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ABSTRACT 

 

The study of center location of lid driven cavity using lattice Boltzmann method is all 

about the of the fluid dynamic base on the simulation and prediction the flow. The study 

is base on steady flow and transient flow using Lattice Boltzmann method to understant 

the capability of Lattice Boltzmann. The simulation of Lattice Boltzmann is using 

FOTRAN software. The result is compare with Ghia et al to validate the stream function 

is in good arrangement and also can determine the capability of LBM. The result have 

been compare with simulation lid driven cavity using ANSYS(FLUENT) using navier 

stoke solver at the transient flow in Reynolds number 100 to 10000. From the 

simulation, the lattice Boltzmann method is capable at Reynolds number below than 

7500.  
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ABSTRAK 

 

Kajian simulasi tentang  pusaran utama didalam rongga segiempat sama yang 

tudungnya digerakkan utk mengkaji pergerakan bendalir menggunakan kaedah kekisi 

Boltzmann. Dalam kajian bendalir secara simulasi, ramalan pergerakan berdasarkan 

kaedah berangka digunakan. Simulasi ini adalah untuk mengkaji kebolehupayaan 

kaedah kekisi Boltzmann berbanding kaedah lain. hasil dari simulasi ini telah 

dibandingkan menggunakan hasil simulasi Ghia et al untuk perbandingan struktur aliran 

fungsi berada dalam keadaan baik. Simulasi juga dijalankan menggunakan perisian 

ANSYS (FLUENT) iaitu berasaskan navier stoke dalam keadaan bergerak untuk 

mengkaji pergerakan pusat utama. Daripada simulasi ini, kekisi lattice Boltzmann 

berupaya menunjukkan hasil baik dari simulasi semasa bergerak, atau simulasi semasa 

akhir pergerakan pada nombor Reynolds sebelum 7500.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 LID DRIVEN CAVITY FLOW (LDCF) 

 

Understanding of fluid dynamic is very important in most branch of engineering 

especially in mechanical engineering. The fluid dynamic touches in many aspect of daily 

life such as air conditioning system to comfort people in the room and the simple thing such 

make a tea in a cup. To understand the fluid dynamic, we need to visualize the movement 

or flow of the fluid. The fluid mechanics need to visualize with time and space for more 

understanding and we can realize with the problem on it. The visual of fluid mechanic can 

be produce from the experiment that is high cost and the simulation by software which is 

almost accurate and low cost. 

 

The shear driven cavity or also called lid-driven cavity flow is not only technically 

important to solve fluid flow problem but also the great scientific interest because it 

displays almost all fluid mechanical phenomena in the simplest of geometrical settings 

(Ghia et al 1982; D.A. Parumal, A.K Dass, 2009). Lid-driven cavity flow problem also has 

received considerable attention mainly because of its geometric simplicity, physical 

abundance, and its close relevance to some fundamental engineering (T. P. Chiang, W. H. 

Sheu 1997). The simplicity of the geometry of the cavity flow makes the problem easy to 

code and apply boundary conditions. Even though the problem looks simple in many ways, 

the flow in a cavity retains all the flow physics with counter rotating vortices appear at the 

corners of the cavity. (E. Erturk 2009). 
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The study about 2-D driven cavity flow problem is discussed in details in terms of 

physical and mathematical and also numerical aspects (E. Erturk 2009). The lid-driven-

cavity problem is one of the most important benchmarks for numerical Navier–Stokes 

solvers. It can be subject grouped into three categories, in the first category of studies, 

steady solution of the driven cavity is sought. In these types of studies the numerical 

solution of steady incompressible Navier-Stokes equations are presented at various 

Reynolds numbers such as the results from Ghia et al 1982 and Erturk et al 2005 . In the 

second category of studies, the bifurcation which is the place where something divides into 

two branches, of the flow in a driven cavity from a steady regime to an unsteady regime is 

studied. In these studies a hydrodynamic stability analysis is done and the Reynolds 

numbers at which a Hopf bifurcation occurs in the flow are presented. The results from 

second category are from Fortin et al., Gervais et al., Sahin and Owens. In the third 

category of studies, the transition from steady to unsteady flow is studied through a Direct 

Numerical Simulation (DNS) and the transition Reynolds number is presented. The paper 

in the third category is such as Che Sidek, N.A and Nik Mu’tasim, M.A (2009). There are 

also the study in three dimensions (3D) of lid driven cavity that is from S. Albensoeder and 

H.C. Kuhlmann.  

 

Ghia et al.1982 were among the first to publish benchmark data on the lid driven 

cavity flow. These classical papers are frequently referenced even today (S. Albensoeder, 

H.C. Kuhlmann). This paper was using Navier- stokes equation and a multigrid method in 

2-D simulation. The Reynold number that been used for this paper were from 100 to10000 

with meshes consisting of as many as 257 × 257 grid points. This paper was group into first 

category according to E. Erturk 2009. 

  

A lid-driven cavity consists in a cavity bounded by solid walls. One of these walls is 

allowed to translate along itself, dragging the fluid which adheres to it (S. Nguyen et al 

2006). When the lid was moving in u velocity in figure 1, it will cause on the flow of fluid. 

Basically, the governing equations for 2D deep cavity flow are developed from Navier- 

Stokes equation and continuity equation. (Mat Sahat, M.I , Che Sidek, N.A , 2010)  
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Figure1.0: Lid-driven cavity configuration 

 

Source: S. Nguyen et al 2006 

 

1.2 COMPUTATIONAL FLUID DYNAMICS (CFD) 

 

Computational Fluid Dynamics (CFD) that was developed over 40 years ago by 

engineers and mathematicians. The development of CFD because they want to solve heat 

and mass transfer problems in aeronautics, vehicle aerodynamics, chemical engineering, 

nuclear design and safety, ventilation and industrial design. The development of this 

technology in the 1950s and 1960s made such research possible, and CFD was one of the 

first areas to take advantage of the newly emergent field of scientific computing. In the 

process, it was soon realized that CFD could be an alternative to physical modeling in many 

areas of fluid dynamics, with its advantages of lower cost and greater flexibility. 

 

Computational fluid dynamics is therefore an area of science made possible by and 

fundamentally linked to, computing. Its growth has paralleled that of computer power and 

availability, and as we move into an age of cheap, powerful desktop computing it is now 

possible, with a little knowledge, to run large and complex 3D simulations on an average 

personal computer.  
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However, most research advances in CFD continue to originate in the aeronautics 

and industrial design communities as a result of the significant investment levels available 

in these areas. In such cases it may be possible to characterize the complete set of process 

mechanisms that exist and also obtain good experimental data for model validation. Major 

research questions, therefore, concern improvements to the quality of the numerical 

solution, the scales of flow resolved by the model for fixed computational costs and the 

representation of sub-grid-scale processes such as turbulence. 

 

The applications of CFD are used as tools for research, design, education, 

Automotive, Sports and many other fields. In this thesis, the focus is based on usefulness of 

CFD base on comparing Navier stoke Equation and Latice Boltzmann Method.  

 

There are two type of CFD simulation which is the numerical and the other one is 

ready to use software. The software ready to use such as FLUENT© is very easy to use and 

infinite type of flow problem with many variables can be easily solved but there are 

disadvantages such as the user probably doesn’t know to the depth about the formulations 

that has been applied, the assumptions and a lot more. This software normally used for the 

practical application which the complicated geometry and conditions and used navier stoke 

as a solver. Despite that, this software is based on the numerical method but it is not being 

revealed. It purposes is solely to reduce the tough part and to make it user friendly (Mat 

Sahat, M.I 2010). The CFD simulation which is used numerical method software such as 

FORTRAN, C++, Matlab need the user create the codes and understand very well the 

formulation, the assumption, boundary conditions and others. This style of simulation 

usually applicable for knowledge sharing as many publications spawn everyday with new 

type of method for example the Lattice Boltzmann method that been used for this paper, 

Bifurcation method and more, claiming the method is among the best through various 

comparison and validation with the earlier or the classical method like Ghia et al. 1982. The 

simulation requires the creator to be well-verse in programming software that been used. 
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1.3 PROBLEM STATEMENT 

 

The lid driven cavity problem is one of the most important benchmarks for 

numerical Navier–Stokes solvers. From this statement we can conclude that the result from 

the Navier-Strokes from lid driven cavity problem can be compare with other analysis base 

on lid driven cavity flow. This result will compare with lattice Boltzmann method. The 

critical for this analysis may be from the translation flow because in this regime the flow 

will change from laminar to turbulent. This study will provide information or subject to use 

of LBM and its extent toward solving fluid flow analytically. 

 

1.4 OBJECTIVE  

 

The objective for this analysis is to simulate the flow in the lid driven cavity by 

using lattice Boltzmann method. The analysis will use FORTRAN. The result from lattice 

Boltzmann method will be compare with Navier Stoke equation that is from Ghia et al 1982 

and ANSYS (FLUENT©). 

 

1.5 SCOPE 

 

i. To simulate the flow in the lid driven cavity by using lattice Boltzmann 

method.   

ii. The result from lattice Boltzmann method will be compare with Navier 

Stoke equation using ANSYS (FLUENT©) 

iii. To understand the capability of LBM method in fluid flow based on 

qualitative study. 
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1.6 SCOPE OF ANALYSIS 

 

i. In this analysis, the simulation will apply Lattice Boltzmann using 

FORTRAN language. The simulation is used to analyze the stream function 

with different Reynolds number that is from 100 to 10000.  

ii. The boundary condition is no slip condition. The mashes size of cavity is 

301×301. 

iii. Validation is done using LBM, LDC in steady state condition. 

iv. The result of this analysis will be compare with the result from experiment 

from Ghia et. al. (1982). 

v.  The result for LBM will compare to FLUENT software using Navier Stroke 

equation in transient flow condition in LDC.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 NAVIER STOKES EQUATION 

 

The Navier–Stoke equation is well known equation for fluid dynamic describes the 

motion of fluid substances. These equations arise from applying Newton's second law to 

fluid motion, together with the assumption that the fluid stress is the sum of a diffusing 

viscous term (proportional to the gradient of velocity), plus a pressure term. 

 

The mathematical relationship governing fluid flow is the continuity equation, from 

general differential equation from conservation of mass, 

 

𝛿𝜌

𝛿𝑡
+ ∇   .  𝜌V    = 0       (2.1) 

 

The mathematical relationship governing fluid flow is the famous continuity 

equation  

 

∇. 𝑢 = 0     (2.2) 

 

And the Navier-strokes equation 

 

𝛿𝑢

𝛿𝑡
+ 𝑢. ∇𝑢 = −𝑃 + 𝑣∇2𝑢      (2.3) 
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With velocity u, pressure P, kinematic shear viscosity v. 

 

After the implementation of vorticity equation, two main equation which are 

literally derived from Navier-Stokes equation and continuity equation are as followed (Mat 

Sahat, M.I , Che Sidek, N.A , 2010) 

 

  
𝛿Ω

𝛿𝑇
+  𝑈

𝜕Ω

𝛿𝑋
+ 𝑣

𝛿Ω

δY
=

1

𝑅𝑒
  

δ
2

Ω

𝛿𝑋 2
+

𝛿2Ω

𝛿𝑌2
     (2.4) 

 

  
𝛿2Ψ

𝛿𝑋2
+  

𝛿2Ψ

𝛿𝑌2
=  −Ω      (2.5) 

 

The Ω represent the vorticity and ψ is stream function. Re is the Reynolds numbers 

of the flow in the cavity and T is the time. 

 

2.2  LATTICE BOLTZMANN 

 

In the last one and a half decade or so Lattice Boltzmann Method (LBM) has 

emerged as a new and effective approach of computational fluid dynamics (CFD) and it has 

achieved considerable success in simulating fluid flows and heat transfer (D.A. Parumal, 

A.K Dass, 2009). 

 

The lattice Boltzmann method allowed particles to move on a discrete lattice and 

local collisions conserved mass and momentum. Unlike than continuum field approach, 

kinetic theory assumes that a fluid is made of a huge number of molecular constituents, 

whose motion obeys Newtonian mechanics. Directly solving the system with a large 

number of degree of freedom, which is in the order of the Avogadro’s number (1023), is 

impossible. The movement of every individual molecular is not in the current purpose to be 

discussed, but one molecular is interested in the collective behavior of such system.  The 

statistical description of the system will become predictable. The statistical approach 

provide a bridge between the macroscopic realm of hydrodynamics and the microscopic 

realm of atoms and molecular. 
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Because of the continuity and Navier Stokes equations are only continuous forms of 

the mass and momentum conservation statements and method that locally conserves mass 

and momentum will follow some kind of continuity and Navier Stokes equations and it was 

shown that the lattice gas methods could be used to simulate (rather noisy) hydrodynamics.  

 

However, the lattice gas methods had several drawbacks consisting mainly of their 

noisy nature and the appearance of some additional terms in the Navier Stokes level 

equations that limited their success. It was then discovered that instead of discrete particles 

a density distribution could be adevecting which eliminated the noisiness of the method and 

allowed for a more general collision operator. This is the lattice Boltzmann method which 

has been extraordinarily successful for many applications including turbulence, multi-

component and multi-phase flows as well as additional applications. 

 

2.2.1 Classical Boltzmann Equation 

 

A statically description of a system can be in term of the distribution function 

𝑓(𝑥, 𝑐, 𝑡) where 𝑓 𝑥, 𝑐, 𝑡  is define such as 𝑓 𝑥, 𝑐, 𝑡 𝑑𝑥𝑑𝑐 is the number of partical whose 

position and velocities are essentially 𝑑𝑥 and 𝑑𝑐 at time 𝑡. If there were no collision, then a 

short time ∆𝑡 later each particle would move from 𝑥 to 𝑥 + 𝑐∆𝑡 and each particle velocity 

would change from 𝑐 to 𝑐 + 𝑎∆𝑡, where 𝑎 is the acceleration due to external forces on a 

particle at 𝑥 with a velocity 𝑐. The number of molecules 𝑓 𝑥, 𝑐, 𝑡 𝑑𝑥𝑑𝑐  when there is no 

collision is equal to the number of molecules 𝑓 𝑥 + 𝑐∆𝑡, 𝑐 + 𝑎∆𝑡, 𝑡 + ∆𝑡 𝑑𝑥𝑑𝑐, therefore 

 

𝑓 𝑥 + 𝑐∆𝑡, 𝑐 + 𝑎∆𝑡, 𝑡 + ∆𝑡 𝑑𝑥𝑑𝑐 − 𝑓 𝑥, 𝑐, 𝑡 𝑑𝑥𝑑𝑐 = 0    (2.6) 

 

However the collisions do occur between the molecules there will be a net difference 

between the molecules 𝑓 𝑥, 𝑐, 𝑡 𝑑𝑥𝑑𝑐 and the number of molecules 𝑓 𝑥 + 𝑐∆𝑡, 𝑐 +

𝑎∆𝑡, 𝑡 + ∆𝑡 𝑑𝑥𝑑𝑐. This can be expressed by 
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𝑓 𝑥 + 𝑐∆𝑡, 𝑐 + 𝑎∆𝑡, 𝑡 + ∆𝑡 𝑑𝑥𝑑𝑐 − 𝑓 𝑥, 𝑐, 𝑡 𝑑𝑥𝑑𝑐 = Ω(𝑓)𝑑𝑥𝑑𝑐𝑑𝑡   (2.7) 

 

Which is Ω(𝑓)𝑑𝑥𝑑𝑐𝑑𝑡 is the collision operator. On dividing by 𝑑𝑥𝑑𝑐𝑑𝑡, and letting 𝑑𝑡 

tends to zero gives the Boltzmann equation for 𝑓 

 

 
𝛿𝑓

𝛿𝑡
+ 𝑐𝑎

𝛿𝑓

𝛿𝑥𝑎
+ 𝑎

𝛿𝑓

𝛿𝑐𝑎
= Ω(𝑓)      (2.8) 

 

2.2.2 Boltzmann Collision Function 

 

Any solution of the Boltzmann equation, 
𝛿𝑓

𝛿𝑡
+ 𝑐𝑎

𝛿𝑓

𝛿𝑥𝑎
+ 𝑎

𝛿𝑓

𝛿𝑐𝑎
= Ω(𝑓) required that an 

expression for the collision operator Ω(𝑓). If the collision is to conserve mass, momentum 

and energy it is required that 

 

     
1
𝑐
𝑐2

 Ω 𝑓 𝑑𝑐 = 0       (2.9) 

 

 

 

Collision can change the distribution function 𝑓 𝑥, 𝑐, 𝑡  in two ways; 

i. Some particles originally having velocities 𝑐 will have some different velocity after 

collision. This causes in 𝑓 𝑥, 𝑐, 𝑡 . 

ii. Some particles have other velocities may have the velocity 𝑐 after a collision, 

increasing 𝑓 𝑥, 𝑐, 𝑡 . 

The form of the collision function can be found by assuming that 

i. Only binary collisions need to be considered (dilute gas) 

ii. The influence of container walls may be neglected 

iii. The influence of the external force (if any) on the rate of collision is negligible 

iv. Velocities and position of a molecule are uncorrelated (assumption of molecular 

chaos) 
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Suppose two particle with initial velocities 𝑐 and 𝑐1 have velocities 𝑐 ′ and 𝑐1
′  after a 

collision. Since all particles have same mass, conservation of momentum and energy 

required that 

 

𝑐 + 𝑐1 = 𝑐 ′ + 𝑐1
′       (2.9) 

 

1

2
 𝑐 2 +

1

2
 𝑐1 2 =

1

2
 𝑐 ′ 

2 1

2
 𝑐1

′  
2
   (2.10) 

 

For an elastic collision, the magnitude of the relative velocity is a coalitional invariant 

 

 𝑐 − 𝑐1 =  𝑐 ′ − 𝑐1
′         (2.11) 

 

Under all these assumptions, the Boltzmann equation takes on following form: 

 

Ω 𝑓 =  (𝑓𝑓1 − 𝑓 ′𝑓1
′)𝑔𝜍𝑑Ω𝑑𝑐 ′    (2.12) 

 

Where𝑓 = 𝑓 𝑥, 𝑐, 𝑡 , 𝑓1 = 𝑓 𝑥, 𝑐1, 𝑡 , 𝑓 ′ = 𝑓 𝑥, 𝑐 ′, 𝑡 , 𝑓1
′𝑓 𝑥, 𝑐1

′ , 𝑡 , 𝑔 is the particles 

relative velocities before the Collision and 𝜍 is the scattering cross section. 

 

2.2.3 Bhatnagar-Gross-Krook(BGK) Collision Model 

 

The Boltzmann equation without the external force where  

 

 𝛿𝑓

𝛿𝑡
+ 𝑐𝑎

𝛿𝑓

𝛿𝑥𝑎
+ 𝑎

𝛿𝑓

𝛿𝑐𝑎
   (Collision)    (2.13) 

 which is,   

𝛿𝑓

𝛿𝑡
= Ω(𝑓)      (2.14) 

 

represent the change in distribution function per unit time due to collision. The particular 

interest is in the change in distributing function 𝑓 in time of order 𝜏𝑓 , the average time 



12 
 

between excessive collision. Assuming that at near equilibrium, the system is closed to 

local Maxwell-Boltzmann state. Moreover, the post-collision distribution function, 𝑓 ′′𝑠, 

should be closer to equilibrium than the pre-collision 𝑓 ′𝑠, because of H- theorem. The 

distribution function 𝑓 can be related to the equilibrium distribution function 𝑓𝑒𝑞  via 

Taylor’s series expansion 

 

 𝑓𝑒𝑞  𝑥, 𝑐, 𝑡 𝑓 ≈ 𝑓 𝑥, 𝑐, 𝑡 +  𝛿𝑓

𝛿𝑡
  𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛    𝛿𝑡 + 𝑜(𝛿𝑡)2  (2.15) 

 

  
𝛿𝑓

𝛿𝑡
  𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =

𝑓𝑒𝑞  𝑥 ,𝑐,𝑡 𝑓−𝑓 𝑥 ,𝑐,𝑡 

𝛿𝑡
=

𝑓𝑒𝑞  𝑥 ,𝑐,𝑡 𝑓−𝑓 𝑥 ,𝑐 ,𝑡 

𝜏𝑓
   (2.16) 

 

Where the small time interval 𝛿𝑡 have ben replaced by the characteristic time between 

collisions 𝜏𝑓 . This model is frequently called collision model after Bhatnagar, Gross and 

Krook who first introduced. 

 

2.2.4 The Lattice Boltzmann Equation 

 

The Boltzmann equation with BGK collision model can be expressed as 

 

𝛿𝑓

𝛿𝑡
+ 𝑐𝑎

𝛿𝑓

𝛿𝑥𝑎
=

𝑓−𝑓𝑒𝑞

𝜏𝑓
      (2.17) 

 

That is well known as the BGK Boltzmann equation. The Maxwell-Boltzmann equilibrium 

distribution function is define as 

𝑓𝑒𝑞 = 𝜌  
1

2𝜋𝑅𝑇
 

𝑑
2 

𝑒𝑥𝑝  −
(𝑐−𝑢)2

2𝑅𝑇
     (2.18) 

 

The BGK lattice Boltzmann equation can be derived by further discretise using an Euler 

time step in time step in conjunction with an upwind spatial discretization and then setting 

the grid spacing divided by the time step equal to the velocity 
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𝑓 𝑥 ,𝑡+Δ𝑡 −𝑓(𝑥 ,𝑡)

Δ𝑡
+ 𝑐

𝑓 𝑥+Δ𝑥 ,𝑡+Δ𝑡 −𝑓(𝑥 ,𝑡+Δ𝑡)

Δ𝑥
=

𝑓−𝑓𝑒𝑞

𝜏𝑓
    (2.19) 

 

𝑓 𝑥 ,𝑡+Δ𝑡 −𝑓(𝑥 ,𝑡)

Δ𝑡
+ 𝑐

𝑓 𝑥+Δ𝑥 ,𝑡+Δ𝑡 −𝑓(𝑥 ,𝑡+Δ𝑡)

cΔ𝑥
=

𝑓−𝑓𝑒𝑞

𝜏𝑓
    (2.20) 

 

As a result 

𝑓 𝑥 + 𝑐Δ𝑡, 𝑡 + Δ𝑡 − 𝑓 𝑥, 𝑡 = −Δt(
𝑓−𝑓𝑒𝑞

𝜏𝑓
)     (2.21) 

 

The LBGK model with single relaxation time, which is a commonly used lattice 

Boltzmann method, is given by (D.A. Parumal, A.K Dass, 2009) 

 

𝑓𝑖 𝑥 + 𝑐𝑖Δ𝑡, 𝑡 + Δ𝑡 − 𝑓𝑖 𝑥, 𝑡 = −
1

𝜏
[𝑓𝑖 𝑥, 𝑡 − 𝑓1

0 𝑥, 𝑡 ]    (2.22) 

 

Where 𝑓𝑖  is the particle distribution function, 𝑓1
0 𝑥, 𝑡  is the equilibrium distribution 

function at x, t, 𝑐𝑖   is the particle velocity along the 𝑖𝑡 direction and τ is the time relaxation 

parameter. The D2Q9 square lattice used here has nine discrete velocities. A square lattice 

is used, each node of which has eight neighbors connected by eight links as shown in Fig. 

Particles residing on a node move to their nearest neighbors along these links in unit time 

step. The particle velocities are defined as 

 

𝐶𝑖 = 𝑜                    𝑖 = 0    (2.23) 

   

𝐶𝑖 =  cos  
𝜋

4 𝑖−1 
, sin  

𝜋

4 𝑖−1 
   , 𝑖 = 1,2,3,4  (2.24) 

 

𝐶𝑖 = (cos  
𝜋

4 𝑖−1 
 sin(

𝜋

4 𝑖−1 
)) , 𝑖 = 5,6,7,8   (2.25) 

 

 

The macroscopic quantities such as density ρ and momentum density 𝜌𝑢 are obtained as 

velocity moments of the distribution function 𝑓𝑖   as follows: 
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𝜌 =  𝑓𝑖
𝑁
𝑖=0       (2.26) 

 

𝜌𝑢 =  𝑓𝑖𝐶𝑖
𝑁
𝑖=0      (2.27) 

Where N = 8. In the D2Q9 square lattice, a suitable equilibrium distribution function that 

has been proposed is  

 

𝑓𝑖
(0)

= 𝑤𝑖𝜌  1 −
3

2
𝑢2 , i=0      (2.28) 

 

𝑓𝑖
(0)

= 𝑤𝑖𝜌 1 + 3 𝑐𝑖𝑢 + 4.5(𝑐𝑖𝑢)2 − 1.5𝑢2 , i=1, 2, 3, 4  (2.29) 

 

𝑓𝑖
(0)

= 𝑤𝑖𝜌 1 + 3 𝑐𝑖𝑢 + 4.5(𝑐𝑖𝑢)2 − 1.5𝑢2 , i=5, 6, 7, 8  (2.30) 

 

 

 

Figure 2: D2Q9 lattice and velocities 

 

Source: D.A. Parumal, A.K Dass, 2009 

 

Where the lattice weights are given by 𝑤0 = 4/9, 𝑤1−4 = 1/9 and 𝑤5−8= 1/36. The 

relaxation time which fixes the rate of approach to equilibrium is related to the viscosity by 

(S.Hou et al, 1995)  
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     𝜏 =
6𝑣+1

2
      (2.31) 

 

The units for v are 𝑙𝑢2𝑡𝑠−1. Note that τ >1/2 for positive (psychical) velocity. Numerical 

difficulties can arise as τ approaches ½. A value of τ = 1 is safest and lead to 𝑣 =

1

6
𝑙𝑢2𝑡𝑠−1.(M.C. Sukop et al, 2005 )  

 

2.3 DISCRETISATION OF LBM 

 

Discretisation is the process of dividing into a finite number of elements a 

continuum object. The lattice Boltzmann method start from the following Boltzmann 

equation for discrete velocity distribution in two and three dimensions 

 

𝛿𝑓𝑖

𝛿𝑡
+ 𝑐𝑖 . ∇𝑓𝑖 = Ω(𝑓𝑖)      (2.32) 

 

A commonly used LBM is the so-called lattice BGK model where the collision Ω(𝑓𝑖) is 

replaced by the BGK collision model 

 

𝜕𝑓𝑖

𝜕𝑡
+ 𝑐𝑖 . ∇𝑓𝑖 = −

1

𝜏𝑓
(𝑓𝑖 − 𝑓𝑖

𝑒𝑞 )    (2.33) 

 

Where the collision is assumed to lead the particle distribution function relaxes to its 

equilibrium state at a constant rate. If the time derivative is replace by a first order time 

difference, first order upwind space discretization is used for the convective term 𝑐𝑖 . ∇𝑓𝑖  and 

∆𝑥 = ∆𝑡 = 1 is set, the discretised version of lattice Boltzmann equation is obtained 

 

   𝑓𝑖 𝑥 + 𝑐𝑖 , 𝑡1 − 𝑓𝑖(𝑥, 𝑡) = −
1

𝜏𝑓
(𝑓𝑖 − 𝑓𝑖

𝑒𝑞 )    (2.34) 
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Although the lattice Boltzmann equation (LBE) has demonstrated to be an effective 

computational tool for a broad variety of complex physical systems, however, the LBM 

suffer several limitations. One of these is that the LBM is constructed on a special class of 

uniform and regular lattices. The limitation of using uniform lattices is particularly severe 

in many practice application where the complex geometry of boundaries cannot be well 

fitted by regular lattices.   

 

It should be pointed out, however, that this particular descretization and the 

condition ∆𝑡 = ∆𝑥 are not necessary. The used of Eq. (2.34) reflects the historical fact that 

LBM came about as refinement or a by-product of the lattice bolgas automaton method 

(LGA).  Boolean particles reside in a discrete lattice, subject to the automaton dynamic of 

streaming and collision. One of the main ideas driving the initial LGA efforts was to 

produce the simplest microdynamics that would yield hydrodynamic behaviors. Recovering 

rotational invariant macroscopic equation from a discrete finite velocity microscopic 

dynamic impose constraint on the symmetry of the lattice used, unlike the continuum 

Boltzmann equation with infinite velocities, for which rotational invariance is automatically 

recovered. For LBM this is obtained from physical symmetry. By the physical symmetry 

we mean the symmetry attached to the velocity space in equilibrium distribution function 

and a sufficient number of moving velocity direction N. the lattice symmetry requirements 

are those numbers of lattice direction (in 𝑥 space) and the number of lattice links are the 

same as those for particle distribution function.  

 

2.4 FINITE DIFFERENCE LATTICE BOLTZMANN METHOD 

 

 The chronological discretized is obtained by using second order Rungge-Kutta 

(modified) Euler method. The time evolution of particle distribution is then derived by 

𝑓
𝑖

𝑛+
1

2 = 𝑓𝑖
𝑛 +

∆𝑡

2
 −𝑐𝑖 . ∇𝑓𝑖

𝑛 −
𝑓𝑖

𝑛 −𝑓𝑖
𝑒𝑞 ,𝑛

𝜏𝑓
     (2.35) 

 

𝑓𝑖
𝑛+1 = 𝑓𝑖

𝑛 + ∆𝑡  −𝑐𝑖 . ∇𝑓
𝑖

𝑛+
1

2 −
𝑓
𝑖

𝑛+
1
2−𝑓

𝑖

𝑒𝑞 ,𝑛+
1
2

𝜏𝑓
     (2.36) 
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 The second order Eqs. (3.6~3.9) or third order Eqs. (3.10~3.13) upwind scheme can 

be applied to calculate the spatial gradient in Eq. (3.2) 

 

𝑐𝑖𝑥𝛿𝑥𝑓𝑖 = 𝑐𝑖𝑥
3𝑓𝑖 𝑥 ,𝑦 −4𝑓𝑖 𝑥−∆𝑥 ,𝑦 +𝑓𝑖(𝑥−2∆𝑥 ,𝑦)

2∆𝑥
, 𝑐𝑖𝑥 > 0    (2.37) 

 

𝑐𝑖𝑥𝛿𝑥𝑓𝑖 = −𝑐𝑖𝑥
3𝑓𝑖 𝑥 ,𝑦 −4𝑓𝑖 𝑥−∆𝑥 ,𝑦 +𝑓𝑖(𝑥−2∆𝑥 ,𝑦)

2∆𝑥
, 𝑐𝑖𝑥 < 0   (2.38) 

 

𝑐𝑖𝑦 𝛿𝑦𝑓𝑖 = 𝑐𝑖𝑦
3𝑓𝑖 𝑥 ,𝑦 −4𝑓𝑖 𝑥 ,𝑦−∆𝑦 +𝑓𝑖(𝑥 ,𝑦−2∆𝑥 ,𝑦)

2∆𝑦
, 𝑐𝑖𝑦 > 0   (2.39) 

 

𝑐𝑖𝑥𝛿𝑦𝑓𝑖 = −𝑐𝑖𝑦
3𝑓𝑖 𝑥 ,𝑦 −4𝑓𝑖 𝑥 ,𝑦−∆𝑦 +𝑓𝑖(𝑥 ,𝑦−2∆𝑦)

2∆𝑦
, 𝑐𝑖𝑦 < 0   (2.40) 

 

𝑐𝑖𝑥𝛿𝑥𝑓𝑖 = 𝑐𝑖𝑥
𝑓𝑖 𝑥+2∆𝑥 ,𝑦 −2𝑓𝑖 𝑥−∆𝑥 ,𝑦 +9𝑓𝑖(𝑥 ,𝑦)

6∆𝑥
+ 𝑐𝑖𝑥

−10𝑓𝑖 𝑥+∆𝑥 ,𝑦 −2𝑓𝑖 𝑥−2∆𝑥 ,𝑦 

6∆𝑥
, 𝑐𝑖𝑥 > 0   

(2.41) 

 

𝑐𝑖𝑥𝛿𝑥𝑓𝑖 = 𝑐𝑖𝑥
−𝑓𝑖 𝑥−2∆𝑥 ,𝑦 +2𝑓𝑖 𝑥−∆𝑥 ,𝑦 −9𝑓𝑖(𝑥 ,𝑦)

6∆𝑥
+ 𝑐𝑖𝑥

10𝑓𝑖 𝑥+∆𝑥 ,𝑦 −2𝑓𝑖 𝑥−2∆𝑥 ,𝑦 

6∆𝑥
, 𝑐𝑖𝑥 < 0  

           (2.42) 

 

𝑐𝑖𝑦𝛿𝑦𝑓𝑖 = 𝑐𝑖𝑦
𝑓𝑖 𝑥 ,𝑦+2∆𝑦 −2𝑓𝑖 𝑥 ,𝑦−∆𝑦 +9𝑓𝑖(𝑥 ,𝑦)

6∆𝑦
+ 𝑐𝑖𝑦

−10𝑓𝑖 𝑥 ,𝑦+∆𝑦 −2𝑓𝑖 𝑥 ,𝑦−2∆𝑦 

6∆𝑦
, 𝑐𝑖𝑦 > 0  

           (2.43) 

𝑐𝑖𝑦𝛿𝑦𝑓𝑖 = 𝑐𝑖𝑦
−𝑓𝑖 𝑥 ,𝑦−2∆𝑦 +2𝑓𝑖 𝑥 ,𝑦−∆𝑦 −9𝑓𝑖(𝑥 ,𝑦)

6∆𝑦
+ 𝑐𝑖𝑦

10𝑓𝑖 𝑥 ,𝑦+∆𝑦 −2𝑓𝑖 𝑥 ,𝑦+2∆𝑦 

6∆𝑦
, 𝑐𝑖𝑦    

           (2.44) 

The combinations of this specifics space and time discretization result in second or third 

order space and second order in time. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

The aim for this analysis is to simulate the flow in the lid driven cavity by using 

lattice Boltzmann method. The analysis will use language program FORTRAN. In the 

direction of to conduct numerical solution using LBM, discretization in velocity and 

momentum in space is needed. 

 

For simulation that uses LBM for simple geometry, flow for lid driven square cavity 

was chosen. The lid driven cavity is a good and simple first test case since it is easy to 

obtain a converge solution. Furthermore, there are abundant literature reviews available for 

comparison. The result from lattice Boltzmann method will be compare with Navier Stroke 

equation using ANSYS. 
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3.2 FLOW CHART 

 

 

 

 

 

 Collision 

 

                           Streaming  

  

  

Calculate 

macroscopic terms 

 

 

 

 Calculate equilibrium 

 

   

 NO YES  

 

  

 

 

 

 

 

Figure 3.1: Flow chart for Lattice Boltzmann Method (LBM)  

Start  

Set initial value 

for 𝜌, 𝑢 𝑎𝑛𝑑 𝑣 

 

𝑓𝑖,𝑗
𝑛+𝑘 = 𝑓𝑖,𝑗

𝑛+𝑘 −
∆𝑡

𝜏
(𝑓𝑖,𝑗

𝑛+𝑘 − 𝑓𝑒𝑞 ) 

𝑓𝑖,𝑗  𝑥, 𝑡 + ∆𝑡 = 𝑓𝑖,𝑗 (𝑥 − 𝑐𝑖,𝑗 ∆𝑡, 𝑡) 

 𝑓𝑖,𝑗
𝑛+𝑘 = 𝜌   

 𝑐𝑦𝑓𝑖,𝑗
𝑛+𝑘 = 𝜌𝑣  

 𝑐𝑥𝑓𝑖,𝑗
𝑛+𝑘 = 𝜌𝑢  

𝑓𝑖
𝑒𝑞

= 𝜔𝑎𝜌  1 +
3𝑒𝑎 . 𝑢

𝑐2
+

9

2
 

(𝑒𝑎 . 𝑢)2

𝑐4  +
3𝑢2

2𝑐2
  

Solution 

Converge? 

Print𝑓𝑛−𝑘 ,

𝜌, 𝑢 𝑎𝑛𝑑 𝑣 

Stop 
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3.3 FLOW CHART PROJECT 

 

 

 

 

  

 

 

  

  

 

 

 

 

 

 

 

 

Figure 3.2: Flow chart project 

 

 

Start 

Literature Review 

 Lid driven cavity 

(LDC) 

 Computional fluid 

dynamic 

 Navier stioke equation  

 lattice Boltzmann 

method  

Validation: 

 (Ghia et al 

1982) 

Navier Stoke 

Equation 

(ANSYS, FLUENT) 

Lattice Boltzmann 

method 

(FOTRAN) 

Compare 

Conclusion 
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3.4 BENCHMARK OF LID DRIVEN CAVITY 

 

Lid driven cavity has been used as a benchmark problem for many numerical 

methods due to its simple geometry and complicated flow behavior. The lid-driven-cavity 

problem also is one of the most important benchmarks for numerical Navier–Stokes 

solvers. It is usually very difficult to capture the flow phenomena near the singular points at 

the corner of the cavity. Consequently it is desirable to refine the mesh near this corner. The 

benchmark of lid driven cavity will divide into two method that is lattice Boltzmann 

method and Navier Stoke equation. But all method will compare with Ghia et al as mention 

at chapter 1. 

 

The lid driven cavity flow is a flow inside a cavity where the top wall slides to the 

right at a constant speed of U while the other three walls are made stationary. This type of 

flow has been used as a benchmark problem for many numerical methods due to its simple 

geometry but complicated flow behaviors.  

 

LBM is applied to this cavity flow of height L. the Reynolds number (Re) was 

varied from 100 to 10000. The table shows the grid size use for corresponding Reynolds 

number. 
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Table 3.1: The grid size for LBM 

 

Reynolds number Grid size 

100 301×301 

400 301×301 

1000 301×301 

3200 301×301 

5000 301×301 

7500 301×301 

 

Using this grid size enable us to obtain steady solution for these various Reynolds numbers 

(we need to keep a sufficiently large τ within the stability range) 

 

In the simulation, the Reynolds number 𝑅𝑒 = 𝐿𝑈/𝑣 the relation between the time 

relaxation and dynamic viscosity is given by 

 

     𝜏𝑓=3𝑣        (3.1) 

 

For Navier Stoke equation, the uniform and meshes will used for both Reynolds 

number simulation. The size of the mesh is 301×301 and ∆𝑡 = 0.1 is set for all cases of 

Reynolds number simulations.  The size of the cavity will change that is 1m×1m for all 

cases. All of this parameter will analyze using FLUENT software for the transient flow.  

  

The result from both solvers will compare with classical paper Ghia et al(1982). The 

streamline pattern will be plotted and comparison will be made against results found in 

literature. 
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3.5 VALIDATION WITH GHIA ET AL 

 

The validation with Ghia et al is to make sure the structure of the stream function in 

the good condition. The validation with this classical paper is done at the steady flow. 

 

  

 

              (a)      (b) 

 

Figure 3.3: The stream function of LBM (a) and Ghia et al at (b) at Re = 400. 

 

The stream function of this figure shows that at Re=400, the stream function of LBM is in 

the good condition compare with Ghia et al. Besides the stream function figure comparison, 

the graph of velocity profile at mid also been used to shows the comparison in details. At 

this comparison, we use the velocity at X axis and Y axis to compare the result.  
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Re = 100 

 

Re = 400 

 

Re = 1000 

 

Re = 3200 

 

 

 

 

 

 

Figure 3.4 : continued  
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Re = 5000 

 

Re = 7500 

 

Re = 10000 

 

 

Figure 3.4: Velocity profile at mid-height (x-velocity & y-velocity) of lid driven square cavity

        using conventional LBM 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSTION 

 

 

4.1 INTRODUCTION 

 

The result from lattice Boltzmann is written using Fotran language. In this chapter, 

the result from lattice Boltzmann was validate using result from Ghia et al. the  result using 

lattice Boltzmann method is from Reynolds number 100, 400 and 1000.   

 

The result from lattice Boltzmann had been compare with result from latest CFD 

solver, Ansys Fluent. The ANSYS (FLUENT) is base on Navier Stoke equation. The result 

using Navier Stoke is in the transient flow, pressure base and in two dimensional (2D). 

 

4.2 VALIDATIONS LATTICE BOLTZMANN WITH GHIA ET AL. 1982 

 

In order to study the center location of lid driven cavity in stream function, the 

result of LBM was been compare with Ghia et al is in a steady flow condition. This 

comparison is important because it shows the flow structure is in good agreement with the 

previous work of Ghia et al 1982. Base on table 4.2 below, LBM have excellent result at 

Reynolds number 100 to 5000 base on the primary vortex for every Reynolds number that 

were calculated. We also can see that LBM can produce an excellent agreement with the 

result predicted by conventional numerical methods. The apparent of LBM flow structure 

are good agreement compare with the results published in the literature by previous 

researcher. 
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At Re = 100, the result from lattice Boltzmann shows there are only primary eddies 

compare to result from Ghia et al, there are also have secondary eddies at the bottom left 

and right. At Re = 400, results from LBM shows the size of primary eddies became bigger 

until Re = 1000, and the secondary eddies appear at bottom right side at Re = 400, and 

appear at bottom side left and right at Re = 1000. When the Reynolds number increase to 

3200, the size of primary eddies became smaller but the secondary eddies appear at right 

and left bottom of cavity, and also at the left at the lid. The size of secondary eddies became 

smaller at Re = 5000 then Re = 3200 but the location of secondary eddies are same. 

 

Table 4.1:  Location of eddies 

 

Location Eddies 

1 Primary eddies 

2 Secondary eddies bottom left 

3 Secondary eddies bottom right 

4 Secondary eddies lid left 

 

 

Table 4.2: Comparison between streamlines Lattice Boltzmann Method and Ghia et al  

                      from Reynolds number 100 to 5000   

 

Reynolds number Lattice Boltzmann method Ghia et al 1982 

 

 

100 

 

 

 

 

 

 

 
1 1 2 3 
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400 

 

 

 

 

 

1000 

 

 

 

 

 

3200 

 

 

 

1 

2 3 2 

1 

1 

3 2 3 2 

1 

4 1 

3 2 3 2 

4 1 
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At Re = 7500 and Re = 10000, the results as shows at table 4.2 at steady flow 

cannot be produce due to errors occurred during simulation. The error was due to the 

number of grid not sufficient enough to generate stable results. From this case, the results at 

Reynolds number higher than 7500 cannot be achieve using LBM. 

 

Table 4.3: Comparisons between streamlines lattice Boltzmann method Ghia et al. at  

                  Re = 7500 and 10000 

 

 

 

5000 

 

 

 

 

 

Reynolds 

number 

Lattice Boltzmann method Ghia et al 1982 

 

 

7500 

 

 

 

 

4 1 

3 2 3 2 

4 1 
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4.3 LATTICE BOLTZMANN STEADY FLOW 

 

The steady flow result below shows the characteristic of stream function at their 

final movement. The center location of this square moves as when is a change in Reynolds 

number. Base on figure 4.1 the structure and location of primary vortex or the center also 

changes in the different Reynolds number. At Re = 100, the location of primary vortex or 

center location is ¼ from the lid and more to the left, but the secondary eddies didn’t exist 

in the LBM that show the flow is in laminar flow. As the Reynolds number increase to 400, 

the center location move to the center and the size became bigger when it increase to 1000. 

The secondary eddies appear at the right side of the bottom cavity at Re = 400 and when it 

increase to 1000, they appear at left and right at the bottom of the lid. When the Reynolds 

number increase to 5000, the center location still at the half of the cavity but the size 

became smaller and the secondary eddies appear at left and right at the bottom and left side 

at the lid. The result for the Re = 7500 and 10000 is not valid as we mention before. 

 

 

 

 

 

 

 

 

 

10000 

 

 



31 
 

Lattice Boltzman Steady Flow 

 

 

 

 

 

Re = 100 

 

 

 

Re = 400 

 

Re = 1000 

   

Re = 3200 

 

Re = 5000 

 

Re = 7500 

 

Figure 4.1: Continued 

 

 

1/4 
1/2 

1/2 1/2 

1/2 1/2 
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Re = 10000 

 

Figure 4.1: Lattice Boltzmann At Steady Flow 

 

4.4 LATTICE BOLTZMANN (LBM) TRANSIENT FLOW 

 

In order to study the center location of the lid driven cavity, we simulate the 

movement of the center location in transient flow. At Re = 100, the transient flow is in 

laminar condition, mean that the stream function look smooth due to time before it became 

to steady state. Base on table 4.5, at T = 1second, the location of primary eddies is at the lid 

and wide. When the time increase to 30 second, the primary eddies move 2/7 from the lid 

and size of the primary eddies became bigger. At 70 second, the primary eddies located 

almost at ¼ from the lid that is the primary eddies almost at steady flow. The flow of 

simulation of lid driven cavity is steady at 100 seconds. 

 

At Re = 400, the center location of primary eddies is at the lid at one second, and 

the size almost same at Re = 100 but the lid more to the right side. When time increase to 

30 second, the primary eddies is located 3/7 from the lid and at the right side. The shapes 

almost circle. At 70 second, the location of primary eddies is located ½ from the lid. The 

flow of this simulation is steady at 100 second.      

 

 

 

 

1/2 
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Table 4.4: LBM transient flow at Re = 100 and Re = 400 

 

Re = 100 Re = 400 

  

  

T = 1s 

 

 

T = 1s 

 

 

T = 30s 

 

 

T = 30s 

            

T = 70s 

        

T = 70s 

 

Primary eddies Primary eddies 

2/7

/7 

3/7

/7 

1/4 
1/2 
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T = 100s 

 

 

T = 100s 

 

 

4.5 LATTICE BOLTZMANN CENTER LOCATION 

 

The movements of the center location of lid driven cavity are different at each 

Reynolds number that had been simulates. When we study the center location of driven 

cavity, the primary vortex that been produce was been tracked and plot in the graph below. 

  

Figure 4.2 shows the graph of location the movement of the center location at 

different Reynolds number. The final of this trajectory is when the center location is at the 

steady flow as we can refer Figure 1. In order to study the center location, the movements 

of the primary vortex in the stream function need to capture. In higher Reynolds number, 

the trajectory is more too right side because the lid moves more to the right.  

 

The movement of the center location in lid driven cavity using LBM from Re = 100 

until Re = 3200, the result stop when it in the steady flow. When the Reynolds number at 

7500, the movement of center location only circle round and it not goes to steady flow. It 

shows that the flow in the turbulence flow.  

 

1/4 

1/2 
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Figure 4.2: The movement of center location of driven cavity using LBM 

 

4.6 COMPARISONS WITH ANSYS, FLUENT 

 

The result of lattice Boltzmann in transient flow is being compared with result from 

Navier Stoke using ANSYS FLUENT software. The comparison was made for test the 

performance of LBM. In order to study the center location of lid driven cavity, transient 

flow can capture the movement of the center location as time and as the dependent 

parameter in the same Reynolds number (Re = 400). From the result at table 4.5, it shows 

that the result from lattice Boltzmann method in laminar flow is more accurate than Navier 

Stoke from ANSYS FLUENT. 

 

Start 

Final  
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Using LBM method, the movement of center location of lid driven cavity is wider at 

the time zero and the ANSYS (FLUENT) result is at the center. At 10 second, the LBM 

center location move to the right side of cavity and same as ANSYS (FLUENT), but the 

different can be seen at the stream function. The result for both methods is same at 70 

second and 100 second that is when it is in steady flow. 

 

Table 4.5: Comparison between transient flow LBM and navier stoke from  

             ANSYS (FLUENT) at Re = 400 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (s) LBM ANSYS (FLUENT) 

 

 

1 

 

 

 

 

 

 

 

30 
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4.7    DISCUSSIONS 

 

 From the result of steady flow, 4.1 we shows the validation with Ghia et al to 

shows stream function in the good arrangement. From the result also shows that after Re = 

7500, the result from LBM is not valid because of error. LBM is only good at Reynolds 

number below than 7500. 

 

 In the transient flow, the results of movement center location are the same as 

in the steady flow. When Re = 7500, as we can see at figure 4.1, the movement of stream 

function only in circular rotation and didn’t achieve steady condition. But by using ANSYS 

(FLUENT), that is base on Navier Stoke solver, the result until Re = 20000, that is in the 

high Reynolds number can be produce and also can show the location of turbulence 

(usually secondary’s eddies). 

 

 

 

70 

 

 

 

 

 

 

100 
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 From the results, we can conclude that LBM is very good at Reynolds number 

below than 7500 and show the structure of stream function very well. But after Re = 7500 

and above, the result is not sufficient due error.  
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CHAPTER 5 

 

 

CONCLUSION AND RECOMENDATIONS 

 

 

 In this paper, the focus is to study the center location of fluid flow in lid 

driven cavity using Lattice Boltzmann method. This paper shows the steady flow and 

transient flow of lid driven cavity in two dimensional. The result of LBM is been compare 

to result using navier stoke that is from Ghia et al and result from (ANSYS) FLUENT. 

Base on result from LBM at steady flow and transient flow, the LBM is only good at 

Reynolds number below than 7500, that is we can conclude that LBM good at laminar 

flow. When the Reynolds number more than 7500, the prediction of the fluid flow cannot 

be obtain because of the error. Navier stoke still best solver if we want to predict at high Re 

number and at turbulence flow. 
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RECOMMENDATION 

 

 Even the lattice Boltzmann is not good at high Reynolds numbers, the flow is 

still good at Reynolds number below 7500. So that, the application of lattice Boltzmann in 

order to generate accurate simulations especially in transient flow can be use. The 

application maybe can be use to simulate the fluid flow at the pipe or simulate the wind 

tunnel using Lattice Boltzmann method.  
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APPENDIX A 



 

APPENDIX A 

 

Table: transient flow at Re= 20000 using ANSYS (FLUENT) 
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