Study on the Use and Modification of a Sustainable Solid Waste Material for Carbon Dioxide Capturing

N.S Nasri, S.N Ismail, U.D. Hamza, M.M. Ahmed

Abstract

Carbon dioxide (CO$_2$) capturing by utilizing sustainable waste materials as an adsorbent is one of the emerging ideas in reducing air pollution nowadays. The abundance of these wastes generated on recurring bases from agricultural and forestry sectors (biomass) makes it to be sustainable. Moreso, biomass advantages for less pollution and low cost of production makes it a promising potential source for adsorbent. Empty fruit bunch (EFB) as one the most generated wastes from palm oil industry has been chosen for this study in order to assess its potential for CO$_2$ capture and de-capture. The raw EFB was first dried in roller oven under temperature condition of 100°C for 24 hours, separated and stored in vacuumed desiccators. The dehydrated EFB was reduced with hydrogen and further treated with zeolite (sample 1) and stannum (sample 2) to improve or modify its affinity in CO$_2$ capturing. Both samples were introduced to a CO$_2$ flow of 100mL/ min for 3 hours in quartz bed. Then de-capturing of carbon dioxide were performed using nitrogen gas at a flow rate of 100mL/min as desorption agent under 1.6bars pressure and 100°C temperature for 3 hours and the performances were compared. The FTIR results indicated the presence of CO$_2$ in the range of 950-1300cm$^{-1}$ for sample 1 and 950-1300cm$^{-1}$ for sample 2. It was also noticed that both adsorbents influenced the CO$_2$ capturing and de-capturing process with sample 1 having the best combination to capture CO$_2$ and Sample 2 appeared to be suitable for de-capturing of CO$_2$. These modified EFB sorbents can be a future potential source of adsorbents that would replace the existing/conventional adsorbents such as amine and activated carbon thereby reducing wastes generation annually as well as improving environmental air quality.

Keywords: Biomass, sustainable, carbon dioxide capture, empty fruit bunch (EFB), adsorbent
Study on the Use and Modification of Sustainable Solid Material for CO\textsubscript{2} Capturing

1. Introduction

Palm oil wastes or residues such as empty fruit bunch (EFB), fiber and shell kernel are the largest sources of biomass feedstock which can be obtained naturally. The resources are highly sustainable and provide vast opportunities to explore (Hussain et al, 2006). For example, Malaysia has been recognized as the largest hub of palm oil producer and exporter and indirectly contributes to the generation of wastes annually (Sulaiman et al, 2011). Carbon dioxide, (CO\textsubscript{2}) was ranked as the major sources of greenhouse gas emission (GHG) and directly contributes to global climate changes and human’s health (IPCC, 2007). In addition, penetration of fossil fuels in most parts of human activities which leads to CO\textsubscript{2} generation have aggravates this scenario. As example, a fossil fuel power plant which is coal-fired plant contributes approximately 40% of total CO\textsubscript{2} emission nowadays (Yang et al, 2008). The use of sustainable solid waste material such as almond shells (Plaza et al, 2009), industrial wastes (Kaithwas et al, 2012) and for carbon dioxide (CO\textsubscript{2}) capturing is a new approach to reduce excessive amount of CO\textsubscript{2} nowadays. Conventionally, most methods for CO\textsubscript{2} capture are based on different physical and chemical processes such as adsorption, absorption, membranes and cryogenics (Pires et al, 2011). Application of a particular technique largely depends upon the characteristics of the gas stream from which CO\textsubscript{2} needs to be separated, which mainly depends on the power plant technology (Jacobson, 2009). Consequently, the necessity for zero emission associated with green lifestyle nowadays has boosted the concerted effort to find best solution to achieve it. The term ‘zero emission’ is a new concept that focusing on the utilization of natural resources within necessary limit and the emission generated should be within acceptable level (Kuehr, 2006).

Therefore, the aim of this paper is to study the use of reduced empty fruit bunch (EFB) as an adsorbent as well as its modification toward proper capturing of CO\textsubscript{2}. Fourier transform infra-red (FTIR) technique was employed to evaluate the adsorption capacity of the porous unmodified and modified reduced EFB and the functional group effects. These modified EFB sorbents can be a future potential source of adsorbents that would replace the existing/conventional adsorbents such as amine and activated carbon thereby reducing wastes generation annually as well as improving environmental air quality.

2. Materials and methods

2.1. Sample Preparation

The raw empty fruit bunch (EFB) used in the experiment was supplied by oil palm Koperasi from Johor, Malaysia. The raw EFB was first dried in roller oven under temperature condition of 100\textdegree C for 24 hours, separated and stored in vacuumed desiccators. The purpose of the drying process was to remove moisture content. In fact, raw EFB was proven to have contained about 60 wt% water (Abdullah et al., 2010). 5g dehydrated EFB was later ground and crushed into the required finer size in order to provide the surface area for contacting with carbon dioxide. The dehydrated EFB (250µm) was then reduced using hydrogen gas under the operating conditions of 100\textdegree C and 1.5 bars temperature and pressure respectively for 3 hours as shown in Figure 1. The reduced EFB was then modified using zeolite or stannum as shown in Table 1. The schematic of CO\textsubscript{2} capturing and de-capturing processes is shown in Figure 2.

![Figure 1. (a) Fresh EFB and (b) reduced EFB sieved 250µm](image-url)
Table 1: Modification of reduced EFB for CO₂ capture and de-capture

<table>
<thead>
<tr>
<th>Type of sample</th>
<th>Mass percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>50 wt% of reduced EFB + 50 wt% of zeolite</td>
</tr>
<tr>
<td>Sample 2</td>
<td>50 wt% of reduced EFB + 50 wt% of stannum</td>
</tr>
</tbody>
</table>

2.2 CO₂ capture and de-capture

The samples prepared as shown in Table 1 were subjected to CO₂ gas at a flow of 100mL/min for 3 hours under 1.6bars pressure and temperature range of 35°C to 65°C. Then de-capturing of carbon dioxide were performed using nitrogen gas at a flow rate of 100mL/min as desorption agent under 1.6bars pressure and 100°C temperature for 3 hours. Heating rate of 7°C/min was supplied for 5min to reach 100°C temperature and cooling rate of 7°C/min was supplied for 5min to reach ambient temperature.

2.3 Samples characterization using Fourier Transform Infrared Spectroscopy (FTIR)

FTIR analysis was used to qualitatively identify the chemical functionality of the samples. This was performed using a Perkin Elmer Spectrum One series model instrument at wave numbers range of 400-4000cm⁻¹. The transmission spectra of the samples were recorded using KBr pellets containing 0.1% of carbon. A blank test was carried out first to eliminate the buoyancy effect (Dantas et al, 2011).

3.0 Results and Discussion

3.1 FTIR Spectra of Reduced EFB

Figure 3. IR spectra of reduced EFB (a) before CO₂ capture (b) after (i) CO₂ capturing and (ii) de-capturing
The characteristics of the IR spectrum in Figure 3 are summarized in Table 2.

<table>
<thead>
<tr>
<th>Wave number range (cm(^{-1}))</th>
<th>Group</th>
<th>Compound</th>
<th>Peak wave number before capturing process (cm(^{-1}))</th>
<th>Peak wave number (cm(^{-1})) after CO(_2) capturing</th>
<th>Peak wave number (cm(^{-1})) after CO(_2) de-capturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3600-3300</td>
<td>O-H</td>
<td>Phenols, alcohols</td>
<td>3409.00</td>
<td>3396.23</td>
<td>3406.45</td>
</tr>
<tr>
<td>3000-2800</td>
<td>C-H</td>
<td>Alkanes</td>
<td>2921.57</td>
<td>2922.52,2849.31</td>
<td>2920.59,2853.22</td>
</tr>
<tr>
<td>2348</td>
<td>CO(_2) stretch</td>
<td></td>
<td>-</td>
<td>2352.25</td>
<td>2367.90</td>
</tr>
<tr>
<td>1675-1575</td>
<td>C=C</td>
<td>Alkenes</td>
<td>1642.95</td>
<td>1643.45</td>
<td>1642.87</td>
</tr>
<tr>
<td>1460-1350</td>
<td>C-H</td>
<td>Alkanes</td>
<td>1460.24,1421.08,1323.35</td>
<td>1417.95</td>
<td>1417.75</td>
</tr>
<tr>
<td>1300-950</td>
<td>C=O</td>
<td>1,2,3 alcohol, phenol, ester</td>
<td>1247.12, 1161.03, 1042.95</td>
<td>1321.39, 1247.43, 1162.98</td>
<td>1329.62, 1163.50, 1037.08</td>
</tr>
<tr>
<td>900-650</td>
<td>C-H</td>
<td>Aromatic compound</td>
<td>-</td>
<td>771.86,674.17, 899.65, 672.76</td>
<td>-</td>
</tr>
<tr>
<td>578-667</td>
<td>CO(_2) bending</td>
<td></td>
<td>-</td>
<td>674.17</td>
<td>-</td>
</tr>
</tbody>
</table>

3.2 FTIR Spectra of modified reduced EFB
The characteristics of IR spectra for reduced EFB with zeolite (sample 1) and that with stannum (sample 2) for CO\(_2\) capturing and de-capturing process are shown in Figure 4 (a) and (b). The comparison of IR spectra for both samples is summarized in Table 3.
The performances of both samples as indicated on the IR spectra showed that for the CO\textsubscript{2} capturing study, there was significant change in range of 950 to 1300 cm-1 for C=O stretching and O-H stretching in range of 3300 to 3600 cm-1 that represent the bonding of bicarbonate to O-H bond. Reduced EFB with zeolite (sample 1) has significant character to capture CO\textsubscript{2} compare to reduced EFB with stannum (sample 2). Starting with OH bond in peak range of 3200 to 3500 cm-1 as seen on the spectra, it showed significant change in term of peak and wide. This proves that bicarbonate compound has been stick onto the surface of reduced EFB with zeolite than reduced EFB with stannum. However, during de-capturing of CO\textsubscript{2} study, reduced EFB with stannum showed more changes than that with zeolite deposited. The significant changes happened at peak range of 3200 to 3500 cm-1 where bicarbonate was easily leaving the structure. The changes in peak range of 1000 to 1300 cm-1 showed that C=O stretch had occurred strongly. As a result, modified reduced EFB with zeolite (sample 1) has greater potential possibility for a commercialized adsorbent due to its affinity to adsorb CO\textsubscript{2} and as such it can significantly replace the conventional/existing CO\textsubscript{2} capturing technologies which are very expensive and energy intensive.

Conclusions

The necessity for zero emission associated with green lifestyle nowadays has boosted the concerted effort to find best solution to achieve such motive. As such, modification of EFB as adsorbent for CO\textsubscript{2} capture is an alternative option for a better and improved CO\textsubscript{2} capturing process since it showed a significant improvement on the capturing process. It was noticed that both adsorbents influenced the CO\textsubscript{2} capturing and de-capturing process with sample 1 (zeolite modified EFB) having the best combination to capture CO\textsubscript{2} and Sample 2 (Stannum modified EFB) appeared to be suitable for de-capturing of CO\textsubscript{2}. These modified EFB sorbents can be a future potential source of adsorbents that would replace the existing/conventional adsorbents such as amine and activated carbon thereby reducing wastes generation annually as well as improving environmental air quality.

Acknowledgement

The authors are grateful for the financially support by the Ministry of Higher Education (MOHE) of Malaysia through the Fundamental Research Grant Scheme (FRGS)
Study on the Use and Modification of Sustainable Solid Material for CO₂ Capturing

J1300007837.4F096, J1300007837.4L011 (ERGS) and the University Research Grant J130000.2542.00H91 (URGS) provided by the Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

References
IPCC (Intergovernmental Panel on Climate Change), Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, 2007.