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ABSTRACT 

 

Fin is used to increase heat transfer from heated surface to air. Industrial experience has shown 

that for same surface area, the fin array can transfer considerably more energy than single fin. 

Analysis of single fin is well known. However, when fins are placed in an arrangement, the 

convective patterns become consistent and the resulting heat transfer coefficient has not been 

predicted. The purpose of this project is to study the effectiveness of staggered cylindrical fin 

array with and without additional fin. Experimental data from the study is used to obtain the 

resulting heat transfer coefficient. The experimental study has been carried out through 

experiment by natural convection using test bench. The additional fin made from aluminum and 

fabricated in plate shape first before attach with staggered cylindrical array. From the 

measurement and experiment result, it shows the value of heat transfer coefficient for cylindrical 

array with additional fin is higher more than fifty percent compare to without additional fin. The 

relation of Nusselt number with heat transfer has been shown through the experimental result. 

The experimental result indicates that a staggered cylindrical fin array with additional fin 

performs better in heat transfer than staggered cylindrical fin array without additional fin. It 

showed that the additional fin affect the heat transfer much.  
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ABSTRAK 

 

Sirip digunakan untuk meningkatkan pemindahan haba dari permukaan panas ke udara. 

Pengalaman industri telah menunjukkan bahawa bagi kawasan permukaan yang sama, pelbagai 

sirip boleh memindahkan tenaga yang lebih daripada sirip tunggal. Analisis sirip tunggal sudah 

diketahui. Walau bagaimanapun, apabila sirip diletakkan di dalam aturan, corak perolakan 

menjadi konsisten dan pekali pemindahan haba yang terhasil tidak diramalkan. Tujuan projek ini 

adalah untuk mengkaji keberkesanan pelbagai sirip silinder berperingkat dengan dan tanpa sirip 

tambahan. Data eksperimen dari kajian digunakan untuk mendapatkan pekali pemindahan haba 

yang terhasil. Kajian eksperimental telah dijalankan melalui eksperimen oleh olakan bebas 

menggunakan bangku ujian. Sirip tambahan yang dibuat daripada aluminium dan dibina dalam 

bentuk plat terlebih dahulu sebelum disertakan dengan pelbagai silinder berperingkat. Daripada 

hasil pengukuran dan eksperimen, kajian menunjukkan nilai pekali pemindahan haba untuk 

pelbagai silinder dengan sirip tambahan yang lebih tinggi lebih daripada lima puluh peratus 

berbanding dengan tanpa sirip tambahan. Hubungan nombor Nusselt dengan pemindahan haba 

telah ditunjukkan melalui keputusan eksperimen. Keputusan eksperimen menunjukkan bahawa 

pelbagai sirip berperingkat silinder dengan sirip tambahan melakukan yang lebih baik dalam 

pemindahan haba daripada pelbagai sirip silinder berperingkat tanpa sirip tambahan. Ini 

menunjukkan bahawa kesan sirip tambahan pemindahan haba adalah banyak. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 GENERAL BACKGROUND 

 

Equipment that generates heat usually incorporates with fins. Finned surfaces are 

often employed to improve heat exchanging performance. On the other hand, for many 

years of efforts, the reduction of the size and cost of fins are the main targets of fin 

industries. Some engineering applications also require lighter fin with higher rate of heat 

transfer where they use high thermal conductivity metals in applications such as airplane 

and motorcycle applications.  

 

The continuing increase of power densities in microelectronics and simultaneously to 

reduce the size and weight of electronic product have led to the increased importance of 

thermal management issues in this industry. The temperature at the junction of an 

electronic package (chip temperature) has become the limiting factor determining the 

lifetime of the package.  

 

The most common method for cooling packages is the use of aluminum pin-fin heat 

sinks. These heat sinks provide a large surface area for the dissipation of heat and 

effectively reduce the thermal resistance of the package. They often take less space and 

contribute less to weight and cost of production. For these reasons, they are widely used in 

applications where heat loads are substantial and/or space is limited.  
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However, cost of high thermal conductivity metals is also high. Thus, the enhancement 

of heat transfer can be achieved by increasing the heat transfer rate and decreasing the size 

and cost of fin. The major heat transfer from surface to surrounding fluid takes place by 

convection process.  

 

Increasing the heat transfer mainly depend on heat transfer coefficient (h), surface area 

available and the temperature difference between surface and surrounding fluid. In this case 

of study, the optimal configuration for cylindrical fin array which is staggered cylindrical 

array with and without additional fin will be compare to determine the best performance of 

heat transfer through that type of fin. 

 

1.2 PROBLEM STATEMENT 

Since fins are used in many industrial fields, it is important to predict the 

temperature distribution within the fin in order to choose the configuration that provides 

maximum effectiveness. Otherwise, we have to provide a large surface area for the 

dissipation of heat and effectively reduce the thermal resistance of the package.  

Fins are measure based on its effectiveness to dissipate heat. Better heat transfer rate 

through fins will cause better performance of fins that led to its best effectiveness. The 

efficiency of fins related closely with many variables such as heat transfer coefficient and 

fin configuration. Through this study, cylindrical array with and without additional fin will 

be compared to find the effectiveness between both condition thus solve the problem of 

cylindrical fin effectiveness. 

 

1.3  OBJECTIVES 

1. Study the effectiveness of staggered cylindrical array with and without additional 

fin based on temperature distribution and heat flow.  

2. Perform and collect data experiment data by free convection. 

3. The result then compared with published result if available. 
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1.4 SCOPES OF PROJECT 

This project which based on experimental used test bench that available in 

Thermodynamic laboratory, University Malaysia Pahang as the main equipment. The test 

bench will be used to collect the temperature distribution in fins. The cylindrical fin and 

additional fin (plate) is made from aluminum which fabricated first before running the 

experiment. The experiment data then will be used to gain the heat transfer coefficient 

which based on cylindrical natural heat convection with two conditions which are 

cylindrical fin array with and without additional fin. The experimental result that obtained 

from this project will be compared with the published result on literature review if 

available.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 INTRODUCTION  

 

This chapter will discusses about the previous related study and researches on fin. 

The sources of the review are extracted from journals, articles, reference books and 

internet. The purpose of this section is to provide additional information and relevant facts 

based on past researches which related to this project. This chapter will cover the 

corresponding terms such as the fundamental of heat transfer, fins and enhancement of heat 

transfer by fins which had been proved experimentally. 

 

2.2 HEAT TRANSFER 

 

2.2.1 Introduction 

 

Heat can be defined as the process by which energy transport takes place. When a 

physical body (object or fluid) is at a different temperature than it surroundings, transfer of 

thermal energy is known as heat transfer. This occurs in such a way that the body and the 

surroundings reach thermal equilibrium. Thus, heat always flows spontaneously from a hot 

material to a cold one (2nd Law of Thermodynamics). Transfer of energy occurs mainly 

through convection, conduction and radiation.  
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2.2.2 Concept of Boundary Layer 

Boundary layer is a layer of fluid in the immediate area of a bounding surface where 

effects of viscosity of the fluid are considered in detail. Laminar boundary layers come in 

various forms and can be classified according to its structure and the conditions under 

which they are created. The thickness of the velocity boundary layer is normally defined as 

the distance from the solid body at which the flow velocity is 99% of the free stream 

velocity.  

The boundary velocity is the velocity that is calculated at the surface of the body in 

an inviscid flow solution. The boundary layer represents a deficit in mass flow compared to 

an inviscid case with slip at the wall. It is the distance by which the wall would have to be 

displaced in the inviscid case to give the same total mass flow as the viscous case. 

The no-slip condition requires the flow velocity at the surface of a solid object be 

zero and the fluid temperature be equal to the temperature of the surface. The flow velocity 

will then increase rapidly inside the boundary layer, governed by the boundary layer 

equations. The thermal boundary layer thickness is similarly the distance from the body at 

which the temperature is 99% of the temperature found from an inviscid solution. 

The ratio of the two thicknesses is governed by the Prandtl number. If the Prandtl 

number is 1, the two boundary layers are the same thickness. If the Prandtl number is 

greater than 1, the thermal boundary layer is thinner than the velocity boundary layer. If the 

Prandtl number is less than 1, which is the case for air at standard conditions, the thermal 

boundary layer is thicker than the velocity boundary layer.  

At high Reynolds numbers, it is desirable to have a laminar boundary layer. This 

results in a lower skin friction due to the characteristic velocity profile of laminar flow. 

However, the boundary layer certainly thickens and becomes less stable as the flow 

develops along the body, and finally becomes turbulent, which is known as boundary layer 

transition. At lower Reynolds numbers, it is relatively easy to maintain laminar flow. 

 

 

http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/No-slip_condition
http://en.wikipedia.org/wiki/Prandtl_number
http://en.wikipedia.org/wiki/Reynolds_number
http://en.wikipedia.org/wiki/Laminar
http://en.wikipedia.org/wiki/Turbulent
http://en.wikipedia.org/wiki/Boundary_layer_transition
http://en.wikipedia.org/wiki/Boundary_layer_transition
http://en.wikipedia.org/wiki/Reynolds_number
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2.3  FUNDAMENTAL OF CONVECTIVE HEAT TRANSFER 

 

2.3.1 Introduction 

  

Convection is the mode of energy transfer between a solid surface and the adjacent 

liquid or gas that is in motion, and it involves the combined effects of conduction and fluid 

motion. Convection deals with the movement of a mass away from a heat source into an 

area of lower temperature or pressure. As the mass leaves the area, it carries energy with it 

which will dissipate to the cooler surroundings with a lower pressure.  

 

The equation that governs the rate of heat transfer by convection in a heat fin is 

known as Newton’s law of cooling  and is expressed as 

 

                                                 Q = hA (T - T∞ )                                                        (2.1) 

 

Where; 

Q= amount of heat transfer,  

h =convection heat transfer coefficient, 

As=heat fin surface area,  

T =temperature of the heat fin at a specific location 

T∞ =temperature of the surroundings.  

 

The heat transfer coefficient, h is not a property of fluid. It is an experimentally determined 

parameter whose value depends on all variables influencing convection such as surface 

geometry, the nature of fluid motion, the properties of fluid and the bulk fluid velocity. 
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Table 2.1: Typical values of convection heat transfer coefficient 

Type of convection   h , W/m
2
. °C 

Free convection of gases 

Free convection of liquids 

Forced convection of gases 

Forced convection of liquids 

Boiling and condensation 

 

 

 

 

 

 

 

 

 

 

2-25 

10-1000 

25-250 

50-20000 

2500-100000 

 

2.3.2 Force Convection 

The important components of forced convection heat transfer analysis are given by 

Newton's Law of Cooling 

                                                    Q= hA (Tw-T∞) = hA ∙∆T                                        (2.2) 

The rate of heat Q transferred to the surrounding fluid is proportional to the object's 

exposed area A, and the difference between the object temperature Tw and the fluid free-

stream temperature T∞. 

 

h comes from term of the convection heat-transfer coefficient. Other terms 

describing h include film coefficient and film conductance. 

Two-dimensional flow analysis over a flat plate serves well to illustrate several key 

concepts in forced convection heat transfer. 

The viscosity of the fluid requires that the fluid have zero velocity at the plate's surface. As 

a result a boundary layer exists where the fluid velocity changes from u∞ in the free stream 

(far from the plate) to zero at the plate. Within this boundary layer, the flow is initially 

laminar but can proceed to turbulence once the Reynolds Number Re of the flow is 

sufficiently high. The transition from laminar to turbulent for flow over a flat plate occurs 

in the range, 
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                                                   3 x 10
5
 < Rex < 3 x 10

6
 , 

                                                           Rex= 
    

 
                                                  (2.3) 

2.3.3  Natural Convection 

Natural convection or free convection is caused by buoyancy forces due to density 

differences caused by temperature differences in the fluid. At heating the density change in 

the boundary layer will cause the fluid to rise and be replaced by cooler fluid that also will 

heat and rise. This continues phenomena are called free or natural convection. Boiling or 

condensing processes are also referred as a convective heat transfer processes.  

The heat transfer per unit surface through convection was first described by Newton 

and the relation is known as the Newton's Law of Cooling. The equation for convection can 

be expressed as: 

                                                   q = k A dT                                          (2.4) 

where; 

q = heat transferred per unit time (W) 

A = heat transfer area of the surface (m
o
) 

k = convective heat transfer coefficient of the process (W/m
2
K or W/m

2o
C) 

dT = temperature difference between the surface and the bulk fluid (K or 
o
C) 

In natural convection, determining a series of dimensionless numbers helps to give 

optimum fin configuration in a given surface area. These dimensionless entities are: 

 Grashof number — the ratio of heated air buoyancy to viscous forces resisting air 

movement. 

http://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html
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 Prandtl number — the ratio of air momentum to thermal diffusivity. This tells the 

engineer the amount of internal stresses inside an airflow stream. Prandtl is the 

reciprocal of the Reynolds number used in forced-convection analysis. 

 Rayleigh number — the product of the Grashof and Prandtl number. This 

dimensionless number determines the type of airflow (laminar, transition, or 

turbulent along a heated fin surface). 

 

Table 2.2: Dimensionless numbers in natural convection 

 

 

2.4 CONDUCTION HEAT TRANSFER 

 

Conduction is a means of heat transfer where a material’s molecules will get excited 

by high temperatures and as a result, transfer energy throughout the material. As the 

molecules start to collide with each other, the material will begin to give off heat. This 

process occurs while the material is completely static. The equation that governs the rate of 

heat transfer by conduction in a heat fin is known as Law of Thermal Conduction and 

expressed as 

 

                                                         Q=kAc 
  

  
                                            (2.5) 

 

where;  

Q = rate of heat transfer by conduction, 

 k=  thermal conductivity of material, 

Parameter Formula Interpretation 

Grashof Number: 
Gr=

      

  
 

Ratio of fluid buoyancy stress to viscous 

stress.  

Rayleigh Number: Ra=Gr∙Pr   
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 Ac= cross-sectional area of the heat fin,  

  

  
= variation of temperature with respect to position. 

 

 

2.5 RADIATION OF HEAT TRANSFER 

 

Radiation is the energy emitted by matter in the form of electromagnetic waves or 

photon as a result of the changes in the electronic configurations of the atoms or molecules. 

It involves the movement of energy from a material by emanating thermal electromagnetic 

waves. These waves will carry energy with them away from the material in order to lower 

its temperature.  

The equation that governs rate of heat transfer by radiation is known as Stefan 

Boltzmann’s law and is expressed as 

 

                                              Q= σ eAs (T
4
-T

4
∞)                                          (2.6) 

 

where; 

 Q= amount of heat transfer,  

σ = Stefan-Boltzmann’s constant,  

e = heat fin’s emissivity,  

As= heat fin surface area,  

T= temperature of the heat fin at a particular location,  

T∞= temperature of the heat fin’s surroundings. 
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2.6 EXPERIMENTAL STUDIES 

 

2.6.1 Single Cylinders 

 

Heat transfer from circular cylinder in countless flow has been explored by many 

researchers. A summary of experimental correlations of heat transfer from single cylinder is 

given below. 

 

Table 2.3: Experimental correlation of single cylinder, Waqar Ahmed Khan (2004) 

 

 

 

 

Other experimental studies and their findings related to heat transfer from a single cylinder 

in an infinite flow are described below. 
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According to Eckert and Soehngren (1952), they investigated experimentally on the 

distribution of heat transfer coefficients around circular cylinder in cross flow at Reynolds 

number from 20 to 500. They found that the thermal boundary layers were quite thick, 

especially for the lower Reynolds numbers, with separation occurring further downstream 

than at high Reynolds numbers 

Moreover, the contribution of the stagnant region at the downstream side of the 

cylinder to the over-all heat transfer was low (≈ 15%), but the heat flow into the upstream 

side was much higher than into the downstream side. 

Cimtalay and Fulton (1994) used multiple trades off methods to study the parameter 

design of heat sink. They had developed a mathematical model to optimize and to evaluate 

a heat sink on chip.  

 

2.7 FINNED SURFACES 

 

Finned  surfaces  are  frequently  used  as  an  efficient  method of  rejecting  waste  

heat  from  electronic  equipment.  These  finned  surfaces,  commonly  known  as  heat  

sinks,  are  economical  and  highly  reliable  when  cooling  is  by  natural  convection and  

radiation.  Several  authors  have  developed  thermal  relationships  for  closed  channels  

and  parallel  plates,  but  there  were  only  one  general  analytical  model  for  fin arrays,  

that described  by  Fritsch (1970) .  Fritsch  neglects  temperature  variation  in the  base  

plate  and  use  parallel  flat  plate  relations  for  the convective  coefficient.   

However,  many  practical  heat  sink designs  consist  of  a  series  of  relative  

short  fins  which attached  to  a  heated  base  plate  and  cannot  be  accurately  

approximate by  parallel  flat  plates.  The  base  plate  creates  additional  surface area  and  

a  corner  geometry  have  a undesirable  effect  on  heat transfer rates. 

Additional  experimental investigations  have  been  conducted  by  lzume  and  

Nakamura (1965)  who  have  also  developed  a  mathematical  relationship describing  

heat  transfer  from  fin arrays.  However, the relationship  does  not  hold  in  the  limiting  

cases  of  very  large  or very  small  fin  length  to  fin  spacing  ratios  (L/S).  Donovan  

and Rohrer (1971) theoretically  investigated  the  radiative  and convective  heat  transfer  
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characteristics  of  heat conducting  fins on  a  plane  wall,  but  they  were  mostly  

concerned  with  the effectiveness  of  the  extended  surfaces  and  the  single  

contributions  of  radiation  and  convection  for  a  film  coefficient which  was  not  a  

function  of  the  fin  geometry.  

2.7.1 Configuration of fin 

a) Jubran et al.(1993) performed an experimental investigation on the effects of inter 

fin spacing, shroud clearance, and missing pins on the heat transfer from cylindrical 

pin fins arranged in staggered and in-line arrays. They found that the optimum inter 

fin spacing in both span wise and stream wise directions is 2.5D regardless of the 

type of array and shroud clearance used. They also found the effect of missing fins 

to be negligible for the in-line array but more significant for the staggered arrays.  

 

b) Later, Kai Shing Yang et al.(2007) performed experiment for the staggered 

arrangement, and find the heat transfer coefficient increases with the rise of fin 

density for pin fin heat sinks. For a staggered arrangement where deflection flow 

pattern vanishes, the elliptic pin fin yields slightly better performance than circular 

(cylinder) pin fin surface. 

 

c) Marster (1975) studied the heat transfer properties of a single vertical row of heated 

cylinders under natural convection and presented the result for variety of 

combinations of spacing and number of cylinder. 

 

d) Sparrow and Vemuri (1985) found that the rate of heat transfer from the fin 

baseplate assembly increased with increasing fin surface area 

 

 

2.7.2 Selection of Heat sink 

There are two type of heat sink which are closely packed fins and widely spaced. Both 

types of heat sink provide their own characteristics which are: 
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