

IMPLEMENTATION OF UMP COURSE REGISTRATION SYSTEM USING

HEURISTIC METHOD

WONG WEI LEONG

A thesis submitted in partially fulfillment of the requirement for the award of degree of

Bachelor of Computer Science (Computer System and Networking)

Faculty of Computer System & Software Engineering

Universiti Malaysia Pahang (UMP)

JUN 2012

vi

ABSTRACT

The Open Registration (OR) system is different from the “Program-based

Registration System” which allows students to register their academic subject based on

their own study plan. UMP’s students are required to make the combination of the study

plan to make sure their timetable is suitable with their favorite time. There are some

methods on solving the timetabling such as Tabu Search (Qu et al., 2009), Hill Climbing

(Appleby et al., 2011), Simulated Annealing (Kirkpatrick and Vecci, 1983) and Great

Deluge Algorithm (Dueck, 1993) which had been used to solve the College or University

timetabling problems. These searching methods fulfilled the automated timetabling

system and applied on many systems. These researches will benefit the UMP’s student to

view the course information with more specific details and convenience the process

course registration online.

vii

ABSTRAK

Pendaftaran terbuka (OR) adalah sistem yang berbeza dengan “Sistem

Pendaftaran berasaskan Program” yang membenarkan pelajar mendaftar subjek akademik

mereka berdasarkan perancangan subjek mereka sendiri. Pelajar UMP perlu membuat

gabungan subjek untuk memastikan jadual tersebut sesuai dengan masa kegemaran

mereka. Terdapat pelbagai kaedah yang telah digunakan untuk menyelesaikan masalah

jadual waktu seperti “Tabu Search” (Qu et al., 2009), “Hill Climbing” (Appleby et al.,

2011), “Simulated Annealing” (Kirkpatrick and Vecci, 1983) dan “Great Deluge

Algorithm” (Dueck, 1993). Kaedah-kaedah ini telah digunakan dalam sistem untuk

mencari waktu subjek yang sesuai secara automatik. Kajian ini dibuat untuk

memudahkan pelajar dalam pendaftaran kursus dengan memberikan maklumat kursus

yang lebih terpecinci untuk mempercepatkan proses pendaftaran.

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

SUPERVISOR’S DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii-xi

LIST OF FIGURES xii-xiii

LIST OF TABLES xiv

LIST OF APPENDICES xv

1.0 INTRODUCTION 1

1.1 Study Background 1

1.2 Problem Statement 2

1.3 Objectives 2

1.4 Scope 3

1.5 Research Overview 3

1.6 Research Contribution 4

1.7 Summary 5

ix

TABLE OF CONTENTS

CHAPTER TITLE PAGE

2.0 LITERATURE REVIEW 6

2.1 Overview of Timetabling 6

2.2 Method Applied to The Timetabling Problem 8

2.2.1 Hill Climbing 8

2.2.2 Tabu Search (TS) 10

2.2.3 Simulated Annealing (SA) 14

2.2.4 Great Deluge Algorithm 15

2.3 UMP Course Timetabling 17

2.3.1 Open Registration System (OR System) 17

2.3.2 Program Course Structure 17

2.3.3 Study Plan 18

2.3.4 Course Catalog 19

3.0 METHODOLOGY 21

3.1 System Development Life Cycle (SDLC) 21

3.2 The Steps of System Development Life Cycle (SDLC) 22

3.2.1 Planning 22

3.2.2 Analysis 22

3.2.3 Design and Development 23

3.2.4 Testing 27

3.2.5 Implementation 27

3.2.6 Software and Hardware 27

x

TABLE OF CONTENTS

CHAPTER TITLE PAGE

3.3 Software and Hardware 27

3.3.1 Software Requirement 27

3.3.2 Hardware Requirement 28

3.4 Conclusion 28

4.0 IMPLEMENTATION 29

 4.1 Implementing VB.NET 29

 4.2 Result of Course Registration System 29

 4.3 System Interface 30

 4.3.1 Server Login Form 30

 4.3.2 Student Login Form 31

 4.3.3 Course Registration Form 32

 4.3.4 TimeTable Form 35

 4.4 Coding Development 36

 4.4.1 Add 36

 4.4.2 Drop 38

 4.4.3 Display 39

 4.5 Interacting with the Database 39

 4.5.1 Table SUBJECT 40

 4.5.2 Table SECTION 41

 4.5.3 Table DAY_TIME 41

xi

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 4.5.4 Table STUDET 41

 4.5.5 Table ca09056_SUB 42

 4.5.6 Table ca09056_DAY_TIME 42

5.0 RESULT AND DISCUSSION 43

 5.1 Introduction 43

 5.2 Result and discussion 43

 5.3 Result Analysis 45

 5.4 Soft Constraints 46

 5.5 Limitations 46

 5.6 Further Studies 47

6.0 CONCLUSION 48

 6.1 Conclusion of the project 48

REFERENCES 49-53

APPENDIX 54-59

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Example soft constraints and hard constraints 8

Figure 2.2 Hill climbing algorithm 9

Figure 2.3 Representation and crossover 12

Figure 2.4 Tabu-based memetic algorithm 13

Figure 2.5 Great deluge algorithm 16

Figure 2.6 Program course structure for Bachelor of

Computer science 18

Figure 2.7 Study plan 19

Figure 2.8 Course catalog 20

Figure 3.1 System development life cycle (SDLC) 21

Figure 3.2 UMP course timetabling constraints 23

Figure 3.3 Flow chart 25

Figure 3.4 Context diagram 25

Figure 3.5 Data flow diagram 26

Figure 3.6 Use case diagram 26

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 4.3.1 Server Login Form 30

Figure 4.3.2 Student Login Form 31

Figure 4.3.3 Course Registration Form 33

Figure 4.3.4 TimeTable Form 35

Figure 4.4.1 Coding for Button Add 37

Figure 4.4.1.1 Coding for the “credittotal” function 38

Figure 4.4.2 Coding for button Drop 38

Figure 4.4.3 Coding for Display 39

Figure 4.5.1 Subject Table 40

Figure 4.5.2 Section Table 41

Figure 4.5.3 Day_time Table 41

Figure 4.5.4 Student Table 41

Figure 4.5.5 ca09056_SUB Table 42

Figure 4.5.6 ca09056_day_time Table 42

xiv

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 3.1 Software Requirements 28

Table 3.2 Hardware Requirements 28

Table 4.3.1 Server Login Form Input-Output 31

Table 4.3.2 User Login Form Input-Output 32

Table 4.3.3 Course Registration Form Input-Output 33

Table 4.3.4 TimeTable Form Input-Output 36

Table 5.2 List of module 44

xv

LIST OF APPENDICIES

TABLE NO. TITLE PAGE

APPENDIX A Gantt Chart 54-55

APPENDIX B User Manual 56-56

1

CHAPTER 1

1.0 INTRODUCTION

1.1 Study Background

In Semester 1, 2011/2012, UMP implemented an Open Registration System (OR

System) for student’s courses registration. Previously UMP implemented “Program-

based Registration System” in which the student study plans are pre-determined by the

faculty based on the Program Course Structure (i.e. a fixed menu system). The OR

System is a flexible menu system that allows students to register their academic subjects

based on their own preference (or study plan).

According to the UMP Academic Regulation, students can register up to 19

credit hours per semester. Students have to plan their academic load, those prefer

minimum weightage could register as low as 12 credits hours, this allows the students to

accommodate their learning pace. However, for those who are ambitious they can

register up to 19 credits hours per semester. This gives an advantage that allows students

to graduate early which can save time and money.

2

Currently, the course catalog is used to help students plan their preferred courses

and timetable. The course catalog is a document that lists all courses offered in that

particular semester along with the time and location.

In OR System, almost all of the subjects are offered every semester. However,

the capacity of each offered course is normally half of the capacity of the students

enrolled. For example, if WAN Technology course (BCN 3203) is a requirement for all

Bachelor of Computer Science third year’s students with the total 300 students, it will

only be offered with the capacity of 180 students in each Semester. Therefore the

students can choose to register in either Semester I or Semester II. The overall student’s

course registration is based on first-register basis (first-come-first-serve basis).

1.2 Problem statement

 Currently in the registration systems, students have to manually check for

classing and courses availability through the course catalog. The course catalog contains

the available courses with the timeslots and rooms. There are many possible

combination of the timetable and this confuses the students in selecting the most

appropriate timetable. The system does not give any suggestion with the appropriate

courses, timeslots and rooms due to having no mathematical model. Therefore, we

propose a student course registration system that able to determine the appropriate

courses, timeslots and rooms. The objectives and the scopes of the work are presented in

the next section.

1.3 Objective

The objectives of this research are:

3

i. To develop a prototype of UMP courses registration system that allows

students to register courses based on the section (timeslots).

ii. To develop a system that able to give suggestion courses on the available

timeslots.

iii. To calculate the penalty based on heuristic method concept from the soft

constraints as guides for student satisfaction

1.4 Scope

 The scope of the work includes:

i. Students are able to register subject and drop the registered subject

ii. Only the courses from faculty FSKKP is available in the registration

database

1.5 Research Overview

 This research consists of 6 chapters. This chapter represents the study

background and the problem statement toward the work. We also stated the objectives as

well as the scopes of the work. Additionally we listed the expected research contribution

and finally summary of the chapter. The other chapter is organized as following:

 Chapter 2 is the literature review for this research. This chapter describes the

timetabling overview related to the research problem. It also will discuss the constraints

on developing an automated timetabling. Next, the method applied to solve the

timetabling problem also discussed in this chapter. The methods included are Hill

Climbing (HC), Tabu Search (TS), Simulated Annealing (SA) and Great Deluge

Algorithm. The UMP course timetabling also have discussed in this chapter.

4

 Chapter 3 describes the methodology used on developing this system. The

methodology used in this system is System Development Life Cycle (SDLC). The flows

of the system are show in diagram which included Flow Chart, Context Diagram, Data

Flow Diagram and Use Case Diagram.

 Chapter 4 is the implementation for this research project. The coding of the

buttons was explained and the interface will be introduced. The database table used will

be displayed.

 Chapter 5 is the result and discussion. This chapter presents the system function

and the limitation of this system. The further studies stated the ability of this system

enhancement.

 Chapter 6 is the conclusion of the project.

1.6 Research Contribution

1.6.1 Contribution to the UMP Organization and Community (i.e. student

and administrator)

i Implementation of the UMP course registration system for

timetabling using heuristic method concept.

1.6.2 Contribution to the scientific community:

i The knowledge gain of the work can be applied on other similar

course timetabling problem.

5

1.7 Summary

 In conclusion, we have proposed the project title “Implementation of UMP

Course Registration System using Heuristic Method”. We have brief discuss about

introduction of this project in this chapter. Firstly, we study the background motivation

for this project. Next, we stated the problem statement as well as the objectives for this

project. We also fixed the scope for research. The overview of the research will brief

describe the work on following chapters. Finally, we stated the research contribution.

6

Chapter 2

2.0 Literature Review

2.1 Overview of timetabling

 University timetabling algorithm is hard to solve for optimality (Malik et al.,

2009). University course timetabling problems are considered as NP-hard problem that

is difficult to solve to optimality (Ayob and Jaradat, 2009). It is difficult to solve with

traditional methods. The computation amount use to find optimal solution increase

exponentially due to the big enrollment of students on each year (Turabieh and Abdullah,

2009). The university course timetabling problem involves assigning a set of courses,

students and lecturers to a specific number of rooms and timeslots (Abuhamdah and

Ayob, 2009) with the weekly assignment of a set of lectures (Shaker and Abdullah,

2009). Tuga et al. (2007) examined course timetabling as the assignment of a set of main

academic events related to a course, for example lectures, lab or tutorials sessions, to

resources (rooms and timeslots) subject to a set of constraints. Building studying and

teaching timetables in large educational institution is not an easy task due to the high

number of requirements of lecturers and student attending the classes (Nguyen et al.,

7

2010). It often takes too much time to do the timetabling by hands and the result

timetable may not satisfy the requirements as desired (Nguyen et al., 2010).

Generally, the set of constraint can be categorised as soft and hard (Tuga et al.,

2007). Hard constraint is compulsory to fulfill. A timetable will become unacceptable if

one of the hard constraints is violated. Soft constraints are some non-compulsory

requirements. Soft constraints could be violated but in the minimized of number of

violations in order to increase the quality of the timetable. A timetable without any hard

constraints violations will be referred to as a feasible timetable (Tuga et al., 2007) in

which all courses are assigned to rooms and periods and satisfy all of the hard

constraints (Turabieh and Abdullah, 2009).

The constraint can be defined as (Landa and Obit, 2008):

“Hard constraints must be satisfied, i.e. a timetable is feasible only if no

hard constraint is violated. Soft constraints might be violated but the number of

violations had to be minimized in order to increase the quality of the timetable.”

The minimum requirements for feasible timetable, as well as its soft constraints,

differ from one university to another, as each university has different rules. However,

there might be some common requirements for a timetable to be considered feasible.

There are for instance, no students as well as lecturers, are expected to attend two

different events at one particular time; a room should not be double-booked. The hard

constraints for instance no student is expected to attend two different events at the same

timeslots, all events should be assigned to a room within the given timeslots, and the

chosen room for an event should meet the specifications required for that event and a

room should not be double-booked (Landa and Obit, 2008).

8

Figure 2.1: Example soft constraints and hard constraints

 (Turabieh and Abdullah, 2009)

2.2 Method applied to solve the timetabling problem

2.2.1 Hill climbing

Hill climbing method is an optimisation algorithm which belongs to the

topic of local search which was used for the timetabling method by Appleby et al

(1960). It can simple to implement and making it to become a popular first

choice. Basically the idea in hill climbing is to always head towards a state which

is better that the current one. For example, if a particular are at location A and the

particular can get to location B and location C (and the particular target is

location D) then the particular should make a move IF location B or C appear

nearer to location D than location A does. In steepest ascent hill climbing, it will

make the next steps as the best successor of current state, and will only make a

move if that successor is better that current state (Rich and Knight, 1991).

9

Figure 2.2: Hill Climbing Algorithm (Rich and Knight, 1991)

This algorithm is not attempt to exhaustively to try every path and node,

so there is no node list or agenda maintained but just the current state. If there are

loops in the search space then using hill climbing shouldn’t encounter them but

can’t keep going up and still get back to the state before. Hill climbing terminates

when there is no successor of the current state which is better than the current

state itself. Table 2 shows the hill climbing algorithm.

Wang et al. (2008) examined the hill climbing method in centralized job

scheduling to determine the migration route. They experiments simulate de-

centralized job scheduling, including node adjacencies, local scheduling of grid

nodes, and grid workload. It compares with the k-distributed and auction

methods, hill climbing-based scheduling usually can enhance processor

utilization, and can reduce bounded slowdown. Two metric are defined to gauge

the efficiently of grid scheduling in the determination of the job migration named

as bounded job slowdown of grid and processor utilization of grid. They found

that hill climbing-based algorithm can efficiently reduce the bounded slowdown

and the grid processor utility.

Nandhini and Kanmani (2009) investigated the implementation of class

timetabling using multi agents. They proposed hill-climbing framework

(Appleby et al., 1960) for class timetabling to distribute the work involving in,

two operation agents (Silva et al., 2003), with different task and objectives have

10

been introduced. Those are ComninationGenarator agents which generate the

maximum possible combinations for the input timetable. The one name

MinFinder agent finds a combination with minimum evaluation function value

for further successive examination. By applying the heuristic in the generating

combinations, the search space has been reduced and gives the optimal at the

earliest. By introducing the agents, CombinationGenerator and MinFinder, they

found that the work has been distributed and the complexity of main task has

been reduced.

2.2.2 Tabu search (TS)

Tabu search algorithm is one of the local search algorithms that are

popular and applied to a lot of aspects of optimisation problems. According to

Qu et al. (2009), the basic procedure of this technique can be divided into two

main phases: intensification phase and diversification phase. This technique

works by utilizing its components such as type of tabu list, aspiration criteria,

neighbourhood strategies and etc, with intention to search the best improved

solutions. It also makes many researchers who studied on educational timetabling

problems interested on it, to use or hybrid with other optimization methods

(Malik et al., 2011). Tabu list also is an important component of the TS

algorithm. The solutions will not be kept in tabu list completely, but the accepted

move is stored. First in first out (FIFO) rules is used as a data structure for the

tabu list. Besides that, aspiration criterion is used to override the tabu restriction

that is the restricted solution can still be selected if it has a lower penalty (cost)

that the best solution obtained so far (Al Tarewneh and Ayob, 2011).

Neighbourhood structure is the most important criteria of a local search used for

simple swap, which exchanged the rooms assigned and hosting periods to

lectures who teaching the different courses. The simple move will applied first

11

until n consecutive un-improvement iteration trapped (Al Tarewneh and Ayob,

2011).

Nguyen et al. (2010) examined automating a real-world university

timetabling algorithm with Tabu Search method. The method starts with building

an initial solution using greedy algorithm. The non pre-assigned courses are split

into blocks and will be assigned to appropriate periods and rooms. However, the

combination of available periods, rooms and devices for all courses is a very

large number. Next, they applying Tabu Search algorithm to improve the initial

solution. In this phase the main kind of moves used is single moves. Moreover,

two other kinds of moves, including swap moves and block-changing moves, are

used when a number of consecutive unimproved moves (unimproved moves are

moves that don’t change the best solution found so far) have passed. There are

three components will keeps in the tabu list such as course Ai, block di and old

period block ui assigned to di. The phase continues by assigning appropriate

device into course to complete the solution obtained from previous step. In this

phase, they assigned devices into courses due to period assignment and room

assignment results taken from previous phases using greedy algorithm. They

found that the tabu search-based algorithm that can efficiently applied to the

timetabling problem of a university and to other university by modifying the

constraints to adapt to new special requirements.

Chu and Fang (2002) compared the Genetic Algorithms (GA) with the TS

in timetable scheduling. They examined the timetable-scheduling problem with

the constraints related to exam, timeslot, student and lecturer (Turabieh and

Abdullah, 2009). They used a simply numbers length list e (the number of exams

to scheduled), t (the number of available timeslots) and each element number

between 1 to represent the GA. The interpretation of such a chromosome is that

if the nth number in the list is t, then exam n is scheduled to occur at time t. For

example, the chromosome, [8,11,6,1,2,5,1,2,3,6], is a candidate solution in which

exam 1 takes place at time 8, exam 2 takes place at time 11, etc.

[3,7,9,2,1,10,4,5,8,11] is another chromosome. Next, they randomly choose a

12

point, say 3, and crossover them to produce two children as shown in Figure 3.

The evolutionary cycle will repeat over and over again until an optimal timetable

is found or a certain maximum number of generations are reached. By comparing

the results with the TS, they represent the data same as GA approach to encode

the timetable. They experiment TS in two basic mechanisms: tabu restrictions

and aspiration criteria. First, they produce a group of 20 candidate solutions

from the best solution of iteration. Next, they pick the best candidate solution and

mutate it by randomly changing two exams time slots (i.e., two memory values)

at a time for ten times to produce the solutions for the next iteration. The best of

the new solutions is then selected again to test by tabu restrictions and aspiration

criteria. They may be put into the tabu list memory depending on whether they

pass the former test. If they fail, but satisfy the latter test, they can also be put in

the tabu list memory. The advantage of TS over other methods is to use its

memorized ability to prevent from searching previous visited areas. Therefore, it

is easier to escape from local optimum and approach the global or near global

optimum in a short time. Also, the timetables are sorted according to their quality.

In this way, they can always pick the best one first to test from the beginning of

the list. Finally, they found the TS approach can produce the better timetables

than those of GA approach. The search time spent in TS is less than that of GA.

GA can produce several different near optimal solution simultaneously.

Figure 2.3: Representation and crossover

13

Turabieh and Abdullah (2009) examined Tabu Search into Memetic

approach in solving optimization case that think over on the searching for

“highest/lowest point” in the multidimensional parameter space which can be

envisioned less or more complex mountainous regions. Memetic method has

been applied widely in different fields of optimisation area due to its ability to

exploring the search space which greater than local search algorithms or standard

evolutionary algorithms. The approach described there is consisting of two

phases which is construction stage and improvement phases. Tabu Search based

memetic algorithm solves course timetabling problems with a big set of

neighbourhood structures are used as a local search mechanism. It begins by

creating

Figure 2.4: Tabu-based memetic algorithm (Turabieh and Abdullah, 2009)

	psm part1.pdf
	psm part2.pdf
	psm part3.pdf
	psm part4.pdf
	psm part5 (table of content).pdf
	psm part6(all).pdf

