
MC/DC Implications for Software Testing from (Com-

binational) Logic Design 

Kamal Z. Zamli, AbdulRahman A. Al-Sewari, Mohd Hafiz Mohd Hassin
 

 

Software Engineering Research Department,  

Faculty of Computer Systems & Software Engineering,  

Universiti Malaysia Pahang 

26300 Gambang, Kuantan, Pahang, Malaysia 

{kamalz,abdulrahman,hafizhassin}@ump.edu.my 

Abstract.  Structural testing is often the most common sought criteria for 

exercising aspects of control flow (i.e. such as statement, branch and path 

coverage). In many cases, criteria based on statement, decision and path cov-

erage appears sufficiently effective for testing (in terms of selecting the ap-

propriate test cases for testing consideration)  the various parts of the software 

implementation.  In other cases involving complex predicates, criteria based 

on statement, branch, and path coverage appear problematic owing to the 

problem of masking (where one variable is “masking” the effects of other var-

iables).  Addressing this issue, this paper discusses the strategy for structural 

testing based on Multiple Condition/Decision Coverage (MC/DC). In doing 

so, this paper also highlights the implication of MC/DC for (combinational) 

logic design. 
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1  Introduction 

In the last 30 years, software grew tremendously in terms of complexity and size. 

Owing to its rapid growth, establishing software quality through testing can be an 

enormous task given finite resources at hand. Test engineers often under pressure to 

select the best strategies for testing both in terms of test cases effectiveness as well as 

its associated costs [1].  

Concerning structural testing, criteria based on statement; branch and path cover-

age; has been the most common [2][3]. In many cases, criteria based on statement, 

decision and path coverage is sufficiently effective for testing the various parts of 

the software implementation (in terms of selecting the appropriate test cases for 

testing consideration).  In other cases involving complex predicates, criteria based 

on statement, branch, and path coverage appear problematic owing to the problem 

of masking (where one variable is “masking” the effects of other variables).  To 

illustrate further, assume two basic predicates – (A or B) and (A and B) respective-

ly. The predicate (A or B) always evaluates to true when either A is true (regardless 

of B) and vice versa. Similarly, the predicate (A and B) is always false when B is 

false (regardless of A) and vice versa. In this case, A and B are said to have masked 

each other. Addressing this issue, this paper discusses the strategy for structural 



testing based on Multiple Condition/Decision Coverage (MC/DC). In doing so, this 

paper also highlights the implication of MC/DC for (combinational) logic design 

. 

The rest of the paper is organized as follows. Section 2 illustrates an overview of 

Modified Condition/Decision Coverage criterion using a worked example. Section 3 

elaborates the concept on Controllability and Observability based on combinational 

logic design. Section 4 highlights the current state-of-the-art and related work. Fi-

nally, section 4 provides the conclusion. 

2 Illustrative Example on MC/DC Criterion 

As a running example, consider the following if statements involving AND, OR, and 

NOT operations (see Fig. 1).  

 

((A && B)|| !C)?

if ((A && B)|| !C)

 {

   statement1;

 }

else

 {

   statement2;

 }

statement1 statement2

noyes

A B C   Output

F F  F     T

F F  T     F

F T  F     T

F T  T     F

T F  F     T

T F  T     F

T T  F     T

T T  T     T

 

Fig. 1. Illustrative Example 

 

Here, as long as A&&B holds TRUE, statement1 will always be executed regard-

less of the value of C. Similarly, given that NOT C is TRUE, statement2 will always 

get executed regardless of the values of A&&B. In this manner, the resulting predi-

cate is masking each other given the wrong selection of inputs values.  

Exists in pairs, MC/DC criteria insists that each variable at the atomic level is able 

to independently influence the overall outcome – while keeping other variable(s) un-

changed.  Referring from the given truth table in Fig. 1, there are: 

 1 pair for MC/DC coverage for variable A   

 1 pair for MC/DC coverage for variable B 

 3 possible pairs for MC/DC coverage for variable C 

The test case selection for A and B is straightforward as there is only one pair of each 

respectively. However, the test case selection for C requires further elaboration. 

Based on the analysis in Fig. 2, if the objective is to get the most minimum number of 

test cases, then the obvious selected test cases would be between test suite #2 and test 



suite #2 as both test sizes are 4 as opposed to 5 for test suite #1. The question is 

whether such a selection is the right choice as far as coverage is concerned? 
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Fig. 2. Test Suite Fulfilling the MC/DC Criterion  

 

 

if ((A && B)|| !C)

 {

   statement1;

 }

else

 {

   statement2;

 }

if (A)

 { 

   if (B)

     {

      statement1;

     }

  else if (!C)

    {

     statement1;

    }

  else

   {

    statement2;

   }

 }

else if (!C)

 {

   statement1;

 }

else

 {

    statement2;

  }

 

Equivalent if 

statements

A?
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statement1

statement2
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no
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statement1
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Fig. 3. Equivalent If Statements  

 



To investigate further, there is a need to analyse the effectiveness of each of the 

test suite. Here, the contribution of each atomic Boolean value in the original predi-

cate must be proved to act independently in the final outcome in line with the MC/DC 

requirements. This process can be achieved via using the equivalent if statements as 

in Fig. 3. 

 

Surprisingly, despite being the most minimum, test suite #2 and #3 do not give 

100% branch coverage (see Fig. 4). In fact, only test suite #1 gives full coverage. 

Given such consideration, the question now is what is the best strategy to select the 

suitable MC/DC test suite? The most minimum test suite might not necessarily be the 

best one. 
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Fig. 4. Branch Coverage Analysis  

 

3 Controllability and Observability Analysis for Combinational 

Logic Design 

This section will give the MC/DC perspectives from combinational hardware point of 

view involving logic design. In the last 20 years, researchers in the field of digi-

tal/combinational logic design have proposed two main concepts namely controllabil-

ity; and observability in order to address so-called design for testability requirements 

[4]. The former, controllability can be described loosely as the ability to test each 

logical operator of an expression by setting the values of the expression’s inputs. The 

latter, observability refers to the ability to propagate the output of a logical operator 

under test to an observable point.  

 



Revisiting earlier section (as in Fig. 1 till 4), Fig. 5 depicts the gate level logic 

implementation for the predicate given earlier. By inspection, controllability analysis 

is straightforward as each variable is directly accessible, that is, their values can easily 

be changed when required.   Observability analysis is slightly subtle.  Superficially, 

observability analysis can be described as follows: 

 

 A will contribute to the output when B is TRUE and C is either TRUE or 

FALSE    

 B will contribute to the output when A is TRUE and C is either TRUE or 

FALSE    

 C will contribute to the output when either A and B or both is FALSE 

Strict Observability Analysis

Output A:                Output C:
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Fig. 5. Controllability and Strict Observability Analysis  

 

 

Here, the contribution for A or B or C as output lacks independence. For instance, 

when A is TRUE, B is TRUE, and C is FALSE, the output contribution will be 

TRUE. In this case, the output TRUE may well come from A, B, and C.  For this 

reason, these combinations are considered loosely observable, hence, not preferred. In 

the case of wrong implementation of the gates, these input output combinations might 

well be interpreted as correct. 

 

From a different perspective, observability analysis can also be strictly achieved as 

follows: 

 Only A will contribute to the output when B and C is TRUE   

 Only B will contribute to the output when A and C is TRUE 

 Only C will contribute to the output when A and B is FALSE 



Now, one output variable is strictly observable independently of other variables. It 

must be observed that this is the MC/DC test suite #1 that gives 100% branch cover-

age in earlier section. Given such an observation, the selection of MC/DC compliant 

test suite must not be based on the minimum test suite but rather on its observability 

analysis.  

4 Related Work 

The consideration of MC/DC is not new as there are already a number of related 

works that deals with test case generation for MC/DC coverage.  Jones and Harrold 

[5] introduce two strategies for generating MC/DC compliant test cases. The first 

strategy is based on the breakdown algorithm whilst the second strategy is based on 

the prioritization algorithm. At the start, both strategies generate the exhaustive 

MC/DC pairs as the basis for selection. For the first strategy, the selection of the test 

candidates is based on iterative generation of essential test cases. Here, essential test 

cases are established by summing up contribution of each test case towards MC/DC 

coverage. The least contributing test case is systematically removed leaving only 

essential ones for selection during iteration. The iteration stops when no other test 

cases are available for selection. For the second strategy, the selection of test candi-

dates is also done iteratively. In this case, the contribution for each candidate test case 

is prioritized based on greedy ordering, that is, to cover the most pairs. The iteration 

stops when no more pairs are available for selection. Although helpful, both strategies 

appear unsuitable for handling large predicates owing to the need to generate all ex-

haustive MC/DC pairs.   

Jun-Ru and Chin-Yu [6] adopt n-cube graph in order to generate appropriate 

MC/DC compliant test suite. In this case, the vertex of the cube represents the result-

ant Boolean enumeration for predicates under evaluation. Each vertex is traversed and 

arranged and evaluated using Gray code sequence ordering until all the required se-

quences are covered. As the sequence of ordering for MC/DC pairs are non-unique 

(i.e. not generalizable to only Gray code sequence), this strategy appears not opti-

mized as far as the number of test cases are concerned.   

Ghani and Clark [7] adopt optimization algorithm based on Simulated Anneal-

ing(SA) for  MC/DC test suite generation. SA works based on the process of maxim-

izing material’s crystal size via heating and slow cooling [8][9]. The heating process 

excites the atom to move from its initial position (i.e., to avoid a local minima of in-

ternal energy) while the slow cooling process allows the atom to settle for lower in-

ternal energy configurations (i.e., for better crystal size). Analogous to the physical 

process, SA based strategy starts with a randomly generated MC/DC pair of test cases 

(i.e. initial state) and applies a series of transformations according to a pre-defined 

probability equation. Here, the probability equation depends heavily on parameter T 

(i.e. the controlling temperature of the simulation) to simulate the heating and cooling 

process. 

Complementing the work from Ghani and Clark, Awedikian et al [3] adopts two 

optimization algorithms based on Hill Climbing (HC) and Genetic Algorithm (GA) 

respectively to generate MC/DC compliant test cases.  For HC, the algorithm starts by 

choosing a random test case as an initial solution. The quality of the test case is evalu-



ated based on the defined fitness function. HC attempts to improve the current test 

case by moving to better points in a neighborhood of the current solution. This itera-

tive process continues until a termination criterion. There are two termination condi-

tions. First, for the given major clause, HC terminates if test case satisfying the 

MC/DC clause assignment are found. If after a fixed number of attempts, the algo-

rithm is not able to satisfy the MC/DC major clause constraints, the search is stopped 

and another set of possible MC/DC assignments is selected. Concerning GA, the algo-

rithm starts by creating an initial population of n test cases chosen randomly. Each 

chromosome represents a test case; genes are values of the input variables. In an itera-

tive process, GA tries to improve the population from one generation to another. Test 

cases in a generation are selected according to their fitness in order to perform repro-

duction, i.e., crossover and/or mutation. Then, a new generation is constituted by the 

fittest test cases of the previous generation and the offspring obtained from crossover 

and mutation. The iterative process continues until a stopping criterion is met. Here, 

two stopping criteria are defined. First, for the given major clause, GA terminates if 

test input data satisfying the MC/DC clause assignment are found. GA is also stopped 

when an upper limit in computation is reached. 

 

Summing up, adopting strategies based on optimization algorithm for MC/DC test 

suite generation appear to be the current trend. Despite achieving useful progress, 

much work on synergizing work from combinational logic design with software test-

ing is deemed necessary. For instance, the “objective functions” for each strategy 

must also consider not only the test suite size but also the observability property. As 

discussed earlier, such consideration has not been sufficient dealt with by existing 

strategies in an acceptable manner. 

5 Conclusion 

In conclusion, this paper has highlighted the need to support MC/DC in software 

testing. Additionally, this paper has also highlighted the current state-of-the-art on 

existing work involving MC/DC and identifies novel areas for further research. Spe-

cifically, this paper has also suggests the use of observability property for MC/DC test 

suite generation, the concept borrowed from combinatorial logic design, as the criteria 

for test case selection.  
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