IMPLEMENTATION OF PID CONTROLLER ON REVOLUTE CONTROL OF UNIVERSAL STRETCH AND BENDING MACHINE (USBM) SIMPLIFIED MODEL

NORASYIKIN BINTI JULIS

UNIVERSITI MALAYSIA PAHANG

IMPLEMENTATION OF PID CONTROLLER ON REVOLUTE CONTROL OF UNIVERSAL STRETCH AND BENDING MACHINE (USBM) SIMPLIFIED MODEL

NORASYIKIN BINTI JULIS

This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering (Hons.) (Power System)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER 2008

ii

"All the trademark and copyrights use herein are property of their respective owner. References of information from other sources are quoted accordingly; otherwise the information presented in this report is solely work of the author."

Signature :

Author

: NORASYIKIN BINTI JULIS

Date

: 12th NOVEMBER 2008

"I hereby acknowledge that the scope and quality of this thesis is qualified for the award of the Bachelor Degree of Electrical Engineering (Hons.) (Power System)"

 Signature
 :

 Name
 :

 MOHD SYAKIRIN BIN RAMLI

Date : <u>17th NOVEMBER 2008</u>

DEDICATION

Special dedicated to my family, my friends, my fellow colleague, and to all faculty members

For all your care, support, and believe in me

Sincerely, Norasyikin binti Julis.

ACKNOWLEDGEMENT

Praise to Allah for His help and guidance that we finally able to complete this report on Implementation of Integral Control PID controller on Revolute Control of Universal Stretch and Bending Machine (USBM) Simplified Model.

We would like to take this opportunity to extend my deepest gratitude to all parties that involved in this process of writing this report. But first of all, a special thanks to supervisor Mr. Mohd Syakirin Ramli and my academic advisor, Mr Syahrulnaim bin Mohamad Nawi for their tireless effort and on-going support, advice as well as guidance, without their help, my project would not have been completed successfully.

We also would like to extend heartfelt gratitude to Universiti Malaysia Pahang and Faculty of Electrical and Electronic Engineering for providing good accommodation for this project. A very big thank you dedicated to all the staff of Faculty of Electrical and Electronics Engineering for their helps.

Lastly, I would like to forward my very appreciation to my family for all their support and believe

ABSTRAK

Tujuan utama projek ini adalah untuk mengawal kedudukan motor arus terus (*DC motor*) yang merupakan salah satu bahagian dalam *universal stretch and bending machine*. Oleh itu, Pengawal Perkadaran Terus, Kamiran Pembezaan (*Proportional Integral Derivatives Controller*). Langkah pertama dalam projek ini adalah untuk memperoleh model matematik (*Mathematical model*) untuk motor arus terus sebelum pengawal pengawal perkadaran terus, kamiran pembezaan boleh digunakan. Setelah itu, antara bahagian penting dalam projek ini adalah untuk mereka algorithm pengawal iaitu mencari nilai pemalar perkadaran terus, K_p, pemalar kamiran, K_i dan pemalar pembezaan, K_d menggunakan *root locus tuning method*. Simulasi untuk kawalan motor arus terus dibuat bertujuan untuk menggunakan Pengawal PiD. Kemudian, pengawalan motor arus terus dihubungkan menggunakan Pengawal Logic Program Bolehubah (*Programmable Logic Controller,PLC*). Di dalam PLC, program *CX-Programmer* digunakan untuk melaksanakan pengawal menggunakan *ladder diagram*.

ABSTRACT

The aim of this project is to control DC motor position which is one component in USBM simplified model. Thus, the integral control, PID controller is used to control the position of the DC motor. Proportional-Integral Derivatives controller is widely used among the industries systems. At first stage of the project, the mathematical model of the plant, DC is derived before the PID controller is usable. The crucial part of designing the controller is tuning the three gains which are the Proportional gain, K_p, Integral gain, K_i, Derivatives gain ,K_D are performed using Root-locus tuning method. The simulation of the DC motor position control is done in order to understand the PID controller. After that the controller and DC motor are interfaced using Programmable Logic Controller, PLC. Using PLC, the controller is algorithm is implemented by using ladder diagram in CX-programmer software

TABLE OF CONTENT

CHAPTER

TITLE

PAGE

TITLE	i
DECLARATION	iii
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRAK	vii
ABSTRACT	viii
TABLE OF CONTENT	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATION	xvii
LIST OF SYMBOLS	xviii
LIST OF APPENDICES	XX

1	INTE	RODUCTION	1
	1.1	Background	1
	1.2	Overview	1

1.3	Problem Statement	3
1.4	Objective	3
1.5	Scope	4
1.6	Thesis Outline	4

2 LITERATURE REVIEW

2.1	Background	5
2.2	Universal Stretch and Bending Machine	5
2.3	DC Motor Position Control	6
2.4	Proportional Integral Derivatives Controller	6

3 METHODOLO		THODOLOGY	8
	3.1	Introduction	8
	3.2	Project Flowchart	9
	3.3	DC motor Modelling	11
	3.4	Simulation Using MATLAB	13
		3.4.1 PID tuning: Root Locus	13
	3.5	Wiring Installation of Programmable Logic Controller	17
	3.6	Setting of OMRON CJ1M	22

5

	3.6.1	Basic Input Output Unit Setting	23
	3.6.2	Special Input Unit (AD081-V1) Setting	27
	3.6.3	Special Output Unit (DA08V) Setting	31
3.7	Program	mming Using PLC	35
	3.7.1	Programming Without PID Controller	35
	3.7.1	Programming With PID Controller	36
	3.7.2.1	Proportional Integral Derivatives Auto-tuning block Setting	38

4 RESULT AND DISCUSSION 41

4.1	Background	41
4.2	Simulation Result	41
4.3	Hardware implementation	50
4.4	PLC Programming	52
	4.4.1 Programming without controller	52
	4.4.2 Programming with PID controller	53

5 CONCLUSION AND RECOMMENDATION 55

5.1	Conclusion	55

5.2	Recommendation	56
5.3	Costing and commercialization	57

REFERENCES	59

APPENDICES

61

APPENDIX	SCHEMATIC DIAGRAM OF MAIN	61
Α	CIRCIUT	
APPENDIX	SCHEMATIC DIAGRAM OF BASIC	62
В	INPUT UNIT	
APPENDIX	SCHEMATIC DIAGRAM OF BASIC	63
С	OUTPUT UNIT	
APPENDIX	MATLAB SIMULATION	64
D		
APPENDIX	PLC PROGRAM WITHOUT	69
Е	CONTROLLER	
APPENDIX	PLC PROGRAM WITH CONTROLLER	71
F		
APPENDIX	DC MOTOR DATASHEET	75
G		
APPENDIX	ANALOG INPUT UNIT DATASHEET	77
Н		
APPENDIX I	ANALOG OUTPUT UNIT DATASHEET	78

LIST OF TABLES

TABLE	TITLE	PAGE

3.1	Analog and Digital input and output	17
3.2	Current and power consumption of basic input output unit	18
3.3	Current and Power Consumption of main circuit	18
3.4	Function of main window	24
3.5	Starting Address	27
3.6	List of Device's Address	27
3.7	Function of CX-programmer block	38
4.1	Data of PID compensated system	44
4.2	Comparison of PID data between point A and point B	46
4.3	Data of system without controller	52

LIST OF FIGURES

FIGURES	TITLE	PAGE
3.1	Basic Project's Block Diagram	8
3.2	Project's Flowchart	10
3.3	DC motor schematic diagram	11
3.4	Block diagram of DC motor	12
3.5	Root Locus tuning method	16
3.6	Connection of Basic Input Unit	19
3.7	Connection of input	19
3.8	Connection of digital output load	20
3.9	Connection of Analog Output Unit	21
3.10	Orientation of OMRON CJ1M rack	21
3.11	CX-Programmer main window	23
3.12	Orientation of the rack in detail	24
3.13	Registering Input Output table	25
3.14	Selecting input output unit	25

FIGU	RES
------	------------

TITLE

PAGE

3.15	Selecting the start address type	26
3.16	Edit Slot Start Address	26
3.17	Dip Switch Setting	28
3.18	Unit Number Switch setting	29
3.19	Analog Input Unit (AD081-V1) table setting	29
3.20	Data Memory Area	30
3.21	Desired input channel setting	30
3.22	Setting Input range	31
3.23	Conversion and resolution time setting of Analog Output	31
3.24	Unit switch setting	32
3.25	Analog Output Unit (DA08V) table setting	33
3.26	Desired output channel setting	33
3.27	Setting output range	34
3.28	Conversion and resolution time setting of Analog Output	34
3.29	Analog Output Conversion enable bit setting	34
3.30	Flow Chart of Programming without PID controller	35
3.31	Flow Chart PID controller Programming	37
3.32	PIDAT ladder block	38
3.33	PID Parameter Setting	39

FIGURES

TITLE

PAGE

3.34	PID Auto-tuning Setting	40
4.1	Uncompensated system root locus	42
4.2	PD compensated system root locus	42
4.3	PID compensated system root locus	43
4.4	PD compensated root locus at Point B as Operating Point	45
4.5	Step response of Uncompensated system	48
4.6	Step response of PD compensated	49
4.7	Step Response of PID compensated system of point A	49
4.8	Step Response of PID compensated system of Point B	50
4.9	PLC panel	51
4.10	DC motor and Potentiometer	51
4.11	Output Versus Error graph	52

xvi

LIST OF ABBREVIATION

DC	-	Direct current
DM	-	Data memory
PB	-	Push button
PID	-	Proportional Integral Derivatives Controller
PIDAT	-	Proportional Integral Derivatives Auto-tuning
PLC	-	Programmable logic controller
USBM	-	Universal Stretch and Bending Machine

LIST OF SYMBOLS

ξ	-	Damping ratio
π	-	Pi
θ	-	Angular displacement
%OS	-	Percentage of Overshoot
$\omega_{r_{b}}$	-	Natural frequency
e(∞)	-	Steady State Error
В	-	Viscous Friction Coefficient
E_B	-	Induced voltage (V)
l _a	-	Armature current (A)
l_m	-	Equivalent moment inertia (kgm ²)
K _a	-	Torque constant (NmA ⁻¹)
K_b	-	Back emf constant (NmA ⁻¹)
$K_D K_3$	-	Derivatives gain
$K_i K_2$	-	Integral gain
$K_p K_1$	-	Proportional gain
K_{v}	-	Ratio of magnitude of compensator zero to compensator pole
R _a	-	Armature resistance (Ω)

T	-	Load torque (Nm)
т ¹ в	-	Electromagnetic torque (Nm)
7. p	-	Peak time
T_s	-	Settling time
Va	-	Armature Voltage (V)
x	-	Real part of operating point
y	-	Imaginary part of operating point
Z _c	-	Compensator zero

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
А	Schematic diagram of Main Circuit	61	
В	Schematic diagram of Basic Input Unit	62	
С	Schematic diagram of Basic Output Unit	63	
D	MATLAB simulation	64	
E	PLC program without controller	69	
F	PLC program with controller	71	
G	DC motor datasheet	75	
Н	Analog Input Unit Datasheet	77	
Ι	Analog Output Unit Datasheet	78	

CHAPTER 1

INTRODUCTION

1.1 Background

This chapter discussed about the project overview. The chapter also explains the application, problem statement, objectives, and scope of the project.

1.2 Overview

The fact is DC motors continued to be a significant fraction of machinery purchased each year through the 1960s. The factor of DC motor continuity usage is; one was that DC power systems are still common in cars, trucks and aircraft. Thus, it is makes sense that the usage of DC power system wills the usage of DC motor. Another application of DC motor was a situation which variation of speed and position is needed. In terms of power electronics, even if there is no DC power supply that is available, solid-state rectifier and chopper circuit were used to create necessary DC power and DC motor were used to provided desired speed and position. But now, the other method of control in industry is using controller to control the DC power supply and varied the supply so output will give desired position or speed. Then, it is important to understand the concept of DC motor.

The DC motor is a rotating electric machine designed to operate from direct voltage source. The basic type is a permanent magnet DC motor where the stator of a permanent magnet DC motor is built from two or more permanent magnet pole pieces. The rotor is consisted of windings which are connected to a mechanical commutator. The basic concept of DC motor operation is when the opposite polarities of the energized winding and the stator magnet attract to each other; the rotor will rotate until it is aligned with the stator. By the time the rotor reaches alignment, the brushes move across the commutator contacts and energize the next winding.

As the aim is to control DC motor position, the PID controller could be purposed. Since in today's world, there are variety of controller exist, thus PID controller is one of its alternative. Over the decades, PID control technology has undergone many changes and today the controller may be the standard utility routine within the supervisory system software, a dedicated hardware process controller unit or an input-output module within a programmable electronic system which can be used for controlling system construction [1]. Even though industrial prove that for many control problems, especially those of the process industries, the Proportional, Integral and Derivatives (PID) controller is the main controller that being used. For these industrial problems, the PID control module is a building block that provides the regulation and disturbance rejection for single loop, cascade and multi-loop and multi-input multi-output control schemes [1].

PID controller is an important control tool for three reasons which are past record of success, wide availability and the most important factor is the simplicity in use. These reasons reinforce one another, thereby ensuring that the more general framework of digital control with higher order controllers has not really able to displace PID control [1]. But, when the process situation demands a more sophisticated controller or a more involved controller solution to control a complex process, then it required advance techniques. Even though where complexity of the process demands a multi-loop or multivariable control solution, a network based on PID control building blocks is often used. Moreover, in this project it is important to understand the basic concept and application of universal stretch and bending machine. Thus, an article on USBM published by Lewa Attendorn gives a rough idea about the application of USBM in industry. Besides, there are several technical papers that related to this project. One of it is a paper on "A Sensorless Position Control System by Salient Pole Brushless DC Motor" by Nobuyuki Kasa and Hiroshi Watanabe. Besides, a paper on methods of tuning PID controller shows the alternative in tuning PID controller that written by Dong Hwa Kin titled Tuning PID controller Using Gain/ Phase Margin and Immune Algorithm.

1.3 Problem Statement

In this project PID controller is applied to control the position of the DC motor have been connected to potentiometer. As usual, using PID controller, the challenge is in tuning the parameters of the PID controller which are proportional gain, K_p , integral gain, K_i and derivatives gain, K_d . Then, the Programmable Logic Controller is used to interface the PID controller to control the DC motor. But, the Programmable Logic controller used supposes to offer analog as output.

1.4 **Objectives**

There are three objectives of this project that are to design a control system for revolute control of USBM using PID controller. Besides, the project also needs to simulate the suitable program, which is chosen based on controller used for the system. Lastly, the third objective is to interface the supervisory PLC that implement PID controller in controlling the DC motor of USBM.