
 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS♦

 JUDUL:

SESI PENGAJIAN:___ ____ _________

Saya _______ _____________

2008/2009

________________CHESS DIGITAL CLOCK_____________

__
(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

NO. 1, JLN. INDAH 5, SG.JELOK, NURUL HAZLINA BINTI NOORDIN
43000 KAJANG, (Nama Penyelia)
SELANGOR.

Tarikh: 12 NOVEMBER 2008 Tarikh: : 12 NOVEMBER 2008

 ROSMIRA BINTI ROSLAN (860925-14-5122)

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

CHESS DIGITAL CLOCK

ROSMIRA BINTI ROSLAN

UNIVERSITI MALAYSIA PAHANG

“I hereby acknowledge that the scope and quality of this thesis is qualified for the award of the

Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __

 Name : NURUL HAZLINA BINTI NOORDIN

 Date : 12 NOVEMBER 2008

CHESS DIGITAL CLOCK

ROSMIRA BINTI ROSLAN

This thesis is submitted as partial fulfillment

of the requirements for the award of the Bachelor of

Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER 2008

Source code for Menu

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity first is

port (clk, reset : in std_logic;

 swA : in std_logic;

 swB : in std_logic;

 swC : in std_logic;

 outA : out std_logic;

 outB : out std_logic;

 outC : out std_logic);

end first;

architecture Behavioral of first is

begin

process (swA,swB,swC,reset,clk) begin

if reset = '1' then outA <= '0'; outB <= '0' ; outC <= '0';

else if (clk'event and clk='1') then

 if swA = '1' then outA <= '1'; outB <= '0' ; outC <= '0';

 else if swB = '1' then outB <= '1'; outA <= '0' ; outC <= '0';

 else if swC = '1' then outC <= '1'; outA <= '0' ; outB <= '0';

end if;

end if;

end if;

end if;

end if;

end process;

end Behavioral;

Source code for Blitz

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity b is

Port(clk, reset : in std_logic;

 count : in std_logic;

 s_2, m_2 : buffer integer range 0 to 60;

 j_2 : buffer integer range 0 to 10);

end b;

architecture Behavioral of b is

signal temp_s2, temp_m2 : integer range 0 to 60;

signal temp_j2 : integer range 0 to 10;

begin

process (clk,reset) begin

 if reset = '1' then temp_s2 <= 0;

 else if (clk'event and clk='1') then

 if count = '1' then temp_s2<= temp_s2-1;

 if temp_s2 = 0 then temp_s2 <=59; temp_m2<= temp_m2-1;

 if temp_m2 =0 then temp_m2 <=59; temp_j2<= temp_j2-1;

end if;

end if;

end if;

end if;

end if;

end process;

 s_2 <= temp_s2 ;

 m_2 <= temp_m2 ;

 j_2 <= temp_j2 ;

end Behavioral;

Source code for Standard (1)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity se is

Port(clk, reset : in std_logic;

 count : in std_logic;

 infopponent : in std_logic;

 s_3, m_3 : buffer integer range 0 to 60 ;

 j_3 : buffer integer range 0 to 10);

end se;

architecture Behavioral of se is

signal temp_s3, temp_m3 : integer range 0 to 60 ;

signal temp_j3 : integer range 0 to 10;

begin

process (clk,reset) begin

 if reset = '1' then

 temp_s3 <= 0;

 temp_m3 <= 30;

 temp_j3 <= 1;

 else if (clk'event and clk='1') then

 if count = '1' then temp_s3<= temp_s3-1;

 if infopponent = '1' then temp_s3 <= temp_s3+30;

 else if temp_s3 = 0 then temp_s3 <= 59; temp_m3 <= temp_m3-1;

 else if temp_m3 = 0 then temp_m3 <= 59; temp_j3 <= temp_j3-1;

 else if temp_j3 = 0 then temp_j3 <= 9;

 else if temp_s3 > 59 then temp_s3 <= temp_s3-60; temp_m3 <= temp_m3

+1;

 else if temp_m3 > 59 then temp_m3 <= temp_m3-60; temp_j3 <= temp_j3

+1;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end process;

 s_3 <= temp_s3 ;

 m_3 <= temp_m3 ;

 j_3 <= temp_j3 ;

end Behavioral;

Source code for Standard (2)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sg is

Port(clk, reset : in std_logic;

 count : in std_logic;

 infopponentg : in std_logic;

 trigger : buffer integer range 0 to 41;

 s_4, m_4 : buffer integer range 0 to 60 ;

 j_4 : buffer integer range 0 to 10);

end sg;

architecture Behavioral of sg is

signal temp_s4, temp_m4 : integer range 0 to 60 ;

signal temp_j4 : integer range 0 to 10;

signal temp_trigger : integer range 0 to 41;

begin

process (clk,reset) begin

 if reset = '1' then

 temp_s4 <= 0;

 temp_m4 <= 30;

 temp_j4 <= 1;

 else if (clk'event and clk='1') then

 if count = '1' then temp_s4<= temp_s4-1;

 if infopponentg = '1' then temp_s4 <= temp_s4+30;

temp_trigger <= temp_trigger + 1;

 else if temp_trigger = 40 then temp_m4 <= temp_m4 + 40;

 else if temp_s4 = 0 then temp_s4 <= 59; temp_m4 <= temp_m4-1;

 else if temp_m4 = 0 then temp_m4 <= 59; temp_j4 <= temp_j4-1;

 else if temp_j4 = 0 then temp_j4 <= 9;

 else if temp_s4 > 59 then temp_s4 <= temp_s4-60; temp_m4 <= temp_m4

+1;

 else if temp_m4 > 59 then temp_m4 <= temp_m4-60; temp_j4

<= temp_j4 +1;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end if;

end process;

 s_4 <= temp_s4 ;

 m_4 <= temp_m4 ;

 j_4 <= temp_j4 ;

 trigger <= temp_trigger ;

end Behavioral;

Source code for port map

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity standard is

port (clk_T, reset_T : in std_logic;

 swA_T : in std_logic;

 swB_T : in std_logic;

 swC_T : in std_logic;

 info_T : in std_logic;

 infog_T : in std_logic;

 trigger_T : buffer integer range 0 to 41;

 s_2T, m_2T : buffer integer range 0 to 60;

 j_2T : buffer integer range 0 to 10;

 s_3T, m_3T : buffer integer range 0 to 60;

 j_3T : buffer integer range 0 to 10;

 s_4T, m_4T : buffer integer range 0 to 60;

 j_4T : buffer integer range 0 to 10);

end standard;

architecture structural of standard is

component first

port (clk, reset : in std_logic;

 swA : in std_logic;

 swB : in std_logic;

 swC : in std_logic;

 outA : out std_logic;

 outB : out std_logic;

 outC : out std_logic);

end component;

component b

port (clk, reset : in std_logic;

count : in std_logic;

 s_2, m_2 : buffer integer range 0 to 60;

 j_2 : buffer integer range 0 to 10);

end component;

component se

port (clk, reset : in std_logic;

 count : in std_logic;

 infopponent : in std_logic;

 s_3, m_3 : buffer integer range 0 to 60;

 j_3 : buffer integer range 0 to 10);

end component;

component sg

port (clk, reset : in std_logic;

count : in std_logic;

 infopponentg: in std_logic;

 trigger : buffer integer range 0 to 41;

 s_4, m_4 : buffer integer range 0 to 60;

 j_4 : buffer integer range 0 to 10);

end component;

signal bus_1: std_logic;

signal bus_2 :std_logic;

signal bus_3 :std_logic;

begin

U1 : first port map (clk=>clk_T,

 reset=>reset_T,

 swA=>swA_T,

 swB=>swB_T,

 swC=>swC_T,

 outA=>bus_1,

 outB => bus_2,

 outC => bus_3);

U2 : b port map (clk=>clk_T,

 reset=>reset_T,

 count=>bus_1,

 s_2=>s_2T,

 m_2=>m_2T,

 j_2=>j_2T);

U3 : se port map (clk=>clk_T,

 reset=>reset_T,

 count=>bus_2,

 infopponent=>info_T,

 s_3=>s_3T,

 m_3=>m_3T,

 j_3=>j_3T);

U4 : sg port map (clk=>clk_T,

 reset=>reset_T,

 count=>bus_3,

 infopponentg=>infog_T,

 trigger=>trigger_T,

 s_4=>s_4T,

 m_4=>m_4T,

 j_4=>j_4T);

end structural;

NO PAGE NUMBER FOR APPENDICES

i

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : ROSMIRA BINTI ROSLAN

Date : 12 NOVEMBER 2008

ii

To my beloved father and mother

Mr. Haji Roslan Bin Haji Mohd Noor

Mrs. Hajjah Nor Hayati Binti Haji Ramlan

iii

ACKNOWLEDGEMENT

First, I want to express my grateful to ALLAH s.w.t for blessing and

giving me enough courage in achieving the objectives of my final year project

(PSM).

I would like to express my sincere thanks to my supervisor, Mrs. Nurul

Hazlina binti Noordin for her sincere support and supervising this project. Not to

forget, the special thank to all UMP lecturers and technicians who had helped

directly or indirectly.

My appreciates to Mr. Reza Ezuan bin Samin, Final Year Project

Coordinator who acted promptly to the student’s problem.

I also like to acknowledge the contributions of my colleagues, especially

final year students of Electric and Electronics Engineering 2008, which has

openhandedly and kindly assisted and supported me to make this project successful.

Last, but not least, I am always indebted to my dearest family, for their love

and prey on me throughout this project. I always appreciate and treasured the great

cooperation, kindheartedness and readiness to share worth experiences that have

been shown by them.

iv

ABSTRACT

 The purpose of my project is to design and implement of the Chess Digital

Clock. The project employs ISE software (ISE Design Suite 10.1) and

implementation on Field-Programmable Gate Arrays (FPGAs) Xilinx board. It is a

new technique for testing the interconnects of an arbitrary design mapped into an

FPGA. Field-Programmable Gate Arrays (FPGAs) have become one of the key

digital circuit implementation media over the last decade. A crucial part of their

creation lies in their architecture, which governs the nature of their programmable

logic functionality and their programmable interconnect. The experimental result on

various benchmarks using the ISE software is on its simulation. The software is

designed using VHDL code. Digital circuit modeling with hardware description

languages (HDLs) is the key to modern design of integrated circuits (ICs). The state-

of-the-art technique of designing complex digital systems and integrated circuits is

to apply an HDL-based CAD approach, in which a high-level, text-based, abstract

description of the circuit is created, then synthesized to a hardware implementation

in a selected technology, and finally verified for its functionality and timing.

v

ABSTRAK

Tujuan projek saya ini adalah untuk menghasilkan dan melaksanakan jam

catur digital. Projek ini mengunakan perisian ISE (ISE Design Suite 10.1) dan

pelaksanaan diatas panel Field-Programmable Gate array (FPGAs) Xilinx. Ini

merupakan teknik baru untuk menguji plan pnyambungan dalaman yang secara

rawak yang dipetakan ke dalam FPGA. Field-Programmable Gate Array (FPGAs)

telah menjadi salah satu kunci pelaksanaan litar digital media selama sepuluh

tahun. Satu bahagian penting dari penciptaan alat ini terletak pada plannya, yang

di mana sifat dan fungsi penyambungan dalaman litar. Percubaan pada berbagai

hasil yang menggunakan perisian ini adalah pada simulasi. Perisian yang dirangka

ini adalah dengan menggunakan kod VHDL. Model litar digital dengan hardware

description languages (HDLs) merupakan kunci untuk rancangan litar terpadu

(ICs) yang baru. Teknik untuk merancang sistem digital yang sukar dan litar

terpadu adalah untuk menyerapkan ke atas HDL berdasarkan pendekatan CAD,

yang tinggi, berdasarkan teks, abstrak keterangan mengenai litar yang dibuat, dan

kemudian sintesiskan ke atas model yang dipilih dalam pelaksanaan teknologi, dan

akhirnya disahkan mengikut fungsi dan waktu.

vi

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION i

 DEDICATION ii

 ACKNOWLEDGEMENT iii

 ABSTRACT iv

 ABSTRAK v

 TABLE OF CONTENTS

LIST OF TABLES

 vi

 ix

 LIST OF FIGURES

LIST OF ABBREVIATIONS

LIST OF APPENDICES

 x

 xii

 xiii

1 INTRODUCTION 1

 1.1 Background 1

 1.2 Overview of Chess Digital Clock 2

vii

 1.3 Project Objectives 4

 1.4 Project Scopes

1.5 Thesis Outline

 4

 5

2 BACKGROUND 6

 2.1 Background 6

 2.2 ISE Software 6

 2.2.1 ISE Design Suite 10.0 7

 2.3 Field-Programmable Gate Arrays (FPGAs) 8

 2.3.1 FPGA Xilinx Board 9

 2.4 Time Control

 2.4.1 Blitz

 2.4.2 Standard (1)

 2.4.3 Standard (2)

 10

 10

 11

 12

3 DESIGN 13

 3.1 Introduction 13

 3.2 Flowchart and Coding Design

 13

4 RESULT AND DISCUSSION 22

 4.1 Introduction 22

 4.2 RTL Schematics 22

 4.3 Behavioral Simulation 26

viii

 4.4 Implementing FPGAs 31

 4.4.1 Synthesis 33

 4.4.2 The Constraints File

 4.4.3 FPGA Reports

 33

 34

5 CONCLUSION AND RECOMMENDATION 36

 5.1 Conclusion 36

 5.2 Design Challenge 37

 5.3 Recommendation

5.4 Costing and Recommendation 38

 37

REFFERENCES 39

APPENDIX A 40

APPENDIX B 41

APPENDIX C 42

APPENDIX D 43

APPENDIX E 44

ix

LIST OF TABLES

TABLE NO. TITLE PAGE

4.1 Menu Relationship 27

4.2 Blitz Relationship 28

4.3 Standard (1) Relationship 30

4.4 Standard (2) Relationship 31

x

LIST OF FIGURES

FIGURE NO. CAPTION PAGE

1.1 General Design Flow 4

3.1 Menu Flowchart 14

3.2 Important Part in Menu Design 15

3.3 Blitz Flowchart 16

3.4 Important Part in Blitz Design 16

3.5 Standard (1) Flowchart 17

3.6 Important Part in Standard (1) Design 18

3.7 Standard (2) Flowchart 19

3.8 Important part in Standard (2) Design 20

3.9 Important Part in Port Map Design 21

4.1 Menu’s Top and Bottom View Model 23

4.2 Blitz’s Top and Bottom View Model 23

4.3 Standard (1)’s Top and Bottom View Model 24

4.4 Standard (2)’s Top and Bottom View Model 25

4.5 Top Level’s Top and Bottom View Model 26

xi

4.6 Menu Simulation 27

4.7 Blitz Simulation 28

4.8 Standard (1) Simulation 29

4.9 Standard (2) Simulation 30

xii

LIST OF ABBREVIATIONS

ASSP – Application-Specific Standard Product

CLB – Configurable Logic Block

FPGA – Field-Programmable Gate Array

HDL – Hardware Description Language

LUT – Look-Up Table

MXE – ModelSim Xilinx Edition

VHDL – Very High-speed integrated circuit Hardware Description Language

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Source code for Menu 40

B Source code for Blitz 41

C Source code for Standard (1) 42

D Source code for Standard (2) 43

E Source code for port map 44

1

CHAPTER 1

INTRODUCTION

1.1 Background

This chapter focuses on the methodologies for the development and

implementation of the Chess Digital Clock project. The project includes the ISE

software coding (ISE Design Suite 10.1) and FPGA Xilinx board.

In very general terms, coding can be said that the communication between

human and technologies. One example of an application is a Chess Digital Clock.

This application (software coding) executes on FPGA board (technology) that can

support that application.

This chapter also explains the overview of Chess Digital Clock project, the

objectives of the project, project scopes and thesis outline.

2

1.2 Overview of Chess Digital Clock

Sport is an activity that is governed by a set of rules or customs and often

engaged in competitively. Sports commonly refer to activities where the physical

capabilities of the competitor are the sole or primary determiner of the outcome

(winning or losing), but the term is also used to include activities such as mind sports

(a common name for some card games and board games with little to no element of

chance) and motor sports where mental acuity or equipment quality are major factors.

[6]

Besides casual games without exact timing, chess is also played with a time

control, mostly by club and professional players. If a player's time runs out before the

game is completed, the game is automatically lost. The timing ranges from long

games played up to seven hours to shorter rapid chess games lasting usually 30

minutes or one hour per game. Even shorter is blitz chess with a time control of three

to fifteen minutes for each player and bullet chess (under three minutes). [7]

The development of this Chess Digital Clock consists of two parts. Project

part one which is concentrate on software coding. The software that is used in this

project is ISE software in VHDL code. The software coding started with ISE 6.0 and

its simulation done with MXE (ModelSim Xilinx Edition). After the several months

the using software of ISE 6.0 changes to the latest version which is ISE 10.0. This

latest version of ISE software is much easier in the simulation. ISE Design Suite 10.1

includes the Integrated Software Environment (ISE), ChipScope Pro, Xilinx

Embedded Development Kit (EDK), DSP Tools (including AccelDSP and System

Generator), and Plan Ahead/PlanAhead Lite. It also describes how to use Xilinx

online documentation.

http://en.wikipedia.org/wiki/Activity
http://en.wikipedia.org/wiki/Game_of_skill
http://en.wikipedia.org/wiki/Card_game
http://en.wikipedia.org/wiki/Board_game
http://en.wikipedia.org/wiki/Motor_sport
http://en.wikipedia.org/wiki/Time_control
http://en.wikipedia.org/wiki/Time_control
http://en.wikipedia.org/wiki/Rapid_chess
http://en.wikipedia.org/wiki/Blitz_chess
http://en.wikipedia.org/wiki/Bullet_chess

3

The second part of the project is concentrate in implementing the software to

the FPGA board. FPGA board that used in the project is FPGA Xilinx board. FPGA

requires user hardware programming to perform the desired operation. Xilinx Spartan

FPGAs are ideal for low-cost, high-volume applications and are targeted as

replacements for fixed-logic gate arrays and ASSP products such as bus interface

chip sets.

Figure 1.1 shows the methodology of the Chess Digital Clock. The first step

is to design the digital concept. The designer should familiar with the module which

has to be design. This is the part of starting the coding. The design entry where is the

design is created and entered into the computer in the form of an HDL source code,

using a design entry tool. After all modules have been completely designed, the final

design is portmapping. Port-map is the place where is the combination of all

modules. It is a method for associating signals with their respective ports.

After a design is generated, the resulting VHDL code may be simulated for

the behavior of the designed circuit using a VHDL (very high-speed integrated circuit

hardware description language) simulation tool. The VHDL code generated from

design entry tool is passed to the synthesis module, converting the code to a logic

netlist file.

The netlist obtained from the synthesis tool may be verified for design

correctness using a functional simulation tool. The netlist file is converted to a

physical design in the target implementation technology. Where each logic function

is mapped (implemented) to the logic elements available in the target chip.

The physical layout obtained from implementation process can be simulated to

verify the design, but this time, with timing information.

4

Figure 1.1 : General Design Flow

1.3 Project Objectives

 The overall target of the whole project is to allow people playing chess

interestingly. However the objectives of the project are display the three time

controls in numbers and implement the design onto FPGA board.

1.4 Project Scopes

 This project is concentrates on the time of playing chess according to the type

of playing through the display Chess Digital Clock. The ISE 10.0 software is used to

construct the project that contain three different setting time of playing chess. The

successful in simulation of the design is one of the scopes of the project. To achieve

the objective of the project, the three different setting times of playing chess need to

5

implement in the FPGA Xilinx board. The product of the project help the user of the

digital clock go easier while playing chess.

1.5 Thesis Outline

Chapter 1 focuses on the methodologies for the development and

implementations of the user of the Chess Digital Clock. It gives a brief the steps and

the purpose of the Chess Digital Clock.

 Chapter 2 explains the background of the ISE software and FPGA Xilinx

board and the relationship of each part in develop Chess Digital Clock. The concept

of the software and the FPGA board are the two essentials concept as a guide to the

construction of Chess Digital Clock. In this chapter also explain the three rules of

playing chess for designing the system.

Chapters 3 explain and discuss the process of using and control the chess

clock. It discusses the brief review of how the Chess Digital Clock works and the

algorithm of the user.

Chapter 4 discusses all the result obtained and the limitation of the project.

All discussions are concentrating on the result and the overall performance of the

project

Chapter 5 discusses the conclusion of development of whole the system. This

chapter also discusses the problem and the recommendation for this project and

overall of the system for the future development or modification. Besides that, this

chapter also explains about the costing and commercialization.

6

CHAPTER 2

BACKGROUND

2.1 Background

This chapter explains the background of ISE Software and FPGA Xilinx

board and the relationship of each part in develop Chess Digital Clock. These are the

main tools as a guide to the development of the Chess Digital Clock. Else in this

chapter, also explain about the three of the chess time control game. These rules of

the chess game must be considered to design the concept of the Chess Digital Clock.

2.2 ISE software

WebPack is a shell script for automatically packing Web sites by shrinking

them without affecting their functionality or appearance. It is also useful for lossless

shrinking image collections and locating corrupt files. It works by stripping

unnecessary information and optimizing the compression of images, and by removing

comments/whitespace from HTML, using readily-available tools. [1]

A Webpack is a packaged service to make top quality web sites accessible to

small businesses at minimal cost. A Webpack sites contain everything that a small

business requires to project a professional image online. Individual Webpack ISE

7

modules give you the ability to tailor the design environment to your chosen PLDs as

the preferred design flow. In general, the design flow for FPGAs and CPLDs is

identical. You can choose wether to enter the design in schematic form or in HDL,

such as VHDL, Verilog or ABEL. The design can also comprise of a mixture of

schematic diagrams and embedded HDL symbols. There is also a facility to create

state machines in a diagrammatic form and let the software tools generate optimized

code from a state diagram. WebPACK ISE software incorporates a Xilinx version of

the ModelSim simulator from Model Technology (a Mentor Graphics company),

referred to as MXE (ModelSim Xilinx Edition). This powerful simulator is capable of

simulating functional VHDL before synthesis, or simulating after the implementation

process of timing verification. WebPACK ISE software offers an easy-to-use GUI to

visually create a test pattern. A testbench is then generated and compiled into MXE,

along with the design under test. The flow diagram below shows the similarities and

differences between CPLD and FPGA software flows. [2]

Xilinx programmable logic solutions help minimize risks for electronic

equipment manufacturers by shortening the time required to develop products.

Webpack ISE design software offers a complete design suite based on the Xilinx ISE

series software.

2.2.1 ISE Design Suite 10.0

For this project, the design is enter in HDL (Hardware Description

Language), which is VHDL code.

VHDL is an industry standard language for modeling digital circuits. It is

intended for design documentation and simulation. The basics of VHDL are

including VHDL Design Unit, VHDL Data Object and Types, and VHDL operators.

8

A typical VHDL module consists of library declarations, an entity, and architecture.

The library declarations are needed to tell the compiler which packages are required.

Webpack ISE software incorporates a Xilinx version of the ModelSim

simulator from Model Technology (a Mentor Graphics company), referred to as

MXE (ModelSim Xilinx Edition). This powerful simulator is capable of simulating

functional VHDL before synthesis, or simulating after the implementation process for

timing verification.

Individual can design and verify the unique circuits in Xilinx programmable

devices much faster than by choosing traditional methods such as mask-programmed,

fixed logic gate arrays.

2.3 Field Programmable Gate Arrays (FPGAs)

 Short for Field-Programmable Gate Array, a type of logic chip that can be

programmed. An FPGA is similar to a PLD, but whereas PLDs are generally limited

to hundreds of gates, FPGAs support thousands of gates. They are especially popular

for prototyping integrated circuit designs. Once the design is set, hardwired chips are

produced for faster performance. [3]

 A field-programmable gate array is a semiconductor device containing

programmable logic components called logic blocks, and programmable

interconnects. Logic blocks can be programmed to perform the function of basic

logic gates such as AND, and XOR, or more complex combinational functions such

as decoders or mathematical functions. In most FPGAs, the logic blocks also include

memory elements, which may be simple flip-flops or more complete blocks of

memory.

http://www.webopedia.com/TERM/F/chip.html
http://www.webopedia.com/TERM/F/PLD.html
http://www.webopedia.com/TERM/F/integrated_circuit_IC.html
http://www.webopedia.com/TERM/F/hardwired.html
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Flip-flop_(electronics)

9

 Field-Programmable Gate Arrays (FPGAs) have become one of the key

digital circuit implementation media over the last decade. A crucial part of their

creation lies in their architecture, which governs the nature of their programmable

logic functionality and their programmable interconnect. FPGA architecture has a

dramatic effect on the quality of the final device’s speed performance, area

efficiency, and power consumption.

2.3.1 FPGA Xilinx board

The ISE™ design flow comprises the following steps: design entry, design

synthesis, design implementation, and Xilinx® device programming. Design

verification, which includes both functional verification and timing verification, takes

places at different points during the design flow. [5]

In this project, using FPGA Xilinx board is the best choose. This is the latest

upgrade product of Xilinx. Xilinx is also actively developing breakthrough

technology that will enable the hardware in Xilinx-based systems to be upgraded

remotely over any kind of network – including the Internet – even after the

equipment has been shipped to a customer.

Xilinx Spartan FPGAs are ideal for low-cost, high-volume applications and

are targeted as replacements for fixed-logic gate arrays and ASSP (Application-

Specific Standard product) products such as bus interface chip sets.

10

2.4 Time Control

Chess clock are really two connected clocks. While player A is thinking, his

clock is running and the player B clock is stopped. Once the player A makes a move

and he hit the clock, which stop his clock and starts the player B clock. There is only

one clock running at a time because, each player gets their own separate amount of

time. This is to allow for the fact that some moves take only a few seconds to play,

while others might take several minutes, depending on the complexity of the

position.

The term time control refers to the amount of time each player has to make

some or all moves during a game. The three different kinds of time control are Blitz,

Standard (1) and Standard (2). The different names distinguish the different

maximum duration of a game.

2.4.1 Blitz

In Blitz chess, each player gets a fixed amount of time for the entire game.

For example of Blitz kind of time control is five minutes per side game. Each player

gets five minutes on their clock, so the time might be set to 4:55 on each side.

As the player with White is thinking about the first move, his clock is

running. After a few seconds, he makes the move and hits his clock. This starts his

11

opponent's clock. He can take as much time as he wants to for each move. Then he

hits his clock. This goes on, back and forth.

In Blitz, when the five minutes is up, the person’s clock is the first one out of

time, he lose, regardless of the position on the board unless his opponent has

insufficient material to mate. Blitz chess is very exciting, and lots of fun for social

games and one-day tournaments.

2.4.2 Standard (1)

Most serious international tournaments, and many amateur tournaments, use a

Standard (1) (quota system) for time controls. As in Blitz, each player gets their own

time, and need to finish their game in the time that allocated. The difference is that

the player will be given more time to continue playing. That is mean some extra time

will be added to their time when the game is running.

Each player also gets a fixed amount of time for the entire game. But when

the players hit his clock after make their move, then their time will get 30 seconds

extra time to they continue the game. Every time when they hit their clock, the will

be added 30 seconds at their clock. This make the game held longer than Blitz. The

rest of the game runs the same with the Blitz method.

12

2.4.3 Standard (2)

The newest wrinkle in time controls is standard (2). This fact holds a patent

on a mechanical chess clock which provides an increment to an adopted a digital

increment clock as the standard clock for the game.

This is an advanced method of Standard (1) of time control. Players also get

to carry forward any extra time. In Standard (1), after a player makes a move and

they hit the clock, his time will be added 30 seconds extra time. This rule is same in

Standard (2) method.

The different is when the player had make 40 moves and that is mean they hit

the clock for 40 times, this time the extra time that will be added is 40 minutes. So,

the players get longer time to complete their game. After that, the clock will continue

the same condition which is 30 seconds once their hit the clock. The players will

realize that they both have more time that they started with.

13

CHAPTER 3

DESIGN

3.1 Introduction

Before looking at the detail of the software implementation in this chapter, it

is best to begin with brief review of how the Chess Digital Clock works with the

type of time playing chess game.

There are three different types of time playing chess game which are Blitz,

Standard (1) and Standard (2). There are extra designs for this project instead of for

the three time control.

3.2 Flowchart and coding design

The flowchart in Figure 3.1 explains for the Menu design. If the reset is ‘1’,

then the output is to be ‘0’ for outA, outB and outC. When if clock is ‘1’ (positive

edge), and switch A (swA) is ‘1’ then the outA is ‘1’. OutA is assigned for Blitz type

of playing. Same goes for switch B (swB) and switch C (swC), where if outB is ‘1’,

then the game follow the Standard (1) and outC follow the Standard (2) type of

playing chess. If there is no condition, the processes go for the previous step.

14

Figure 3.1: Menu Flowchart

Figure 3.2 shows the important part in doing the source code for the Menu

design. The process that took part is the three inputs of switches, reset and internal

clock. In the programming, it is states the three conditions excluding reset.

15

begin

process (swA,swB,swC,reset,clk) begin

if reset = '1' then outA <= '0'; outB <= '0' ; outC <= '0';

else if (clk'event and clk='1') then

if swA = '1' then outA <= '1'; outB <= '0' ; outC <= '0';

else if swB = '1' then outB <= '1'; outA <= '0' ; outC <= '0';

else if swC = '1' then outC <= '1'; outA <= '0' ; outB <= '0';

Figure 3.2: Important Part in Menu Design

Blitz time playing known as rapid game. The flow of the system is shown in

Figure 3.3. In Blitz game, the players are allocated with a time of playing the game.

They need to finish their game in the period of time. When the seconds (temp_s2)

start counting downward until it reach zero, the minutes (temp_m2) will minus one

to give the seconds be 59 seconds. The process is continuing similar to the previous

process. There goes to be same for the minutes when it reach zero. The hour

(temp_j2) will minus by one and the minutes get extra 59 minutes. The game is end

when the time is zero which is meant no time left to play the game.

16

Figure 3.3: Blitz Flowchart

Blitz is one of the outputs of the three conditions which have explained in the

previous design. In Figure 3.4, figure out that after the clock give the positive edge

and count is declared ‘1’, the time will counting downward. All the conditions at

seconds, minutes and hours are change by the instructions in the program.

begin

process (clk,reset) begin

if reset = '1' then temp_s <= 0;

else if (clk'event and clk='1') then

if count = '1' then temp_s<= temp_s-1;

if temp_s = 0 then temp_s <=59; temp_m<= temp_m-1;

if temp_m =0 then temp_m <=59; temp_j<= temp_j-1;

Figure 3.4: Important Part in Blitz Design

17

This standard of playing chess game is similar to Blitz game. The different is

when a player presses his button to allow his opponent to make a move. Once the

player hit his button, his time will be added 30 seconds extra time. The rest of the

game is flowing like usual. The flow of these conditions can see in Figure 3.5.

Figure 3.5: Standard (1) Flowchart

For the example in Figure 3.6, shows that the time for the player is 1 hour

and 30 minutes. After the clock and count have declared, the time is starting count

down. In the system, temp_s3 is assigned for the seconds, starting the operation. If

the infopponent in the program is ‘1’, then the seconds will be added by 30. The

18

program divided into two conditions for the time place. There are if it reaches 0 and

if it exceeds 59.

begin

process (clk,reset) begin

if reset = '1' then

temp_s3 <= 0;

temp_m3 <= 30;

temp_j3 <= 1;

else if (clk'event and clk='1') then

if count = '1' then temp_s3<= temp_s3-1;

if infopponent = '1' then temp_s3 <= temp_s3+30;

else if temp_s3 = 0 then temp_s3 <= 59; temp_m3 <= temp_m3-1;

else if temp_m3 = 0 then temp_m3 <= 59; temp_j3 <= temp_j3-1;

else if temp_j3 = 0 then temp_j3 <= 9;

else if temp_s3 > 59 then temp_s3 <= temp_s3-60; temp_m3 <= temp_m3 +1;

else if temp_m3 > 59 then temp_m3 <= temp_m3-60; temp_j3 <= temp_j3 +1;

Figure3.6: Important Part in Standard (1) Design

Standard (2) time playing is an advanced from the Standard (1) behavior of

time playing. When the player had hit his button for 40 times, he will get 40 minutes

extra time. The flowchart in Figure 3.7 is the design flow for the Standard (2) time

control game.

19

Figure 3.7: Standard (2) Flowchart

As indicate in Figure 3.8, the time that allocated to the player also in one

hour and a half. Seconds starting count down when the count is ‘1’. The condition of

infopponentg same as the condition of infoopponent in the previous program.

Temp_trigger in the programming, will be added by one, in there is any input at

infopponentg.

20

begin

process (clk,reset) begin

if reset = '1' then

temp_s4 <= 0;

temp_m4 <= 30;

temp_j4 <= 1;

else if (clk'event and clk='1') then

if count = '1' then temp_s4<= temp_s4-1;

if infopponentg = '1' then temp_s4 <= temp_s4+30;

temp_trigger <= temp_trigger + 1;

else if temp_trigger = 40 then temp_m4 <= temp_m4 + 40;

else if temp_s4 = 0 then temp_s4 <= 59; temp_m4 <= temp_m4-1;

else if temp_m4 = 0 then temp_m4 <= 59; temp_j4 <= temp_j4-1;

else if temp_j4 = 0 then temp_j4 <= 9;

else if temp_s4 > 59 then temp_s4 <= temp_s4-60; temp_m4 <= temp_m4 +1;

else if temp_m4 > 59 then temp_m4 <= temp_m4-60; temp_j4 <= temp_j4 +1;

Figure 3.8: Important Part in Standard (2) Design

According to the Figure 3.9, port-map is the part where all the combinations

of modules are meeting. It is also called top level module. This level is used to

describe the synthesis system that takes this level as input. It is connecting up the

two components to each other and to the primary ports of the multiplexer.

The ports in a component declaration must usually match the ports in the

entity declaration one-for-one. The component declaration defines the names, order,

mode and types of the ports to be used when the component is instanced in the

architecture body. Instancing a component implies making a local copy of the

corresponding design entity. A component is declared once within any architecture,

but may be instanced any number of times.

21

begin

U1 : first port map (clk=>clk_T,

 reset=>reset_T,

 swA=>swA_T,

swB=>swB_T,

 swC=>swC_T,

 outA=>bus_1,

 outB => bus_2,

 outC => bus_3);

U2 : b port map (clk=>clk_T,

 reset=>reset_T,

 count=>bus_1,

 s_2=>s_2T,

 m_2=>m_2T,

 j_2=>j_2T);

U3 : se port map (clk=>clk_T,

 reset=>reset_T,

 count=>bus_2,

 infopponent=>info_T,

 s_3=>s_3T,

 m_3=>m_3T,

 j_3=>j_3T);

U4 : sg port map (clk=>clk_T,

 reset=>reset_T,

 count=>bus_3,

 infopponentg=>infog_T,

 trigger=>trigger_T,

 s_4=>s_4T,

 m_4=>m_4T,

 j_4=>j_4T);

 Figure 3.9: Important part in Port Map Design

22

CHAPTER 4

RESULT AND DISCUSSION

4.1 Introduction

This chapter discusses all the results obtained and the limitation of the project. All

discussions concentrate on the result and performance of the overall project.

4.2 RTL Schematics

After complete the certain coding program, need to run the synthesize to check any

syntax error in the command. If there has no error occur, the RTL schematic can be

view. The schematic can be view in the top view and bottom view. For the bottom

view, it shows all the logic gates that are use for the system while the top view is the

image of the integrate circuit (ICs). By dragging the cursor at any component at the

bottom view, the behavior of the component will appear. As well as if click at any

line, the line will highlight and viewer wills knows where the line does connected to.

Follows are models that gets from the synthesize of those programs.

Figure 4.1 shows the top and bottom view model for Menu. In the model, there are

five inputs and three outputs for Menu. Menu’s design is using only several

components to get a complete schematic.

23

Figure 4.1: Menu’s Top and Bottom View Model

Blitz top and bottom view model that are shown in figure 4.2 has three inputs and

outputs. Blitz’s schematic design looks more complex than Menu’s.

Figure 4.2: Blitz’s Top and Bottom View Model

Figure 4.3 shows the top and bottom view model for Standard (1). Standard (1) is

using four inputs and three outputs. The schematic is more complex. This is because

the influences from the programming design.

24

Figure 4.3: Standard (1)’s Top and Bottom View Model

Standard (2) schematic top and bottom view model can see in Figure 4.4. From

comparison between Standard (1) and Standard (2), Standard (2) produces more

complex schematic than Standard (1). This can be approved by according to their

programming design. The schematics design should follow the programming design.

25

Figure 4.4: Standard (2)’s Top and Bottom View Model

Figure 4.5 is the top and bottom view model of Top Level. This model is the

combination of all design. The more complex schematics can be view if all the

combination design is in bottom view model. In the figure, can see that just

integrated circuits for each part.

26

Figure 4.5: Top Level’s Top and Bottom View Model

4.3 Behavioral Simulation

To simulate a VHDL file, must create a testbench first. The testbench is going to

simulate the module. The simulator that is use in this project is Xilinx ISE Simulator.

The simulation is running at another window called wave window.

The first simulation in Figure 4.6 is for menu simulation. The simulation shows

when the player got selected the switch A (swa) and it allows the player to play Blitz

game where it had assign the game as outa.

27

Figure 4.6: Menu Simulation

To get the explanation clear, Table 4.1 conclude the Menu design. If the input is

swa, the output is outa where is the Blitz time control active. The other two

conditions are swb and swc where give the output for Standard (1) and Standard (2).

All these conditions active when clock and reset are ‘1’.

Table 4.1: Menu Relationship

clock

reset 1

swa outa (Blitz)

swb outb (Standard (1))

swc outc (Standard (2))

The simulation shows in Figure 4.7, when the count is ‘1’ then the counter will

start counting downward. The example shows that the game has one hour duration.

When the moment that indicates by the circle, it shows that the player has 59

minutes and 58 seconds time left to finish his game.

28

Figure 4.7: Blitz Simulation

Blitz time control is the simplest game to understand. The time is counting

downward. The period of the time counting, the player can make his move until

there is no time to count. The example process of Blitz time control can be seen in

Table 4.2.

Table 4.2: Blitz Relationship

clock reset count j m s

 1 0 0 0 0

 0 1 1 0 0

 0 1 -1 59 59

 0 1 -1 59 58

 0 1 -1 59 57

The simulation shows in the Figure 4.8, when the count is ‘1’ the counter

will start counting downward. The time that allocated for the player is 1 hour and

30 minutes at the first starting game. Then, if there has an interrupt from a player

(infopponent), 30 seconds will be added at the time makes the seconds part change

29

from 49 to 79 and his time is 1 hour 29 minutes and 79 seconds. But in reality, there

has no 79 seconds so the time calculated is 1 minute and 19 seconds. Now, the

player would have 1 hour 30 minutes and 19 seconds times to continue his game.

Figure 4.8: Standard (1) Simulation

It is complex to understand the system of Standard (1) time control. Table

4.3 is the example of the process. The value at seconds and minutes cannot exceed

59. This is because there are 59 seconds and minutes. If when the extra 30 seconds

added to the time and the value of the seconds exceed by 59, the minutes will get

extra one and the seconds is minus by 60. This condition fulfilled where one minute

is equal to 60 seconds.

30

Table 4.3: Standard (1) Relationship

clock reset count info j m s

 0 0 0 0 0 0

 1 0 0 1 30 0

 0 1 0 1 29 59

 0 1 0 1 29 58

 0 1 1 1 30 28

 0 1 0 1 30 27

In Figure 4.9, the simulation shows the counter is counting downward when

the count is ‘1’ starting from 1 hour and 30 minutes. The flow is same as the

previous module but it is advanced from the standard1, when the interrupt from

player is reach for 40 times, 40 minutes will be added to the time left. The player

would have longer period to play the chess.

Figure 4.9: Standard (2) Simulation

By guide from Table 4.4, reader can easily understand the process of

Standard (2) time control. The process seem like Standard (1) process flow. The

value of trigger influenced by the mode of infopponent. When the trigger reaches

40, the player get 40 minutes extra to complete the game.

31

Table 4.4: Standard (2) Relationship

clock reset count info trigger j m s

 1 0 0 0 1 30 0

 0 1 0 0 1 29 59

 0 1 1 1 1 30 29

 0 1 0 1 1 30 38

 0 1 1 2 1 30 58

4.4 Implementing FPGA’s

After successfully simulated the design, the synthesize stage converts the

text-based HDL design into an NGC netlist file. The netlist is a non-readable file

that describes the actual circuit to be implemented at a very low level. The

implementation phase uses the netlist and a constraints file to recreate the design

using the available resources within FPGA. Constraints may be physical or timing

and are commonly used for setting the required frequency of the design or declaring

the required pin-out.

The map stage distributes the design to the resources available in the FPGA.

The mapping will be incomplete if the design is too big for the specified device.

The map stage also uses the UCF file to understand timing and may sometimes

decide to add further logic (replication) to meet the given timing requirements. Map

has the ability to shuffle the design around LUTs (Look-Up Table) to create the best

possible implementation for the design. The whole process is automatic and

requires little user input.

The place and route stage works with the allocated CLBs (Configurable

Logic Block) and chooses the best location for each block. For a fast logic path, it

32

makes sense to place relevant CLBs next to each other simply to minimize the path

length. The routing resources are then allocated to each connection, again using a

careful selection of the best possible routing types. The place and route tool would

use a longline to span the chip with minimal delay or skew if many areas of the

design needed.

At this point, it is good practice to re-simulate. As all of the logic delays are

added by the LUTs and flip-flops are known (as well as the routing delays), MXE

can use this information for timing simulation.

Finally, a program called bitgen takes the output of place and route and

creates a programming bitstream.

When developing a design, it may not be necessary to create a bit file on

every implementation, just need to ensure that a particular portion of the design

passes timing verification.

The steps of implementation must be carried out in this order:

1. Synthesize

2. Fit

3. Timing Simulate

4. Program

WebPACK ISE software will automatically perform the steps required if a

particular step is selected. Double click on the target device, xc3s500e-5fg320, in

the Source window and enter the characteristics that are required. The project,

originally targeted on whatever device, is now targeting a Xilinx Spartan-3 FPGA.

The green ticks in the process window should have disappeared and bees

replaced by orange question marks, indicating that the design must be re-

synthesized and re-implemented.

33

4.4.1 Synthesis

The XST synthesis tool will only attempt to synthesize the file highlighted

in the Source Window. The synthesis tool recognizes all the lower level blocks used

in the top-level code and synthesizes them together to create a single netlist.

The design can check by double-clicking on Check Syntax in the Process

window, expand the Synthesis subsection by clicking on the “+” next to Synthesize.

Ensure that any errors in the code are corrected before continue. The design should

be okay because both of the Bencher and MXE have already checked for syntax

errors. It is useful, when writing code, to periodically check the design for any

mistakes using this feature.

For FPGAs, state machines are usually one hot encoded. This is because of

the abundance of flip-flops in FPGA architectures. A one hot encoded state machine

will use one flip-flop per state. Although this may seem wasteful, the next state

logic is reduced, and the design is likely to run much faster.

The synthesis tool will never alter the function of the design, but it has a

huge influence on how the design will perform in the targeted device.

4.4.2 The Constraints File

To get the ultimate performance from the device, the most required is telling

the implementation tools what and where performance is required.

This design is particularly slow and timing constraints are unnecessary.

Constraints can also be physical; pin locking is a physical constraint.

At the PACE tool, assign all I/O pins in the Design Object List, save and

exit the PACE session. At this part, the designer can enter the period of his

program.

34

The Implement Design in the Process window is to implement the design by

double-clicking on Implement Design. When there is a green tick next to Translate,

Map, and Place and Route, the design has completed the implementation stage.

A green tick means that the design ran through without any warnings. A

yellow exclamation point may mean that there is a warning in one of the reports. To

avoid errors or warnings, the design procedure outlined in the manual have to be

followed.

4.4.3 FPGA Reports

Each stage has its own report. Clicking on the “+” next to each stage lists

the reports available:

1. The Translate Report shows any errors in the design or the UCF.

2. The Map Report confirms the resources used within the device and

describes trimmed and merged logic. It will also describe exactly where

each portion of the design is located in the actual device. A detailed Map

Report can be chosen in Properties for map.

3. The Post-Map Static Timing Report shows the logic delays only (no routing)

covered by the timing constraints. If the logic-only delays do not meet

timing constraints, the additional delay added by routing will only add to the

problem.

4. The Place and Route Report give a step-by-step progress report. The place

and route tool must be aware of timing requirements. It will list the given

constraints and report how comfortably the design fell within - or how much

it failed - the constraints.

35

5. The Asynchronous Delay Report is concerned with the worst path delays in

the design – both logic and routing.

6. The Pad Report displays the final pin-out of the design, with information

regarding the drive strength and signaling standard.

7. The Guide Report shows how well a guide file has been met (if one was

specified).

The Post Place and Route Static Timing Report add the routing delays.

Notice that the max frequency of the clock has dropped.

WebPACK ISE software has additional tools for complex timing analysis

and floor planning, which are beyond the scope of this introductory book.

36

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Chess clocks are a great way to improve the game. The mind is more focused

on that executing move that will proffer an advantage. Digital clocks have spurred a

wave of experimentation with more varied and complex time controls than the

traditional standards.

The project is based on the design of the Digital Chess Clock. It employs ISE

software (ISE Design Suite 10.1) and implementation on Field-Programmable Gate

Arrays (FPGAs) Xilinx board. These are the two major parts of the structural design.

This project is considers as half successful and half of the objective of the project

have successfully fulfilled. The initial theoretical researches support the development

of this project.

The increasing size and speed of modern FPGAs allow complex

computations, on the order of an average sized program, to be performed in a small

collection of processing elements. Software design is a process of problem-solving

and planning for a software solution. After the purpose and specifications of software

are determined, software developers will design or a plan for a solution. It includes

low-level component and algorithm implementation issues as well as the architectural

view.

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Design

37

5.2 Design Challenge

One of the biggest challenges of the project was implementing the software

code onto the FPGA Xilinx board. The steps of implementation must be carried out

in several orders. The several orders are including synthesize, fit, timing simulate and

program. All these tools are listed in the Source window when enter the project

navigator.

It is necessary to ensure that a particular portion of the design passes timing

verification when developing a design. A lot of time was taken to understand and

familiar with the VHDL, their syntax and structure. The designer must know the

basic from the viewpoint using an HDL to write a text-based description of a digital

circuit for design entry, pre-synthesis simulation, and logic synthesis.

5.3 Recommendation

There are some improvement can be done to the system design. Some of the

possible enhancements are discussed in this topic. The improvise system can give

more reliability to the user and can add some extra credits to the system’s market

value.

Some of the recommendation is on the extension of the FPGA board. This is

because, the project need 7-segment instead of LCD screen.

38

5.4 Costing and Commercialization

This project takes costing into consideration. The system was intended to be

built at low cost. For the hardware, the project using the FPGA Xilinx board which is

borrowed from the lab. Besides that, the output of the system is 7-segment is also

taken from the lab. The product of this project actually needs lower cost. A low cost

microcontroller coupled with a low cost CPLD from Xilinx can deliver the same

performance at approximately half the cost.

The demand of chess clock is likely to involve the improvement of the digital

chess clock. Today, chess is one of the world's most popular games, played by

millions of people worldwide. Digital timers are much more sensitive to hard knock.

Any of these fragile soldering on the motherboard can go, and while cost has come

down a lot. It is very waste of value to misuse expensive and complicated digital

timers. In digital clocks, clock stopper, buttons, balance in digital timers there are a

whole lot of modes that have to be incorporated. Digital timer is easy to operate and

reprogram. It is also offer a retainment function.

Thus, it is essential to further develop this project as it has a market value and

could be commercialized. Having found the right approach to the market and

established volume products, the Chess Digital clock will be a starting point of good

business opportunity.

39

REFERENCES

1. Ezza. (2008). WebPack-Default branch. SourceForge.

2. White, A. (2007). WebPack – website templates for small and start – up

businesses. Cardiff Website Design Company.

3. (2006). FPGA - What is FPGA. Jupiter Online Media

4. ISE Design Flow Overview, internet sources URL

http://toolbox.xilinx.com/docsan/xilinx8/help/iseguide/html/ise_fpga_design_

flow_overview.htm

5. Hughson, J. (2006). Common Culture, Commodity Fetishism and The

Cultural Contradictions Sport. International Journal of Cultural Studies. Vol.

9, No. 1, 83-104.

6. Bodlaender, H. (1996). The Rules of Chess. Netherlands: Houten.

7. Anderson, G. (2008). How to Write A Paper Journal. Lewiston: Department

of Biology, Bates College.

8. Calvin, J. D. (2005). Answers Your Questions: A Guide for Fans and

tournament Players. California: International Directory of Chess Teachers.

9. Hani, M. K. (2007). Starter’s Guide to Digital Systems VHDL & Verilog

Design. Selangor, Malaysia: Prentice Hall.

10. Parnell, K. and Mehta, N. (2004). Introduction to Programmable Logic. USA:

Xilinx.

http://toolbox.xilinx.com/docsan/xilinx8/help/iseguide/html/ise_fpga_design_flow_overview.htm
http://toolbox.xilinx.com/docsan/xilinx8/help/iseguide/html/ise_fpga_design_flow_overview.htm

40

APPENDIX A

Source code for Menu

41

APPENDIX B

Source code for Blitz

42

APPENDIX C

Source code for Standard (1)

43

APPENDIX D

Source code for Standard (2)

44

APPENDIX E

Source code for port map

