
MC/DC Implications for Software Testing from (Com-

binational) Logic Design

Kamal Z. Zamli, AbdulRahman A. Al-Sewari, Mohd Hafiz Mohd Hassin

Software Engineering Research Department,

Faculty of Computer Systems & Software Engineering,

Universiti Malaysia Pahang

26300 Gambang, Kuantan, Pahang, Malaysia

{kamalz,abdulrahman,hafizhassin}@ump.edu.my

Abstract. Structural testing is often the most common sought criteria for

exercising aspects of control flow (i.e. such as statement, branch and path

coverage). In many cases, criteria based on statement, decision and path cov-

erage appears sufficiently effective for testing (in terms of selecting the ap-

propriate test cases for testing consideration) the various parts of the software

implementation. In other cases involving complex predicates, criteria based

on statement, branch, and path coverage appear problematic owing to the

problem of masking (where one variable is “masking” the effects of other var-

iables). Addressing this issue, this paper discusses the strategy for structural

testing based on Multiple Condition/Decision Coverage (MC/DC). In doing

so, this paper also highlights the implication of MC/DC for (combinational)

logic design.

Keywords: MC/DC Test Generation, Structural Testing

1 Introduction

In the last 30 years, software grew tremendously in terms of complexity and size.

Owing to its rapid growth, establishing software quality through testing can be an

enormous task given finite resources at hand. Test engineers often under pressure to

select the best strategies for testing both in terms of test cases effectiveness as well as

its associated costs [1].

Concerning structural testing, criteria based on statement; branch and path cover-

age; has been the most common [2][3]. In many cases, criteria based on statement,

decision and path coverage is sufficiently effective for testing the various parts of

the software implementation (in terms of selecting the appropriate test cases for

testing consideration). In other cases involving complex predicates, criteria based

on statement, branch, and path coverage appear problematic owing to the problem

of masking (where one variable is “masking” the effects of other variables). To

illustrate further, assume two basic predicates – (A or B) and (A and B) respective-

ly. The predicate (A or B) always evaluates to true when either A is true (regardless

of B) and vice versa. Similarly, the predicate (A and B) is always false when B is

false (regardless of A) and vice versa. In this case, A and B are said to have masked

each other. Addressing this issue, this paper discusses the strategy for structural

testing based on Multiple Condition/Decision Coverage (MC/DC). In doing so, this

paper also highlights the implication of MC/DC for (combinational) logic design

.

The rest of the paper is organized as follows. Section 2 illustrates an overview of

Modified Condition/Decision Coverage criterion using a worked example. Section 3

elaborates the concept on Controllability and Observability based on combinational

logic design. Section 4 highlights the current state-of-the-art and related work. Fi-

nally, section 4 provides the conclusion.

2 Illustrative Example on MC/DC Criterion

As a running example, consider the following if statements involving AND, OR, and

NOT operations (see Fig. 1).

((A && B)|| !C)?

if ((A && B)|| !C)

 {

 statement1;

 }

else

 {

 statement2;

 }

statement1 statement2

noyes

A B C Output

F F F T

F F T F

F T F T

F T T F

T F F T

T F T F

T T F T

T T T T

Fig. 1. Illustrative Example

Here, as long as A&&B holds TRUE, statement1 will always be executed regard-

less of the value of C. Similarly, given that NOT C is TRUE, statement2 will always

get executed regardless of the values of A&&B. In this manner, the resulting predi-

cate is masking each other given the wrong selection of inputs values.

Exists in pairs, MC/DC criteria insists that each variable at the atomic level is able

to independently influence the overall outcome – while keeping other variable(s) un-

changed. Referring from the given truth table in Fig. 1, there are:

 1 pair for MC/DC coverage for variable A

 1 pair for MC/DC coverage for variable B

 3 possible pairs for MC/DC coverage for variable C

The test case selection for A and B is straightforward as there is only one pair of each

respectively. However, the test case selection for C requires further elaboration.

Based on the analysis in Fig. 2, if the objective is to get the most minimum number of

test cases, then the obvious selected test cases would be between test suite #2 and test

suite #2 as both test sizes are 4 as opposed to 5 for test suite #1. The question is

whether such a selection is the right choice as far as coverage is concerned?

A B C Output

F F F T

F F T F

F T F T

F T T F

T F F T

T F T F

T T F T

T T T T

MC/DC for A*B + C

For A: For B:

FTT -> F TFT -> F

TTT -> T TTT -> T

3 choices for C:

Option 1: Option 2:

FTT -> F TFT -> F

TTT -> T TTT -> T

 Option 3:

 TFF -> T

 TFT -> F

 FTT

 TTT

 TFT

 TTT

 FFF

 FFT

}5 test

cases

Possible

MC/DC Test

Suite #1

 FTT

 TTT

 TFT

 TTT

 TFF

 TFT

}4 test

cases

Possible

MC/DC Test

Suite #3

 FTT

 TTT

 TFT

 TTT

 FTF

 FTT

}4 test

cases

Possible

MC/DC Test

Suite #2

Fig. 2. Test Suite Fulfilling the MC/DC Criterion

if ((A && B)|| !C)

 {

 statement1;

 }

else

 {

 statement2;

 }

if (A)

 {

 if (B)

 {

 statement1;

 }

 else if (!C)

 {

 statement1;

 }

 else

 {

 statement2;

 }

 }

else if (!C)

 {

 statement1;

 }

else

 {

 statement2;

 }

Equivalent if

statements

A?
noyes

B?

statement1

statement2

yes

no

!C?

statement1

yesno

statement2

!C?

statement1

yes

no

Fig. 3. Equivalent If Statements

To investigate further, there is a need to analyse the effectiveness of each of the

test suite. Here, the contribution of each atomic Boolean value in the original predi-

cate must be proved to act independently in the final outcome in line with the MC/DC

requirements. This process can be achieved via using the equivalent if statements as

in Fig. 3.

Surprisingly, despite being the most minimum, test suite #2 and #3 do not give

100% branch coverage (see Fig. 4). In fact, only test suite #1 gives full coverage.

Given such consideration, the question now is what is the best strategy to select the

suitable MC/DC test suite? The most minimum test suite might not necessarily be the

best one.

 FTT

 TTT

 TFT

 TTT

 FFF

 FFT

}5 test

cases

Strictly

Observable

MC/DC Test

Suite #1

 FTT

 TTT

 TFT

 TTT

 TFF

 TFT

}4 test

cases

Loosely

Observable

MC/DC Test

Suite #3

 FTT

 TTT

 TFT

 TTT

 FTF

 FTT

}4 test

cases

Loosely

Observable

MC/DC Test

Suite #2

X

X
Potential non-

observable input =

{FTF}

Potential non-

observable input =

{TFF}

Uncovered

path by MC/DC Test

Suite #2 and #3

A?
noyes

B?

statement1

statement2

yes

no

!C?

statement1

yes

no

statement2

!C?

statement1

yes

no

Fig. 4. Branch Coverage Analysis

3 Controllability and Observability Analysis for Combinational

Logic Design

This section will give the MC/DC perspectives from combinational hardware point of

view involving logic design. In the last 20 years, researchers in the field of digi-

tal/combinational logic design have proposed two main concepts namely controllabil-

ity; and observability in order to address so-called design for testability requirements

[4]. The former, controllability can be described loosely as the ability to test each

logical operator of an expression by setting the values of the expression’s inputs. The

latter, observability refers to the ability to propagate the output of a logical operator

under test to an observable point.

Revisiting earlier section (as in Fig. 1 till 4), Fig. 5 depicts the gate level logic

implementation for the predicate given earlier. By inspection, controllability analysis

is straightforward as each variable is directly accessible, that is, their values can easily

be changed when required. Observability analysis is slightly subtle. Superficially,

observability analysis can be described as follows:

 A will contribute to the output when B is TRUE and C is either TRUE or

FALSE

 B will contribute to the output when A is TRUE and C is either TRUE or

FALSE

 C will contribute to the output when either A and B or both is FALSE

Strict Observability Analysis

Output A: Output C:

A, B=T, C=T A=F, B=F, C

Output B:

A=T, B, C=T

A

B

C

Output

Revisit -> A*B + C

 MC/DC Test

Suite

 FTT

 TTT

 TFT

 TTT

 FFF

 FFT

}
Strictly

Observable MC/

DC Test Suite

5 test

cases

Controllability Analysis:

All inputs are accessible

Fig. 5. Controllability and Strict Observability Analysis

Here, the contribution for A or B or C as output lacks independence. For instance,

when A is TRUE, B is TRUE, and C is FALSE, the output contribution will be

TRUE. In this case, the output TRUE may well come from A, B, and C. For this

reason, these combinations are considered loosely observable, hence, not preferred. In

the case of wrong implementation of the gates, these input output combinations might

well be interpreted as correct.

From a different perspective, observability analysis can also be strictly achieved as

follows:

 Only A will contribute to the output when B and C is TRUE

 Only B will contribute to the output when A and C is TRUE

 Only C will contribute to the output when A and B is FALSE

Now, one output variable is strictly observable independently of other variables. It

must be observed that this is the MC/DC test suite #1 that gives 100% branch cover-

age in earlier section. Given such an observation, the selection of MC/DC compliant

test suite must not be based on the minimum test suite but rather on its observability

analysis.

4 Related Work

The consideration of MC/DC is not new as there are already a number of related

works that deals with test case generation for MC/DC coverage. Jones and Harrold

[5] introduce two strategies for generating MC/DC compliant test cases. The first

strategy is based on the breakdown algorithm whilst the second strategy is based on

the prioritization algorithm. At the start, both strategies generate the exhaustive

MC/DC pairs as the basis for selection. For the first strategy, the selection of the test

candidates is based on iterative generation of essential test cases. Here, essential test

cases are established by summing up contribution of each test case towards MC/DC

coverage. The least contributing test case is systematically removed leaving only

essential ones for selection during iteration. The iteration stops when no other test

cases are available for selection. For the second strategy, the selection of test candi-

dates is also done iteratively. In this case, the contribution for each candidate test case

is prioritized based on greedy ordering, that is, to cover the most pairs. The iteration

stops when no more pairs are available for selection. Although helpful, both strategies

appear unsuitable for handling large predicates owing to the need to generate all ex-

haustive MC/DC pairs.

Jun-Ru and Chin-Yu [6] adopt n-cube graph in order to generate appropriate

MC/DC compliant test suite. In this case, the vertex of the cube represents the result-

ant Boolean enumeration for predicates under evaluation. Each vertex is traversed and

arranged and evaluated using Gray code sequence ordering until all the required se-

quences are covered. As the sequence of ordering for MC/DC pairs are non-unique

(i.e. not generalizable to only Gray code sequence), this strategy appears not opti-

mized as far as the number of test cases are concerned.

Ghani and Clark [7] adopt optimization algorithm based on Simulated Anneal-

ing(SA) for MC/DC test suite generation. SA works based on the process of maxim-

izing material’s crystal size via heating and slow cooling [8][9]. The heating process

excites the atom to move from its initial position (i.e., to avoid a local minima of in-

ternal energy) while the slow cooling process allows the atom to settle for lower in-

ternal energy configurations (i.e., for better crystal size). Analogous to the physical

process, SA based strategy starts with a randomly generated MC/DC pair of test cases

(i.e. initial state) and applies a series of transformations according to a pre-defined

probability equation. Here, the probability equation depends heavily on parameter T

(i.e. the controlling temperature of the simulation) to simulate the heating and cooling

process.

Complementing the work from Ghani and Clark, Awedikian et al [3] adopts two

optimization algorithms based on Hill Climbing (HC) and Genetic Algorithm (GA)

respectively to generate MC/DC compliant test cases. For HC, the algorithm starts by

choosing a random test case as an initial solution. The quality of the test case is evalu-

ated based on the defined fitness function. HC attempts to improve the current test

case by moving to better points in a neighborhood of the current solution. This itera-

tive process continues until a termination criterion. There are two termination condi-

tions. First, for the given major clause, HC terminates if test case satisfying the

MC/DC clause assignment are found. If after a fixed number of attempts, the algo-

rithm is not able to satisfy the MC/DC major clause constraints, the search is stopped

and another set of possible MC/DC assignments is selected. Concerning GA, the algo-

rithm starts by creating an initial population of n test cases chosen randomly. Each

chromosome represents a test case; genes are values of the input variables. In an itera-

tive process, GA tries to improve the population from one generation to another. Test

cases in a generation are selected according to their fitness in order to perform repro-

duction, i.e., crossover and/or mutation. Then, a new generation is constituted by the

fittest test cases of the previous generation and the offspring obtained from crossover

and mutation. The iterative process continues until a stopping criterion is met. Here,

two stopping criteria are defined. First, for the given major clause, GA terminates if

test input data satisfying the MC/DC clause assignment are found. GA is also stopped

when an upper limit in computation is reached.

Summing up, adopting strategies based on optimization algorithm for MC/DC test

suite generation appear to be the current trend. Despite achieving useful progress,

much work on synergizing work from combinational logic design with software test-

ing is deemed necessary. For instance, the “objective functions” for each strategy

must also consider not only the test suite size but also the observability property. As

discussed earlier, such consideration has not been sufficient dealt with by existing

strategies in an acceptable manner.

5 Conclusion

In conclusion, this paper has highlighted the need to support MC/DC in software

testing. Additionally, this paper has also highlighted the current state-of-the-art on

existing work involving MC/DC and identifies novel areas for further research. Spe-

cifically, this paper has also suggests the use of observability property for MC/DC test

suite generation, the concept borrowed from combinatorial logic design, as the criteria

for test case selection.

Acknowledgments

This research is partially funded by myGrants: A New Design of An Artifact-

Attribute Social Research Networking Eco-System for Malaysian Greater Research

Network, UMP RDU Short Term Grant: Development of a Pairwise Interaction Test-

ing Strategy with Check-Pointing Recovery Support, and ERGS Grant: CSTWay: A

Computational Strategy for Sequence Based T-Way Testing.

References

[1] K. Z. Zamli, M. F. J. Klaib, M. I. Younis, N. A. M. Isa, and R. Abdullah, "De-

sign and Implementation of a T-WayTest Data Generation Strategy with Au-

tomated Execution Tool Support," Information Sciences, Elsevier, Vol. 181(9),

January 2011, pp. 1741-1758.

[2] “Software considerations in airborne systems and equipment certification,”

RTCA/DO-178B, pp. 2455–2464, December 1992, RTCA Inc.

[3] Z. Awedikian, K. Ayari, and G. Antoniol, “MCDC Automatic Test Input Gen-

eration”, Proceedings of the 11th Annual conference on Genetic and Evolu-

tionary Computation (GECCO '09), 2009, pp. 1657-1664.

[4] K.J.Hayhurst, D.S. Veerhusen, J.J. Chilenski, and L.K. Rierson, “A Practical

Tutorial on Modified Condition/ Decision Coverage, NASA Technical Memo-

randum TM-2001-210876, May 2001, NASA Langley Research Center.

[5] J.A. Jones and M.J. Harrold, "Test-suite Reduction and Prioritization for Mod-

ified Condition/Decision coverage", IEEE Transactions on Software Engineer-

ing, 29(3), 2003, pp.195-209.

[6] C. Jun-Ru and H. Chin-Yu,"A Study of Enhanced MC/DC Coverage Criterion

for Software Testing", in Proceedings of the 31st Annual International Com-

puter Software and Applications Conference (COMPSAC 2007), pp. 457-464.

[7] K.Ghani and J.A. Clark, "Automatic Test Data Generation for Multiple Condi-

tion and MCDC Coverage", in Proceedings of the 4th International Conference

on Software Engineering Advances, 2009, Porto, Portugal, pp. 152-157.

[8] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equa-

tion of State Calculations by Fast Computing Machines,” Journal of Chem.

Phys, vol. 21, pp. 1087–1091, 1953.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science, vol. 220, pp. 671–680,1983.

