pixels, and image height H, H=480 pixels. The ROI is defined as 2/3 height of image with 

an approximation from the region below the horizon line to the boundary of the image 

HROI=H×2/3. The width of ROI is the same as the image width WROI=x1-x0. An example is 

given in Figure 3.3 where x0 and x1 is the left and right boundary of the ROI, y0 is the top 

boundary, and y1 indicate the bottom boundary. 

  

Figure 3.3 An example of ROI selection  

3.3 FEATURE EXTRACTION BASED ON E-MAXIMA TRANSFORMATION 

According to the Manual on Uniform Traffic Control Devices (MUTCD, 2009), 

white markings for longitudinal lines shall delineate the separation of traffic flows in the 

same direction. Yellow markings for longitudinal lines shall delineate the separation of 

traffic travelling in opposite directions. 

In order to detect lane marking, the lane marking pixels must be extracted first. The 

strong contrast between lane markings and road surface is used to extract the lane marking 

edges. An extraction scheme based on the EXTENDED-MAXIMA transform (E- 

MAXIMA) is introduced to obtain the feature extraction result. Both minima and maxima 

are important morphological features as they often mark relevant image objects: minima for 

dark objects and maxima for bright objects so it is a perfect match with road characters 
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where lane markings represent maxima region in images. The E-MAXIMA is applied to 

decrease image noise and remove interference points as much as possible. 

Extraneous objects can be eliminated from images by E-MAXIMA transformation; 

consider the intensity between road surface and lane markers has a strong image contrast. 

In grayscale colormap light-colors have a higher value; dark-color value is approximated to 

0. E-EXTREMA transformation provides a function to filter the image extrema using a 

contrast criterion. More precisely, the E-MAXIMA transformation suppresses all maxima 

whose pixel values are lower or equal to a given threshold level will turn to the black 

background in binary image, on the country, pixel values higher than threshold level turn to 

bright objects (Soille, 2004). An example of road surface is shown in Figure 3.4. White 

lane markings represent bright objects which have distinguishable higher pixel values than 

the background. Most background patterns are converted to 0 (black) as they have 

relatively low gray value, as seen in Figure 3.5. The regional extrema is used to extract the 

textures by marking the extrema and non-extrema region with 0 and 1. The E-MAXIMA 

transformation is the regional maxima of the H-MAXIMA transformation. H-MAXIMA 

can be defined by the formula below: 

 HMAXh(g)=  
 (   ) (3.1)  

Where g expresses an intensity image; the H-MAXIMA transform H is used to 

suppress all maxima in the intensity image; t means threshold. R represents the 

reconstruction.   
  is the morphological reconstruction by g.  

The E-MAXIMA transformation can be defined in Eq(3.2). The extended minima 

EMIN are defined as the regional minima of the corresponding H-MINIMA transformation 

where E-MAXIMA is the maxima region of H-MAXIMA: 

 EMAXh (p)=RMAX[HMAXh(p)], 

 

EMINh(p)=RMIN[HMINh(p)]. 

(3.2)  



33 

 

  

Figure 3.4 A cross section in road-surface image 

 

Figure 3.5 Distribution of pixels value in a cross section. 

3.4 EDGE DETECTION TECHNOLOGIES 

Edges detection is fundamental importance in Gimage segmentation. Edges are 

strong intensity contrasts area in image, sharp, discontinuities intensity between 

neighboring pixels, which are usually identified between target object and background or 

different regions. The main contribution of detecting edges is that it filters out useless 

information and significantly simplifies data, while at the same time preserving the 
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important structural objects in the image. The result output can be transferred to a binary 

image where each pixel is marked as either an edge pixel or a non-edge pixel. 

Majority of edge detection techniques can be categorized into two groups: search-

based and zero-crossing based (Zhai, Dong, & Ma, 2008). The search-based method detects 

the edges by looking at the maximum and minimum in the first derivative of the image. The 

zero-crossing method searches for zero crossings in the second derivative of the image to 

find edges. 

For an image z= f(x, y), in x direction, y direction and α direction, first-order 

directional derivative can be: 

 
  (   )  

  (   )

  
 

 

  (   )  
  (   )

  
 

 

  (   )    (   )        (   )      

(3.3)  

Image z in x direction, y direction and α direction by second-order derivative can be 

expressed as: 

 
   (   )  

   (   )

   
 

   (   )  
   (   )

   
 

  
 (   )     (   )      

    (   )            (   )          (3.4)  

In digital image, the above differential operations can be replaced by the direction 

of different functions; first-order directional derivative is given below: 
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The corresponding second-order derivatives are defined by: 
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Therefore, the derivation of each pixel can be calculated by grayscale values within 

a neighborhood around the pixel. Four differential operators: Sobel, Prewitt, Roberts and 

Canny will be discussed in the following subsections. 

3.4.1 Sobel operator 

Sobel is a gradient operator, applies 2D spatial gradient convolution operation to an 

image to find its edges information. By using a pair of 3×3 convolution kernels, Sobel 

calculates the approximate gradient magnitude in two directions, horizontal and vertical, 

giving the direction of the largest possible change from light to dark and the rate of change 

in that direction. These pair of kernels can be convolved separately on the source image, to 

get separate measurements of the gradient component in horizontal and vertical orientation, 
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then they are be combined to find the gradient magnitude. Defining Hx and Hy as a pair of 

kernels, Hy actually is Hx rotated by 90
o
 as shown below: 

 

Z1 Z2 Z3 

 

-1 0 1 

 

-1 -2 -1 

Z4 Z5 Z6 -2 0 2 0 0 0 

Z7 Z8 Z9 -1 0 1 1 2 1 

(a) (b) (c) 

(a) One pixel and the surrounding pixels in image 

(b) Convolution kernels Hx 

(c) Convolution kernels Hy 

If using I represents source image, Gx and Gy are two images which at each point 

contain the horizontal and vertical derivative approximations, the computations can be: 

Gx =[
          
          
          

]    

 

Gy=[
      
   
   

]    

 

An approximate gradient magnitude is computed using:  

    (         )  (         ) 
 

   (         )  (         )    
 

(3.6)  
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The gradient magnitude at each point can be computed by Gx and Gy: 

   √        (3.7)  

Sobel edge detector is a simple and effective approach because it is using the fast 

convolution functions. The Sobel operator consists of two separable operations (Engel, 

Hadwiger, Kniss, Rezk-Salama, & Weiskopf, 2006). First, smooth perpendicular to the 

derivative direction then simplify central difference in the derivative direction. It is 

experimentally shown in this thesis that the chosen threshold is playing an important role in 

the edge detection process. The experiment result is discussed in the section 4.2  

Pseudo code of edge detection using the Sobel operator 

1. Input: A grayscale image: gray_Img  

2. Output: The Black and White edge image: bw_im.  

3. Initialize mask Gx[]; 

4. Initialize mask Gy []; 

5. Get image size [row col] = size(Img); 

6. Apply Mask Gx,Gy to the input image. 

7. for ( each rows) do 

8. for(each columns) do  

9. Using Eq (3.7) 

10. compute sumx= sumx+ 0(row+x, col+y)*Gx(x,y); 

11. compute sumy= sumy+ 0(row+x, col+y)*Gy(x,y) 

12. end 

13. let SUM = absolute value of (sumx) + absolute value of (sumy) 

14. end 

15. if (SUM > 255) SUM = 255; 

16. else if (SUM < 0) SUM = 0; 

3.4.2 Roberts cross operator 

Roberts operator is the simplest operator as it applies a partial differential operators 

to find the edge information in the image (Cunningham, Tablan, Roberts, Greenwood, & 
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Aswani, 2011; C. Fan & Ren, 2010). It is calculated using a set of axes rotated at 45 

degrees in relation to the usual orientation of column and row. 

First convolve the original image with the following pair of 2×2 convolution kernels: 

1 0  0 +1 

0 -1 -1 0 

 Let f(i,j) be a point in the original image, G(i,j) be a point in an image formed by 

convolving with the kernel. Roberts proposed equation is given by: 

  (   )    (   )   (       )    (     )   (   
  )  

(3.8)  

Typically, using convolution masks, the above equation can be replaced by 

  (   )            (3.9)  

The kernel of Roberts Cross operator is small and contains only integers. However 

it suffers greatly from sensitivity to noise (Maitra, Nag, & Bandyopadhyay, 2012). 

According to Roberts, an edge detector should have the following properties:  

 The produced edges should be well-defined. 

 The background should contribute as little noise as possible. 

 The intensity of edges should correspond as close as possible to what a 

human would perceive. 

The subsection 4.2.1 Threshold Evaluation shows the effect of the Roberts operator 

working under three thresholds, auto, 0.1, and 0.6.  
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3.4.3 Prewitt operator 

The Prewitt operator is a discrete differentiation operator, quite similar to the Sobel 

operator. Two 3 × 3 kernels one for horizontal changes and one for vertical can be seen 

below: 

-1 0 1 

 

1 1 1 

-1 0 1 0 0 0 

-1 0 1 -1 -1 -1 

Gx and Gy represent two images where every point contains derivative 

approximations. I represent the input image, 

Gx =[
          
          
          

]    

 

Gy=[
      
            
            

]    

The gradient magnitude computation by Gx and Gy is the same to the Sobel 

operator, see Eq. (3.7). 

3.4.4 Canny Edge Detector 

The Canny edge detection algorithm is known to many as the optimal edge detector 

(Green, 2002) .The Canny edge detector processes the image to reduce noise with a 

Gaussian filter. After smoothing the image, the technique finds the intensity gradients of 
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the image, and suppresses any pixel that is not at the maximum. Below is a 5x5 Gaussian 

filter where σ = 1.4 

1/115 

2 4 5 4 2 

4 9 12 9 4 

5 12 15 12 5 

4 9 12 9 4 

2 4 5 4 2 

The process works as follows: 

(i) .  Smoothing the image and eliminating the noise using a filter based on the first 

derivative of a Gaussian filter. The larger the width of the Gaussian mask, the 

lower the detector's sensitivity to noise (Bansal, Saini, Bansal, & Kaur, 

2012).is A 5x5 Gaussian filter is used in this implementation. 

(ii).  The next step is to find the intensity gradient of the image. The orientation of 

edges has arbitrary angles, compared to the Sobel operator which calculates 

the approximate gradient magnitude in horizontal and vertical directions. The 

Canny detector estimates the gradient magnitude in four directions: horizontal, 

vertical and the two diagonals, for example .0, 45, 90 and 135 degrees. 

(iii).  The magnitude of the gradient is then approximated using the formula: 

  (   )            (3.10)  

The formula for finding the edge direction is given by: 

        
  

  
 (3.11)  
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The Canny detector searches for local maxima in the gradient direction. Non-maximum 

suppression is used to trace the edge direction. Only local maxima should be marked as 

edges, while non-maxima that is not considered to be an edge will be suppressed, namely 

sets its pixel value to equal 0.  

Edge contour in the image is not a constant value as part of the edge elements 

fluctuates above or below the threshold. If only one threshold is used, the marked edge 

might be discontinuous like a dashed line. Canny uses adaptive threshold with hysteresis; it 

means two thresholds high and low are involved. All points in the image which has values 

greater than the high-threshold are selected into edge elements, as well as any point around 

which have a value above than the low-threshold is also selected as edge element. Once this 

process is completed we have a binary image where each pixel is marked as either an edge 

or a non-edge pixel. The results of edge detection by Canny detector are shown in 

 Figure 4.4. 

3.5 LANE MODEL ANALYSIS 

According to the Malaysian Public Works Department (PWD) Guide on Geometric 

Design of Road ("A Guide on Geometric Design of Roads, Jabatan Kerja Raya Malaysia," 

Arahan Teknik 8/86) the radius for the curvature of a highway has certain standards that 

needs to take full consideration of safety factors including speed, friction, etc. The 

following formula is used in determining the required minimum radius for any highway 

curve: 

 
  

  

   (   )
 (3.12)  

Where R equals minimum radius of the curve in meters, V equals design speed, in 

km/h, e means maximum rate of super elevation and f represents maximum allowable side 

friction factor. 
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Table 3.4 gives the minimum radius that is to be used in road design. The guide 

indicates that flatter curves should always be used wherever possible, and any transition or 

spiral curves design should be avoided. 

Table 3.4 Minimum radius for road design 

Design Speed (km/hr) 

Minimum Radius (m) 

e = 0.06 e = 0.10 

50 100 85 

60 150 125 

80 280 230 

100 465 375 

120 710 570 

Table 3.4 shows that the faster vehicle speed needs a lower road curvature. The 

more approximate to the straight line roadway and the value of curvature will tend to 0. The 

actual situation is that the highway curvature is in accordance with the guide. The curvature 

of a straight line is zero. The curvature should be large if radius R is small and the curvature 

should be small if R is large. Accordingly the curvature of a circle K is defined to be the 

reciprocal of the radius:   
 

 
.  

The error is the difference between using a straight line and a curve model, which is 

denoted in Figure 3.6, where L represents the actual curved lane marking, the straight 

dashed line S represents equivalent straight lane model, R is a curvature radius and H is the 

height of ROI.  
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Figure 3.6 The difference between using a straight line and a curve model 

So to calculate the error between using a straight line and a curve line, the following 

equation applies: 

     √   (   )  (3.13)  

The minimum average radius of any highway is 85m, and by choosing an 

appropriate window height of H=2m, R=85m, applying in Eq. (3.13) , δ=0.005m, this 

means that a simple straight lane model can fit on contour of curve road by a very minor 

error margin, as shown in Figure 3.7: 

 

Figure 3.7 An example of using straight lane model on curve road 
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3.6 LANE DETECTION TEHCHNIQUE 

The Hough transform algorithm uses an array, called an accumulator, to detect the 

existence of a line. By taking a point (x, y) in the image, all straight lines pass through that 

point satisfy the equation below (Illingworth & Kittler, 1988; Kiryati, Eldar, & Bruckstein, 

1991): 

        (3.14)  

The parameters p and q are the slope and the interception. Each pair of image points 

(x, y) through a straight line corresponds to one of the points in ( ,  ) parameter space. 

However, this equation is not able to represent vertical lines, the parameters ( ,  ) get up to 

infinite values. For this computational reason, Polar Coordinates system has projected by 

Hough. Therefore straight lines are presented by: 

     𝜃  𝑌    𝜃  𝑟 (3.15)  

Where r represents the distance between the line and the origin, 𝜃 is the angle. If the 

input image is a A×B binary array, while 𝜃   [0, ], the values of r and 𝜃 are constant for 

each point on a line. Now for a given point in the (X, Y) plane, we can calculate the lines 

crossing the point in all possible angles by iterating in [0, ]. For the lines that go through 

the given point (X, Y), r can be determined by 𝜃.  

As seen in Figure 3.8 below, (a) is the representation of a line the Cartesian 

coordinate space using (r, θ) and (b) show a point in the polar coordinate space correspond 

to a straight line in the Cartesian coordinate space. 
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Figure 3.8 Mapping of one line to the Hough space  

(a) A straight line in X-Y space; (b) A straight line in Polar Coordinates system 

Hough transform find collinear points in an image by performing a voting 

procedure. It is a point to line mapping from image space to the Hough space, which maps 

each pixels with all possible lines that could pass through that are approximately as the sine 

curve. In order to illustrate how it works in detail, Figure 3.9 is given below: 

  

Figure 3.9. Transformation of points to lines in the Hough space 

(a) One point in image space  

(b) All possible lines crossing one point ploted in the Hough space 
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(c) All possible lines crossing two points ploted in the Hough space 

(d) White dots show peak value of Hough space 

It can be seen from (c) and (d), that the points are mapped into concurrent lines and 

detecting peaks where many lines intersect. The problem about locating collinear points 

becomes the problem of finding peaks value in Hough space, that is, computing a global 

line extraction procedure has been simplified to find a local feature approach. Those peaks 

in the Hough space are commensurate with straight lines exist in the input image. 

3.6.1 The algorithm1: Improved Hough based on prior-knowledge 

It can be known by the theory and implements of Hough transform, the standard 

Hough algorithm has heavy calculation burden resulted in ineffectiveness to satisfy real 

time request. To reduce computation cost, this thesis use prior-knowledge, improved two 

aspects according to lane detection based on Hough. First, define ROI area. Hough is 

adopted within ROI limits, reduce image pixels which join Hough transform; second by 

utilizing prior knowledge to determine reasonable search range of angle θ. 

The second improvement can be explained as follows. In Hough space,   is polar 

radius, θ is the polar angle. Experiment analysis had proved that Hough transform could 

detect the polar angles which fluctuated narrowly in a continuous stream flow. The search 

range of θ will be restricted based on the detected θ in the Hough transformation of the 

previous image frame. Thus the polar angle search scope is defined in the region near θ, 
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for example the search scope can be (θ min+Tθ, θ max-Tθ) where Tθ = 0.261 is the threshold. 

In this way it reduces the computation time and has the effect of reducing the number of 

useless voting process, by this way the visibility of the real lane information in the image is 

enhanced. 

The detailed description of each step is presented below: 

(i) .  Initialized frames in first 5 frames were obtained, using as the prior knowledge 

to determine a reasonable search range of (r, θ). A discrete parameter space 

between its maximum and minimum values is established.  

(ii).  Create and initialize a two dimensional accumulator array H(r, θ) with zeros. 

(iii).  Scan in ROI of the image and collect edge points where the edge pixels have 

been assigned a value of 1. Sample points set will be selected in turn until all 

elements are processed; traversing the θ value and calculating the value of r. 

(iv).  Thus get the values of parameters (r, θ); H(r, θ) = H(r, θ)+1. The array of H(r, 

θ) is accumulated by 1.  

(v).  By repeating the procedures described above, the array H(r, θ) has been built 

up. Abandon θ values out of range (θmin+Tθ, θ max-Tθ) then find the maximum 

voting values of the accumulator (r, θ); determine the T strongest straight line. 

Pseudo code of Improved Hough 

1. Input: A Black and White edge image: bw_im. 

2. Output: Accumulator H(r, θ). 

3. initialize ROI to image size 

4. initialize accumulator H(r, θ) with zeros 

5. θ min=0, θ max=180. Value of θ in the range 0-180. 

6. Add (r, θ).into a vector. 

7. If vector size >10, calculate the valid_lines vector (θ 1,,… ,θ n). 

8. end if 
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9. for image from 1 to end columns 

10.  for image from 1 to end rows 

11.   if input image pixel (column,row)==white 

12.     for θ = θ min to θmax, do 

13.     computer r using Eq (3.15) 

14.     If  r>1 and r<sqrt(rows^2+columns^2) then 

15.      H(r, θ) = H(r, θ)+1 

16.      If θ value  in (θ min-Tθ, θ max+Tθ). 

17.       Add (r,θ) to valid line vector  

18.      end if 

19.     end if 

20.    end for 

21.   end if 

22.        end if 

23.  end for 

24. end for 

25. Find peak value in the accumulator H, to find lines. 

26. for every θ, do 

27.  for every r, do 

28.    If H(r, θ) >T (threshold), then (r, θ) is a line 

29.    end if 

30.   end for 

31. end for 

3.6.2 The algorithm2: Progressive Probabilistic Hough Transform(PPHT) 

The PPHT is a variation of SHT (Standard Hough transform), the key difference 

between SHT and PPHT is that SHT counts the maximum voting values of the accumulator 

after all possible points in image space mapping to the Hough space; The idea of PPHT is 

to transform randomly selected pixels in the edge image into the accumulator. When a bin 

in the accumulator corresponds to a particular infinite line which has got a certain number 

of votes, the edge image is searched along that line to see if one or more finite lines are 

present. It is designed to speed up the SHT and minimizing the computation requirements. 
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In this section, PPHT is implemented using the HT approach to process the entire vision 

data in order to detect the lines 

The procedure of PPHT is listed below: 

(i) .  An accumulator H(r,θ) is initialized to 0 and all the candidate boundary points 

in the image space of ROI are added into an input set P. 

(ii).  Randomly select a point P(i,j) from the input set P, and then vote into the 

accumulator H((r,θ)).  

(iii).  Remove those points which have been selected from P, until the input list P 

is null, then the loop will stop. 

(iv).  Find the maximum value of the accumulator H((r,θ)). If the accumulator is 

lower than threshold Th, go back to step (ii). 

(v).  If the maximum value in accumulator is higher than threshold Th, then 

accordingly search P along a straight line specified by H(r peak,θpeak) to find the 

longest segment, then add into Pmax.. 

(vi).  Remove from P all points in Pmax, clear H. 

(vii).  If Pmax is longer than a given minimum length, add Pmax to the output list. 

Otherwise, go to step (i). 

 

Pseudo code of PPHT 

1.  Input :points data set P. 

2.   Th  threshold of enough aligned points. 

3.   Tmin , given minimum length 

4.  Output lines clusters 

 

5.  Initialize accumulator H(r,θ) 

6.  While p is not null then 
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Pseudo code of PPHT (continued) 

7.  Randomly select a points P(i,j) from p 

8.   If threshold Th, reached then 

9.    Vote into the accumulator H((r,θ)).  

10.   Find the peak value of the accumulator H(r,θ) 

11.   search segment in P along H(r peak,θpeak) 

12.   add the longest segment into Pmax.. 

13.   If Pmax is longer than Tmin ,  then 

14.   add Pmax to output 

15.  end if 

16.  
17.  remove Pmax from P. 

18.   remove P(i,j) from P 

 

19. end if 

20.end while 

3.6.3 The algorithm 3: Random Sample Consensus(RANSAC) 

In this thesis, RANSAC is used as an alternative technology to implement lane 

marking detection, for comparison with Hough. RANSAC is a widely used iterative 

sampling algorithm. An advantage of this algorithm is its robust fitting ability to model 

parameters. It simply iterates two steps: generating a hypothesis from random samples and 

verifying it to the data. Different with conventional sampling techniques that use as much 

of the data as possible to obtain an initial solution and then proceed to prune outliers, 

RANSAC uses the smallest set possible and proceeds to enlarge this set with consistent 

data points (Mahbub, Imtiaz, & Rahman Ahad, 2011). RANSAC estimates model 

parameters by the minimum number subset from observed data points. Assuming that data 

points consist of inliers and outlier, inliers can be fitted to model approximately and outliers 

represent those points do not fit the model. Procedure start from small number of data is 

based on the presupposition that it belongs to inliers. This will check the number of data 
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points if they fit this model. Too few points marked as inliers, this model is dropped, then 

generates or refines another model. Keep repeating a certain number of times, until we get a 

model that optimally fits data points. 

(i) .  Randomly enrolled a sample of data points from S and instantiate the model 

from this subset. 

(ii).  Determine the set of data points Si which is within a distance threshold t of the 

model. The set Si is the consensus set of samples and defines the inliers of S. 

(iii).  If the subset of Si is greater than threshold T, re-estimate the model using all 

the points in Si and terminate. 

(iv).  If the size of Si is less than T, select a new subset and repeat the above. 

(v).  After N trials the largest consensus set Si is selected, and the model is re-

estimated using all the points in the subset Si 

We can choose n sample data points to produce a model, assuming P is the 

probability of picking up only inliers from the input data. Thus, probability 1−P means that 

at least one sample outliner is selected. Usually, P is set to a high value so that the 

probability 1−P can be smaller, e.g., P=0.99. P is defined as 

      (3.16)  

Where, S
n
 is the probability that all n points are inliers. S is the probability of 

choosing an inlier from a single point; n is the points selected to generate a model.  

The probability of all n points is outliners which may therefore be rewritten as 

     (    )  (3.17)  

Where, i is the number of iterations. After logarithm conversion, the equation is 

given below: 
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   (   )
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(3.18)  

 

 

 

 

Pseudo code of RANSAC 

1. input: 

2.     image 

3.     S - a sample of s data points  

4.     Si - the subset data points , estimated a model fits to data 

5.     T - threshold, the minimum number points fit the model 

6.     n -  is the number of iterations 

7.  

8. output: 

9.     Largest_consensus_set – Best fitting data points estimated by model. 

10. n := 0 

11. largest consensus := 0 

12. while i <n  

13.     Si:= model parameters fitted to inliers 

14.         if point fits model with an error smaller than t 

15.             add point to consensus_set 

16.             this_error = a measure of how well points fitted 

17.     end if 

18.     if Si>model parameters fitted to all points in Largest_consensus_set 

19.                     Largest_consensus_set:= Si 

20.                     error := this_error 

21.         end if 

22.     iterations add 1 

23. end while  

24. return Largest_consensus_set, error 

3.7 LANE MARKING EXTRACTION 

After using linear detection technologies to extract lines, the next step is to 

determine the lane marking position and abandon false lines information, which is the 

subject of this section. This study proposes a method to measure the distance between 



53 

 

bottom points of a detected line with ½ width of image, and computing the angle of lines. 

When the result satisfied the following rubrics, the detected line will be considered as a 

lane marking, otherwise the line will be considered as an invalid detection to be abandoned.  

(i) .  Suppose lines (L1,L2 … Ln) are detected, if 72
o
<θL1< 0

o 
&& L1(x0)<1/2×IW, 

(X0,Y0) represent the point near to the baseline of image, IW is the width of 

image, L1 will be determined as a left side of lane marking while the car is in 

normal driving status. 

(ii).  If -72
o
 >θL2>0

o
 & L2 (x0)>1/2×IW, L2, L2 will be determined as a right side of 

lane marking. 

(iii).  If |L2(x0) - L1(x0)| <=10 && |θL2 - θL1|<=10, L2 will be considered as invalid 

edges of lane marking, then continue to locate the next line which can be 

chosen in order from (L2 … Ln). 

(iv).  If line L3 exists and the distance from L3 to the central point of image is r3 

which satisfied the condition, where IW is the width of image, Ih is the height of 

image, L3 position will not be considered as the current lane markers. It will be 

dismissed, as shown in Figure 3.10. 

 

Figure 3.10 A profiled lane marking illustration 
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Pseudo code of Lane marking extraction 

1. input: Lines vector (L1,L2 … Ln); 

2. Output: lane mark 

3. Set IW = width of image 

4. Get(L1,L2 … Ln) from Hough line detection 

5. While Lines (L1,L2 … Ln) is not null then 

6. Get Li, a one line form vectors. 

7. if the line Li position r is out of tolerance 

8. dismissed Li 

9. end if 
10. Get Li (X0,Y0) near to baseline of image 

11.  if 72
o
<θL1< 0

o
 && Li (x0)<1/2× IW 

12. Li is in car left side 

13. end if 
14. if -72

o
 >θLi>0

o
 && Li (x0)>1/2×IW  

15. Li is in car right side 

16. end if 

17. end while 
18. If |Lright (x0)- Lleft (x0)| <=10

 
&& |θLleft- θLright|<=10 

19. the next line will be load form Lines (L1,L2 … Ln). 

20. end if 

3.8 LANE DEPARTURE DECISION 

The slopes variations of lane marking in image coordinate system differ a lot while 

vehicles are in a normal and abnormal driving state. The departure information of the host 

vehicle can be judged by the yaw angle of the right and left lane markings. 

Figure 3.11(a) shows the vehicle driving at the center of the lane, consider that the 

camera is attached on the rearview mirror, its optical axis is carefully aligned with the 

central axis of the vehicle so the symmetrical orientations of left and right lane markings 

can be recorded.  
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Figure 3.11 (a) The vehicle is driving in the middle of the lane, |αR | = |αL | 

 

(b) The vehicle deviates to the left lane, αL decreases value from αL >0 to αL <0. 

 

 

(c) The vehicle deviates to the right lane, αR decreases value from αR <0 to αR>0.  
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MA is defined as the left lane markings; MB the right lane markings. The slope of 

MA is KL; the slope of MB is KR; the angle between MA and axis Y is αL. The angle between 

MB and axis Y is αR. αL and αR. Study the following formula: 

            
 

           (3.19)  

 (a)When the vehicle is running in the middle of the lane, |αR | = |αL |, the slope of 

lane markings will be KL=-KR and KL >0, KR<0. When the vehicle gradually deviates to the 

left lane, the algebraic value of KL and αL will decrease, αL decreases values from the range 

of positive numbers decrease to the range of negative, from αL >0 to αL <0 as shown in 

Figure 3.11(b). αR and KR keep increasing while the vehicle gradually deviates to the right 

lane; αR increase values from the range of negative to positive numbers, value from αR <0 

to αR>0 as shown in Figure 3.11(c). No matter whether the car deviates to the right or to 

the left lane, |αR+αL |>0. With the growth of vehicle deviation, |αR+αL | continually expands 

to a bigger value. Hence a yaw angle β can be obtained by β=αR+αL. The lane deviation can 

be effectively inspected by tracing β value in every frame captured by the monitoring 

camera. In general, a car cannot strictly move in the middle line, a certain level of sway is 

normal. By setting a threshold value T for β, only when β>T, a lane departure alarm will be 

triggered. 

The experiment results are shown in Section 4.5 comparison of the SHT, improved 

Hough and PPHT. 

3.9 THE ERROR-CATCHING MECHANISM 

This subsection discusses how to capture and measure detection errors while the 

massive image data are processed. The lane marking position is analyzed in order to 

discover runtime errors to enhance the system's stability. It is worth to note that, while not 

trivial, that the whole process is automatic and not driven by the user. 
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This mechanism is specifically designed to measure accuracy and validity of lane 

detection result. The function of auto self-estimating procedure is to trace the detection 

result and give a system error in log files when miss detection occurs. Results of each frame 

can be recorded and estimated automatically via this procedure. The outcomes for each 

frame are validated according to the following rules: 

(i) .  Distance between right and left lane markings has certain value in a continual 

image sequence. The automating tests will identify any sudden inconsistent 

distance change. If it is more than the threshold it would be listed as a false 

negative or positive result during lane detection process.  

(ii).  In Figure 3.12, two points are selected from lane x2 and x4. where the distance 

value is described by a length h = |x4-x2|. The difference between current frame 

and the previous one will continuous monitoring or log errors by program 

whenever the distance values occur abnormal change. 

(iii).  For the host vehicle it moves with constant orientation in each test section. 

Slope of lane markers are on normal stable distributions. The host vehicle 

Drifts out in the video sequence should be a gradual procedure. Slope can be 

described as S=x2-x1/y2-y1. Any inordinate slope calculated from the result 

and have met with the previous condition that if the distance change between 

the two lane markings is more than threshold, then it will be listed as a system 

error. 

 

Figure 3.12 Distance h between right and left lane marking 
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3.10 CONCLUSION 

The architecture and flow chart of lane detection techniques are presented in this 

chapter. E-MAXIMA transform mainly contributes to decrease image noise, remove 

interference and extract lane markings at the primary stage. Details of algorithms, the 

improved Hough, PPHT and RANSAC have been shown as a pseudo code. By computing 

minimum average radius of highway, we can testify the feasibility of using the straight lane 

model on the highway. When the detection result satisfies the rubrics of the angle or line, 

lane marking position can be determined and abandon false lines information. A lane 

departure alarm will be triggered when lane deviation happens. 

 



  

CHAPTER 4  

 

 

RESULT AND DISCUSSION 

In this chapter, discussion will be focusing on the result of several experiments and 

comparisons using improved Hough, PPHT and RANSAC algorithms described in the 

previous chapter. The proposed experiments were implemented to compare the lane 

detection algorithm under different environmental conditions. Both visualized and numeric 

evaluations had been performed. Evaluation and analysis are categorized in three 

viewpoints: accuracy, computing time, and robustness on lane detection scenarios. The 

trace result and detection errors measurement were explained in section 3.9. 

4.1 THE EXTENDED-MAXIMA EFFECT  

The effect of EXTENDED-MAXIMA (E-MAXIMA) presented in the experiment 

below shows the differences between using edge detection technologies with E-MAXIMA 

and without using it. The overall process is outlined in Figure 4.1: 

 

Figure 4.1 Process of E-MAXIMA effect evaluation 
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.(a)The original image  (b) without E-MAXIMA 

(c) Using E-MAXIMA  (d) the effect of edges detection 

based on E-MAXIMA 

(e) The original image  (f) Without E-MAXIMA 

 Figure 4.2 Examples of edge detection after E-MAXIMA 
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(g) Using E-MAXIMA 

 

(h) the effect of edges detection 

based on E-MAXIMA 

Figure 4.2 Continued 

Figure 4.2 (b) and (f) show the edge detection result without using E-MAXIMA. (c) 

and (g) display the output from E-MAXIMA. (d) and (h) are edge detection which follow 

the E-MAXIMA transformation. Judge from visualization, (d) and (h) have reached a pretty 

ideal binarization result which significantly reduce noise interfering. Most of the 

backgrounds include trees and street lamp poles are converted to 0 (black) for their 

relatively low gray value. In (e), the street lamp poles were not filter out, on the contrary, 

those poles are converted to a straight line with high pixel values. It will create obstacles 

for subsequent feature extraction. In (g), around 70% of street lamp poles are filtered out. 

With the existence of ROI, the interference can be eliminated to a relative low level. 

E-MAXIMA can perform well in low level illumination conditions which can 

strongly enhance the contrast on the image. Two examples are given in Figure 4.3 where 

Figure 4.3 (b) and (d) can be found in areas of lane markings with sharp edges and high 

contrast will be established by using the Improved Hough Transformation. 
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(a) The original image (b) Transformed by  

E-MAXIMA 

(c) The original image  (d) Transformed by  

E-MAXIMA  

Figure 4.3 Applying E-MAXIMA transformation on low level of illumination 

There are many advantages for image binarization using E-MAXIMA. Usually gray 

images can mix high relativity information of lane markings with low relativity information, 

for instance, the background and the noise. E-MAXIMA can directly extract the target 

object from the multi-valued digital images, only the high gray scale of the road markings 

can be preserved. It is definitely an effective way to identify the road borders which can 

enhance the system’s robustness and minimize the negative influence from noise.  
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4.2 EXTRACTION OF LANE EDGES  

The experiment is aimed at aiding the selection of an appropriate operator that is 

capable of lane markings extraction. For the visual scene in driving, the performance 

measure for the edge detection operators is to see how well the edge operators match with 

the visual perception of lane boundaries. An assessment criteria is listed below: 

(i) .  The operator is able to find accurate edge points, less time-consuming. 

(ii).  Noise fluctuations can be prevented from the edge markings. 

(iii).  The stability, different orientations, length or width edges can be detected. 

4.2.1 Threshold evaluation 

The range of the edge detection threshold values is -1020 ~1020 for all grayscale 

range 0~255. To identify which threshold is the best suited to a lane detection task, the 

experiment indicates that using threshold from 0.01 to 0.06, the width of lane marking 

edges can reach 1~ 2 pixels. By applying this level of thresholds value, we can archive the 

purpose of thinning edges and obtain the edges enhancement effect. Hence the threshold 

values 0.06, 0.01 and auto have been presented here to explore the effect on the estimated 

threshold value. In Figure 4.4 if the threshold value is 0.01, then more edge details are 

detected. When compared to a higher threshold value of 0.06, less edge details can be 

acquired. The outcome denotes that the auto threshold can give a suitable detection result 

not only to find the precise regions but also the insensitive noise The lane marking edges 

are relatively salient on the road surface which can be recognized by all four operators with 

threshold in three levels. 

The Roberts cross operator in Figure 4.4 indicates the edge positioning is not 

accurate in the Threshold=0.01 and 0.06. However, specifying the threshold value as auto 

can comparatively get a better result. The Canny detector is competitive to weak edge but 

slightly sensitive, more easily to get influenced by extraneous boundaries other than lane 

markings once the edge gradient is determined. 
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(a).The original image 

  

 
Sobel Threshold=0.01 

 

 
Sobel Threshold=0.06 

 

 
Sobel Threshold=Auto 

 

   
Roberts Threshold=0.01 

 

Roberts Threshold=0.06 

 

Roberts Threshold=Auto 

 

   
Canny Threshold=0.01 Canny Threshold=0.06 Canny Threshold=Auto 

Figure 4.4 The edge map resulted by different threshold values 
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 [i-1,j]  

 

[i-1,j-1] [i-1,j] [i-1,j+1] 

[i,j-1] [i,j] [i,j+1] [i,j-1] [i,j] [i,j+1] 

 [i+1,j]  [i+1,j-1] [i+1,j] [i+1,j+1] 

 (a)    (b)  

Figure 4.5 The neighborhood structure 

（a）4-connection components (b) 8-connection components 

4.2.2 Edge connectivity analysis. 

This experiment is used to analyze edge connectivity in edge map (Bowyer, Chang, 

& Flynn, 2006; Pande, Bhadouria, & Ghoshal, 2012). An edge map is a binary image 

which has only two values 0 and 1. The objective of extracting the edge information is to 

find out the accurate number of edge points whose pixel value is 1. We define the number 

of total edge points as (A), number of 4-connected components as (B) and number of 8-

connected components as (C). The ratios (C/A and C/B) reflect the level of edges 

connectivity. 4-connected components means having continuous density in 4 neighbors of 

the pixels; the definition of 8-connected components is similar as shown in Figure 4.5. For 

edge detection case, the smaller value of C/A and C/B shows that the edge connectivity is 

better.  

Assuming that all intensity value is 1 in an edge map, namely, the 4-connected 

components C is 1 and .8-connected components B is 1. The ratios of C/A and C/B have 

obtained the minimum value, in this case, the level of edge connectivity is the best. 
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Figure 4.6 An example of linear edge markings 

Figure 4.6 represents two-edge marking. Their numbers of edge point are equal to 

one other. In (a), C/A=2, C/B=2. In (b), C/A=1, C/B=1. Where (b) shows a smaller value 

which means the edge continuity of (b) is better. The same comparative result can be 

obtained based on visuals; edge of (b) is longer therefore becomes a good edge. Likewise, 

any other edge shape’s connectivity can be calculated by C/A or C/B. 

Edge detectors are assessed by statistical measures, as seen in Table 4.1. The 

statistical result is based on the edge map of Figure 4.4. 

Table 4.1 The connected components in edge map 

 

Sobel Roberts Prewitt Canny 

A(×104) 0.892 0.7684 0.925 1.6042 

B 4237 3595 4025 6390 

C 424 453 444 664 

C/A 0.0475 0.0590 0.0488 0.0414 

C/B 0.10 0.1260 0.1103 0.1039 

The result in Table 4.1 clearly show that for driving scenes, the Sobel, Prewitt, and 

Roberts and Canny get approximately C/A and C/B value, therefore the edges of lane 



67 

 

marking can be obtained with a relatively high continuity by all four types of edge detectors. 

The Canny operator reports the slightly high continuous edge pixels. Non-significant 

difference exists between the Prewitt and the Sobel. Further analysis about robustness and 

computation speed will proceed in the next subsection. 

4.2.3 Anti-noise capability analysis 

 

Figure 4.7 A histogram compares the edge maps resulted from operators. 

In Figure 4.4 the snipping off the road region is used to mesure the noise level of 

the edge map. Figure 4.7 shows the pixel values distribution and intensity changes after 

dectection of edges of lane marking. Since Robert and Sobel are less sensitive, they will 

abandon trivial edge information and receive concentrated edge information from the road 

surface image. On the contrary, Canny has the ability to distinguish tiny edge information 

but sensitive to small objects leading to interference of recognizing lane markings. 

4.2.4 Comparison of edge detection efficiency 

Table 4.2 shows a comparison of the four classical derivative operators on average 

running time to extract the edge features, where the same video data are processed by the 

same Hough detection algorithm but based on different edge operators to compare the 
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correct rates at day and night times. Correct rates of edge operators are statistical numbers 

how many lines can be detected by Hough. It also reflected the edge operators’ effect on 

lane detection result. The comparative result on the performance of edge detection denotes 

that the Sobel operator sustains slightly high accuracy at day time and it is more suitable for 

lane detection purpose, hence, it suits well to filter out useless noise and inexpensive 

computation time. 

Table 4.2 Comparison of classical derivative operators on average running time 

Edge 

Detectors Sobel Prewitt Roberts Canny 

 Day night Day night Day night Day Night 

Computation 

time 0.055 0.118 0.057 0.092 0.063 0.098 0.409 0.2498 

Correct rates 98.6% 87.2% 98.2% 86.9% 98.17% 86.3% 97.4% 96.7% 

Missing rates 0.02% 8.4% 0.02% 8.8% 0.02% 8.82% 0.02% 1.8% 

Result 

Optimal 

in day       

Optimal 

in night 

The average computation time is shown in Figure 4.8 where Canny takes more time 

than the other three operators because of its complicated operation cost. Sobel, Prewitt and 

Roberts are relatively simple; therefore, their processing times are very close to each other. 

Figure 4.8 Average computation time using the four type of edge operators 
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In conclusion, the Canny operator performed better on night time under weak 

illumination but its computation process is more complex and more time-consuming 

comparing with the other 3 operators. A relatively high continuity of lane edge can be 

obtained by canny operator but other three types of edge detection operator also are able to 

satisfy the purpose of lane edge detection. Sobel operator performed better in the 

computation cost and it also provides a satisfying effect in noisy images. Furthermore, its 

extracted edges continued, localized properly and had less occurrence of miss-detect points 

for driving scenario. 

4.3 LINE DETECTION TECHNIQUE 

The implementation details about SHT, improved Hough and PPHT will be 

introduced. The experiments are designed to assess the relative merit for different 

algorithms; some comparative work will be done in the succeeding section. 

4.3.1 Behavior of the line fitting 

The highest values in the Hough accumulator will correspond to strongest lines in 

the image. The result of the line locating and fitting is analyzed in this experiment. Each 

lane in a specific image is represented by an individual (r, θ) pair. The θ value is discretized 

as (0, 1, 2, 3 . . . 178, 179). The line detection is implemented by searching peaks from the 

Hough accumulator. The accumulator matrix contains the number of times for each value 

of (r, θ) s. Table 4.3 shows the top 8 voting results. It means they contain the greatest 

number of points in line. 

Table 4.3 The maximum voting result from the Hough accumulator 

 

θ 

0.6807 -0.4712 -0.2443 -1.0472 0.4712 0.2443 1.1868 -1.0123 r  

173 157 5 12 0 3 21 27 8 

248 1 71 0 0 0 0 4 0 
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1 24 21 52 36 21 52 2 31 

-1 0 18 30 40 0 0 0 35 

21 21 13 30 0 31 31 13 0 

396 8 0 6 0 11 26 0 0 

10 12 24 24 0 13 19 21 21 

-160 0 0 0 0 0 0 0 10 

The selected highest values for (r, θ) that satisfy the formulation  

     𝜃  𝑌  𝑛 𝜃  𝑟 

(x, y) obtained from the formulation is used to describe the lines in the image. (x0, 

y0) and (x1, y1) are the calculated points of intersection between the reference image 

boundary lines and the line specified by a (r, θ) pair, as listed in Table 4.4.  

Table 4.4 The result of detected lines  

 

Degree (X0,Y0) (X1,Y1) 

Line1 39
o
 (223,0) (33,234) 

Line2 -27
o
 (278,0) (398,234) 

Line3 -14
o
 (1,0) (59,234) 

Line4 -60
o
 (0,1) (403,234) 

Line5 27
o
 (24,0) (0,46) 

Line6 14
o
 (408,0) (350,234) 

Line7 68
o
 (27,0) (0,11) 

Line8 -58
o
 (0,189) (73,234) 

Table 4.3: Continued 
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Figure 4.9 The plotted pixels in the target image  

According to the inclination degree of lines, if the deviation angle β is less than 25
。

 

(refer to Section 3.8 for the deviation angle’s measurement), the top of two lines with 

highest voting values from the Hough matrix will be selected to be plotted. If the deviation 

angle β is more than 25
。
, the top of three lines, right, middle and left lane markings will be 

plotted. In this case, the deviation angle β is less than 25
。
, so only Lines 1 and 2 (left and 

right lane markings) are selected and marked in the target image, an example give in Figure 

4.9. 

The lane detection algorithm presented has been tested on both straight and curved 

lanes. Figure 4.10 shows the different types of roads, shapes with variety shadows and 

noises. In (b) and (g), the lane marking is interrupted by shadow or motorcycle; those 

disconnected lane markings still can be recognized in the result page. In (f), the experiment 

denotes that the algorithm can recognize lane markings at a low level of illumination and 

achieve fairly good performance. 

4.4 EXPERIMENT OF LANE DEPARTURE DECISION  

On the basis of experimental data, under normal and abnormal diving circumstance, 

the inclined angles of left and right lane markings have significant differences in view of 

the image coordination system. Abnormal deviation from the lane can be judged by the lane 

marking angles. To test deviation result from this experiment, the lane departure parameters 
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in Figure 4.11 illustrates the lane detection result occurred in the process of typical traffic 

experiment with deviation scenarios. The relationship between the lane feature’s 

parameters and the deviation angle calculation results is shown in Table 4.5. 

 
(a) Curve road 

 
(b) Narrow, curve road  

 
(c) Uneven road 

 
(d) Straight road 

 
(e) Straight road (f) low level of 

illunination 

 
(g) Country road 

 
(h) Country road 

 
(i) High way 

Figure 4.10 The detection results on different roads 
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(a) Deviation Angle β = 31.493

o
 

 
(b) Deviation Angle β = 48.01

o
 

  

(c) β=48.5
o
 (b) β=-60.5

o
 

 
(e) β= -38.499

o
 

 
(f) β = -26.492

o
 

Figure 4.11 Lane departure parameters extraction 
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(g) β= 47.5

o
 

 
(h) β = 25 l

o
 

  

(i) β = -14.5
o
 (j) β = 16.501

o
 

  

(k) β = 24.441
o
 (m) β = 0.502

o
 

Figure 4.11 Continued  

Table 4.5 demonstrates when the vehicles are going to depart from the current lane 

to the next lane. The deviation angle apparently is bigger than the normal driving angle. 

The car deviation angle is set by value of β. When β <- 25
o
 or β >25

o
, the car will divert to 
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another lane. The results are consistent with the actual driving situation which is a proof of 

the validity of this analysis. 

Under inconsistent illumination and a diversity of road conditions, the accuracy and 

efficiency of developed algorithm have been improved greatly. 

Table 4.5 The relationship between lane markings and deviation angles 

Frame 

Left markings Mid markings right markings 
Deviation 

Angleβ 

Driving 

Status 
αL kL αM kM αR kR 

(a) 65.99 1.1519 -34.497 -0.6021 -76 -1.3265 31.493 
Yaw to 

right 

(b) 69 1.2043 -20.99 -0.3665 -75.498 -1.3177 48.01 
Yaw to 

right 

(c) 72.5 1.2654 -24 -0.4189 -75 -1.309 48.5 
Yaw to 

right 

(d) 68.5 1.1956 -7.998 -0.1396 -73.499 -1.2828 60.502 
Yaw to 

right 

 

(e) 73.997 1.2915 31 0.5411 -69.499 -1.213 -38.499 
Yaw to 

left 

(f) 75 1.309 39.998 0.6981 -66.49 -1.1606 -26.492 
Yaw to 

left 

(g) 72.5 1.2654 24.998 0.4363 -69.499 -1.213 -44.501 
Yaw to 

left 

(h) 77.498 1.3526 42.5 0.7418 -67.5 -1.1781 -25 
Yaw to 

left 

 

(i) -61 -1.0647   46.5 0.8116 -14.5 
Within the 

lane 

(j) -60.96 -1.064 - - 45.498 0.7941 15.461 
Within the 

lane 

(k) -65.5 -1.1432 - - 41 0.7156 -24.5 
Within the 

lane 

(m) -55.5 -0.9687 - - 58.99 1.0297 3.49 
Within the 

lane 
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4.5 COMPARISON OF THE SHT, IMPROVED HOUGH AND PPHT. 

This experiment aims to compare the performance of SHT, Improved Hough and 

PPHT. The number of voting operations used to process real lane marking images is listed 

in Table 4.6.Voting and computation time are used to measure the algorithms performance. 

Table 4.6 The computational efficiency for lane marking Images 

 Voting times Computation time 

# 
SHT 

×10
5
 

PPHT×

10
5
 

Reduced 

% 

Improved 

 Hough 

×10
5
 

Reduced 

% 
SHT PPHT 

Improved 

Hough 

1 6.140 1.652 73.099% 1.263 79.43% 0.0273 0.0136 0.0216 

2 5.159 1.308 74.637% 1.388 73.088% 0.0447 0.0130 0.0163 

3 7.049 1.829 74.053% 1.631 76.856% 0.0259 0.0216 0.0175 

4 5.420 2.284 57.864% 1.301 76.001% 0.0494 0.0333 0.0539 

5 5.148 1.765 65.722% 1.261 75.497% 0.0349 0.0419 0.0163 

6 
13.86

7 
5.377 61.226% 3.796 72.628% 0.0426 0.0341 0.0204 

7 
16.18

4 
7.273 55.060% 4.172 74.220% 0.0747 0.0299 0.0240 

8 
16.96

1 
8.669 48.892% 4.534 73.267% 0.1051 0.0494 0.0643 

9 7.843 2.074 73.561% 2.185 72.134% 0.1737 0.1390 0.0356 

10 6.719 2.122 68.418% 2.329 65.341% 0.0461 0.0184 0.0286 

11 6.523 1.499 77.026% 1.380 78.852% 0.0367 0.0040 0.0329 

12 5.252 1.978 62.347% 1.622 69.113% 0.0633 0.0456 0.0279 

13 7.673 3.209 58.181% 2.193 71.423% 0.0567 0.0402 0.0257 

14 5.414 2.428 55.154% 1.360 74.891% 0.0358 0.0125 0.0475 

15 6.905 2.287 66.884% 1.532 77.811% 0.0593 0.0196 0.0180 

avg   64.808%  74.04% 0.058 0.034 0.03 
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The average saving voting time by PPHT is about 64.8%; the saving by improved 

Hough is about 74.04%. Improved Hough has slightly a higher performance than PPHT. 

Both PPHT and improved Hough have dramatic improvement compared with SHT. The 

result proved that both PPHT and improved Hough have the ability to minimize the number 

of voting operations. The accurate rate evaluation between the improved Hough and PPHT 

is illustrated in Table 4.7. 

Table 4.7 The accurate rate of the Hough algorithms 

 

Correct -

detection 

(Frames) 

Total Frames total time /s average time ms/f Detection rate 

PPHT 10884 12000 432 36 90.70% 

Improved Hough 11439 12000 384 32 95.33% 

The improved Hough process time on average is 32 ms/f, the standard camera frame 

rate in real time is 35.7 ms/f, namely 28f/s, the processing speed can catch up with the 

frame refresh speed. In every second the algorithm can deal with 31.25 frames, faster than 

the speed of camera capture 28f/s. If the car is running at a speed of 120km/h that means 

the car moves approximately 1.06 m per frame process time which is able to meet the real 

time requirement. The PPHT process in every frame is about 1.2m. The PPHT processing 

time is longer than the Improved Hough and miss-detection rate is also higher than 

improved Hough. 

4.6 PERFORMANCE EVALUATION OF IMPROVED HOUGH AND RANSAC 

Performance evaluation and analysis about improved Hough and RANSAC are 

briefly explained in this section. The examination between those two algorithms is 

categorized in three viewpoints: accuracy, computing time, and robustness. Table 4.8 and 

Figure 4.12 below show the correct rate and computational time of each image sequence. 
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Table 4.8 Accuracy rates of the Lane Detection Technologies 

Frames 
#Detected # Errors # Correct rate 

Hough RANSAC Hough RANSAC Hough RANSAC 

1-300 289 246 11 54 96.33% 82.00% 

301-600 291 266 9 34 97.00% 88.67% 

601-900 283 257 17 43 94.33% 85.67% 

901-1200 288 235 12 65 96.00% 78.33% 

1201-1500 291 217 9 83 97.00% 72.33% 

1501-1800 284 245 16 55 94.67% 81.67% 

1801-2100 280 260 20 40 93.33% 86.67% 

Sum/Average 2006 1726 94 374 95.52% 82.19% 

Through the simulation result comparison, we discovered that Hough was 

significantly more accurate and the processing time was much shorter than RANSAC 

algorithm. With reference to RANSAC’s random nature, each executing time is based on 

the same image which keeps changing the amount of time in the process. While Hough’s 

Transform processing time is stable, it does not show much change in the running time.  

 

Figure 4.12 Computational performance in the experiment 
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Figure 4.13 Detection effect implemented by RANSAC algorithm 

Furthermore RANSAC is heavily depended on the image quality. It should be noted 

that when there are more pixels passed into the RANSAC algorithm, more time is needed 

to complete the process. The process speed of the image is not stable as indicating at Figure 

4.12; therefore it will slow down the high performance of detection task. An example of 

fitting of lines by RANSAC algorithm is given in Figure 4.13. 

The detection result works under independent conditions is relied on many factors, 

including the usage of parameters in the program, the collected experimental video and 

others variables involved in this experiment. Those parameters used in program can 

produce varying degrees of impact to Hough and RANSAC which would probably make 

the result more or less accurate or cause changes in the computation time. Moreover those 

collected experimental video with different image quality and experimental conditions 

might also lead to inconstant results. 
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4.7 EXPERIMENT ON DETECTION ERROR APPEARANCE  

Since lane markings have consistent and continuous features in the consecutive 

frames, any lane markings suddenly jump or miss will be considered as a detection error 

appearance, seen in given examples Figure 4.14, Figure 4.15 and Figure 4.16. The 

outcomes are recorded and validated automatically in two aspects: 

(i) .  There is a trace difference in between right and left lane markings. If the 

distance is changed more than the normal level, it will be considered as an 

error appearance. 

(ii).  An error occurs when fluctuation of Rho and Theta value is out of range in the 

single side of lane markings. 

 

 
 

 

Figure 4.15 Detection errors recorded based on Rho value 

 

Figure 4.14 Detection errors recorded based on Theta value 
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Figure 4.16 Detection errors recorded based on distance 

Two miss-detection examples are given in Figure 4.17. They were caused by failure 

in the linear feature extraction or blur lane markings with low illumination. 

  

Figure 4.17 miss-detection frames 

4.8 CONCLUSION 

This chapter presents the experiments and result of analysis. Experiments proved 

that E-MAMIMA is able to enhance detection result remarkably; minimize negative 

influence form image noise. The Sobel operator has been chosen as an appropriate operator 

for lane detection purpose because it performs well in both the computation cost and 

moderate noise sensitivity. The comparative result between standard Hough, PPHT and 

improved Hough demonstrated that improved Hough has higher performance than the other 

two algorithms. Through the simulation result and the comparison of accuracy, computing 
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time, and robustness between improved Hough and RANSAC, it is clearly identified that 

Hough significantly is more accurate and the processing time is much shorter than 

RANSAC algorithm. The improved Hough outperforms the other techniques.  

 



  

CHAPTER 5  

 

 

CONCLUSION 

After the review and analysis of previous literatures and comparison of many 

related systems, depending on the attributes of structured road and actual needs of high 

speed car’s safety, a lane detection algorithm was proposed to meet the real-time demand, 

effectiveness, low computation cost and robustness.  

The experiments are carried out to compare the lane detection algorithm under 

different environmental conditions. Both visualized and numeric evaluations have been 

performed. Overall the combination of E-MAXIMA transformation with the improved 

Hough proves to be able to accurately distinguish, detect and track the lane markings. The 

experimental results demonstrate the robustness of the algorithm used. Even under 

inconsistent illumination and a diversity of road conditions, the lane markings that are 

disconnected can still be well recognized. 

The improved Hough process time on average is 32 ms/f, which means that 31.25 

frames is processed in every second for a car running at a speed of 120 km/h. While each 

frame is being processed, the car would have moved approximately 1.2 m. This processing 

speed approximates the real-time requirement, thus greatly improves the accuracy and 

efficiency of the algorithm. 

The major achievement of this thesis is: reducing Hough searching space, 

decreasing voting times about 74.04%, and using E-MAXIMA transformation contributed 

to lane marking extraction and noise degradation. This algorithm is based on the features of 

the structured road. The near field-of-view is defined as a straight line model. The lane 

markings are detected by searching the optimal parameters of the defined lane model. The 
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PPHT and RANSAC are implemented as alternative algorithms for lane detection function. 

Improved Hough, PPHT and RANSAC have been evaluated on real world driving data. 

The main contents of this research are summarized as follows: 

(i) .  Objective to seek a more effective image pre-processing method by means of 

extracting road image features. The experiments for a large number of images 

have been carried out by selecting and designing high efficiency pre-

processing method.  

(ii).  The recent research was reviewed and analyzed in detail. Numerous and 

various lane models have been chosen. Most of them are either too 

complicated to meet high operating efficiency or work on straight lane only. 

This thesis discussed the possibility of adopting straight line on curve highway. 

(iii).  Image is divided into two parts, near field-of-view and far field-of-view. 

ROI concentrates on near field-of-view, which simplifies the image 

background and applies to different road conditions.  

(iv).  This thesis reduced the Hough search space resulting in improving the voting 

scheme. The proposed approach not only significantly improves the 

performance of the voting scheme, but also produces a cleaner voting map and 

makes the transform more robust. 

This work may apply to various applications of autonomous driving. It proposed a 

strategy to design a human-vehicle interface that is aware of the drivers’ current needs and 

capabilities. Applied to the design of driver assistance system, this could lead to the 

development of safer vehicles. Avoiding dangerous situations, when the driver lose focus 

during driving, it can help build up the trustful relationship between the driver and the 

vehicle. 

Overall the combination of E-MAXIMA transformation with improved Hough 

proved to be able to accurately distinguish, detect and track the desired road lane markings. 
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The proposed system is suitable for driver training, driving security assistance and 

autonomous navigation. 

5.1 FUTURE WORK 

The results presented in the previous chapter are promising; however, lots of 

enhancements in many aspects are still needed that this research could borrow in the future.  

In order to meet real-time request and reduce the computation burden, this system is 

based on the most simple straight line model. In reality, the road conditions are much more 

complex, many actual situations do not cover, for example, spiral roads and rural roads. 

Lane detection algorithm should be used to handle and describe those cases. 

In snowy weather, road surface is easily covered which will cause a strong 

interference in image resulting in the failure of detecting the algorithm. The image pre-

processing algorithm needs more optimization in order to increase the precision of 

detection process. 

This lane detection system designs in a hypothetical situation that roads are even 

where uphill and downhill roads do not list as one of the consideration factors. It still needs 

in-depth study about the geometric relation of road and digital camera imaging. 

A further development is to link the system with the vehicles turning signal so when 

the driver decides to exit the road or make a U turn, the system will be able to detect a 

driver controlled departure and not give a false alarm. When the driver deviates out of the 

road without a turning signal, the system would be able to make more intense noticeable 

alarm.  

Another future work can be done to expand this system to FPGA controller or other 

micro controller which would be able to embed this into a portable hardware.  
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