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Figure 7.11:  Performance consistency of the tuned covariance matrix of Q, 
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ABSTRACT 

 

This thesis presents the summarization of work on experimental characterisation and 

modeling of a vanadium redox flow battery (V-RFB). This thesis presents background 

material and motivation factors of the studies; research goals, a review of previous work 

and discussion on related issues with respect to energy storage technologies, 

emphasising on V-RFB system. The aim of the study is to investigate the performance 

of V-RFB through experimental characterisation of V-RFB at different operating 

parameters and develop electrical circuit modeling of V-RFB. Preliminary experiment 

on 100 cm
2
 unit cell laboratory unit V-RFB has helped in familiarising with V-RFB 

setup and its design weaknesses and factors leading the cell into failure mode are 

highlighted. Based on observation on 100 cm
2
 unit cells, new design of 25 cm

2
 unit cell 

laboratory unit V-RFB has been proposed with an improvement of efficiency and 

reduction of contact resistance are observed. Theoretically studies by using Faraday’s 

law of electrolysis and Nernst equation are used to relate the equilibrium cell’s potential 

with the concentration changes in vanadium species, back-up with experimental data 

from a divided, open-circuit potentiometric cell approach. Two different approaches has 

been presented, with newly proposed approach of a divided, open-circuit potentiometric 

cell, via Hg/Hg2SO4 reference electrodes and graphite rod working electrodes present 

superiorities in estimating the state-of-charge (SOC) of V-RFB. System characterisation 

has been carried-out for the new 25 cm
2
 unit cell laboratory unit V-RFB under different 

of operating parameters such as current densities, temperatures, flow rates, 

concentrations and material properties. The cell exhibits highest energy efficiency at 

82.1 %, operating at 308 K, 60 mA cm
-2

 current density and 3 cm
3
 s

-1
 volumetric flow 

rate for 250 cm
3
 (each reservoir) of 1.6 mol dm

-3
 V(III)/V(IV) in 4 mol dm

-3
 H2SO4. 

Formation charge of mixture of vanadium species into single electro-active species at 

positive and negative electrodes are highlighted. A method for estimating the V-RFB to 

complete its formation charge using electrochemical calculation of Faraday’s constant 

are also presented. New equivalent electric circuit model for V-RFB has been proposed 

which consists of an open-circuit cell potential in series of ohmic internal resistance and 

the parallel n-RC network. Extended Kalman filter is used for parameter identification 

of dynamic characterisation of V-RFB. Numerical simulations are compared to 

experimental data at different pulse voltages at few SOCs and experimental charge-

discharge characterisation of V-RFB system, demonstrating good agreement.  
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ABSTRAK 

 

Tesis ini membentangkan ringkasan hasil kerja lapangan mencirikan dan memodelkan 

vanadium redox bateri teralir (V-RFB). Tesis ini membentangkan latar belakang dan 

faktor yang memotivasikan untuk pengajian, matlamat kajian, penilaian hasil kerja yang 

lepas dan perbincangan berkaitan dengan teknologi penyimpanan tenaga, dengan 

penekanan kepada sistem V-RFB. Tujuan pengajian ini adalah untuk mengkaji prestasi 

V-RFB melalui pencirian eksperimen V-RFB pada parameter operasi yang berbeza dan 

membangunkan model litar elektrik V-RFB. Eksperimen awal pada 100 cm
2
 sel unit 

makmal yang membantu membiasakan dengan pembinaan V-RFB dan juga kelemahan 

rekaannya dan faktor yang menyebabkan bateri gagal berfungsi ada dinyatakan. 

Berdasarkan pemerhatian pada 100 cm
2
 sel unit makmal, satu rekaan baru iaitu 25 cm

2
 

sel unit makmal dicadangkan dengan peningkatan tahap kecekapan dan penurunan 

rintangan sentuhan dapat diperhatikan. Kajian secara teori hukum Faraday elektrolisis 

dan persamaan Nernst digunakan untuk mengaitkan potensi sel keseimbangan dengan 

perubahan kepekatan spesies vanadium, dibantu dengan data eksperimen dari litar 

terbuka-terbahagi-sel pendekatan potentiometrik. Dua pendekatan yang berbeza telah 

dikemukakan, dengan pendekatan baru dari litar terbuka-terbahagi-sel pendekatan 

potentiometrik, melalui Hg/Hg2SO4 elektrod rujukan dan rod grafit bekerja-elektrod 

memberikan pendekatan terbaik dalam menganggarkan tahap caj (SOC) V-RFB. 

Pencirian sistem telah diberikan untuk sistem baru 25 cm
2
 sel unit makmal V-RFB di 

bawah variasi parameter operasi seperti kepadatan arus, suhu, kadar aliran, kepekatan 

dan sifat bahan. Sel telah mencatatkan kecekapan tenaga tertinggi pada 82.1%, 

beroperasi pada 308 K, 60 mA cm
-2

 ketumpatan arus dan 3 cm
3
 s

-1
 kadar aliran isipadu 

250 cm
3
 (setiap satu takungan) 1.6 mol dm

-3
 V (III) / V (IV) dalam 4 mol dm

-3
 H2SO4. 

Cas pembentukan campuran spesies vanadium ke spesies elektro-aktif tunggal pada 

elektrod positif dan negatif telah diketengahkan. Satu kaedah untuk menganggarkan V-

RFB untuk melengkapkan cas pembentukan campuran spesies vanadium ke spesies 

elektro-aktif tunggal menggunakan pengiraan elektrokimia pemalar Faraday juga 

dibentangkan. Litar setara model elektrik yang baru untuk V-RFB telah dicadangkan 

yang terdiri daripada voltan terbuka litar sel sesiri dengan rintangan dalaman dan selari 

dengan rangkaian n-RC. Penapis Lanjutan Kalman digunakan untuk mengenalpasti 

parameter pencirian dinamik V-RFB. Simulasi berangka berbanding dengan data 

eksperimen pada voltan nadi berbeza pada beberapa SOCs dan eksperimen cas-discas 

pencirian sistem V-RFB, menunjukkan penemuan yang baik.  
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