UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS^o JUDUL: A Study on Microwave-Assisted Extraction of Patchouli Essential Oil: **Effect of Hexane as Solvent** SESI PENGAJIAN: 2007/2008 LEONG NGUK FOONG Saya (HURUF BESAR) mengaku membenarkan kertas projek ini disimpan di Perpustakaan Universiti Malaysia Pahang dengan syarat-syarat kegunaan seperti berikut: 1. Hakmilik kertas projek adalah di bawah nama penulis melainkan penulisan sebagai projek bersama dan dibiayai oleh Universiti Malaysia Pahang, hakmiliknya adalah kepunyaan Universiti Malaysia Pahang. Naskah salinan di dalam bentuk kertas atau mikro hanya boleh dibuat dengan kebenaran 2. bertulis daripada penulis. Perpustakaan Universiti Malaysia Pahang dibenarkan membuat salinan untuk tujuan 3. pengajian mereka. 4. Kertas projek hanya boleh diterbitkan dengan kebenaran penulis. Bayaran royalti adalah mengikut kadar yang dipersetujui kelak. *Saya membenarkan Perpustakaan membuat salinan kertas projek ini sebagai bahan 5. pertukaran di antara institusi pengajian tinggi. **Sila tandakan ($\sqrt{}$) 6. **SULIT** (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) TIDAK TERHAD Disahkan oleh (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA) Alamat tetap: MR. CHENG CHIN KUI 48, Jalan Wan Empok 1, Nama Penyelia Bandar Baru Sri Petaling, 57000 Kuala Lumpur Tarikh: 30 APRIL 2008 Tarikh: 30 APRIL 2008

CATATAN:	*	Potong yang tidak berkenaan.
	**	Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
		berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh
tesis		ini perlu dikelaskan sebagai SULIT atau TERHAD.
	υ	Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara
		penyelidikan, atau disertai bagi pengajian secara kerja kursus dan penyelidikan,
		atau Laporan Projek Sarjana Muda (PSM).

"I declare that I have read this thesis and in my opinion this thesis is adequate in terms of scope and quality for the purpose awarding a Bachelor's Degree of Chemical Engineering."

Signature	:
Supervisor's Name	: Mr Cheng Chin Kui
Date	: 30 APRIL 2008

A Study on Microwave-Assisted Extraction of Patchouli Essential Oil: Effect of Hexane as Solvent

LEONG NGUK FOONG

Submitted to the Faculty of Chemical & Natural Resources Engineering in partial fulfillment of the requirements for the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering Universiti Malaysia Pahang

APRIL 2008

"I declare that this thesis is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree."

Signature:Author's Name: LEONG NGUK FOONGDate: 30 APRIL 2008

Dedicated, in thankful appreciation for support, encouragement and understanding to my beloved family and friends especially Valice Wong

ACKNOWLEDGEMENT

First of all, I would like to express my heartily gratitude to my research supervisor, Mr Cheng Chin Kui for his guidance, advices, efforts, supervision and enthusiasm given throughout the progress of this research.

I wish to thank Miss Mazni binti Ismail for her advice and guidance during presentation. I also would like to thank Miss Hafizah binti Ramli for her assistance and co-operation in helping me using the GC-MS analysis equipment in the lab.

I would like to express my sincere appreciation to my parents for their support to me all this year. Without them, I would not be able complete this research. Besides that, I would like to thank my course mates, Foong Kah Kah and Chua Share Kung for their help and assistance and also my friends for giving their support and encouragement especially Valice Wong Yuen Nee and Wong Mei Kee.

ABSTRACT

The objective of this research was to extract patchouli essential oil with microwave assisted extraction (MAE) by using hexane as solvent extraction. This research focuses on effect of varying microwave power at 300 W, 400 W and 500 W at different time of extraction and influence of dielectric properties on extraction of patchouli oil. Hexane was used because it is a good extraction solvent Patchouli or *Pogostemon cablin* accumulates large amounts of essential oil. Patchouli oil contains *sesquiterpene* alcohols as its main active component or also known as *patchoulol*. In this research, the methods used were drying, grinding, extraction, separation and analysis. From the research, the optimum yield of *patchoulol* was 82.166% at microwave power 400 W and time extraction of 10 minutes and the major components of *Pogostemon Cablin* were *patchoulol*, α -bulnesene, α -guaiene and β -patchoulene.

ABSTRAK

Objektif kajian ini adalah mengekstrak minyak pati patchouli dengan menggunakan pengekstrakan kaedah mikro gelombang dan menggunakan heksana sebagai pelarut pengekstrakan. Kajian ini akan merangkumi kesan pengaruh kuasa mikro gelombang pada 300 W, 400 W dan 500 W pada perbezaaan masa pengekstrakan dan pengaruh pemalar dielektrik mikro gelombang dalam pengekstrakan minyak patchouli. Heksana digunakan sebagai pelarut kerana heksana merupakan pelarut pengekstrakan yang baik. Patchouli atau *Pogostemon cablin* mengandungi banyak kandungan minyak pati. Minyak patchouli mengandungi alkohol *sesquiterpene* sebagai komponen aktif utama atau lebih dikenali sebagai *patchoulol*. Kaedah yang digunakan dalam kajian ini ialah pengeringan, pengecilan, pengekstrakan, pemisahan dan analisis. Daripada kajian ini, penghasilan minyak *patchoulol* yang paling baik ialah 82.166% pada kuasa mikro gelombang 400 W dan masa pengekstrakan 10 minit dan komponen utama dalam *Pogostemon Cablin* ialah *patchoulol*, α -bulnesene, α -guaiene and β -patchoulene.

TABLE OF CONTENTS

Chapter	Title	Page
	DECLARATION	i
	DEDICATION	ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	ABSTRAK	V
	TABLE OF CONTENT	vi
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	xiii
	LIST OF APPENDICES	xiv

1 INTRODUCTION 1.1 Pogostemon Cablin

1.2	Microwave Assisted Extraction	1
1.3	Problem Statement	2
1.4	Objective	2
1.5	Scope of Research Work	2

1

2 LITERATURE REVIEW

2.1 Essen	tial Oil		3
2.2 Pogos	temon Ca	blin	4
2.2.1	Uses of F	Patchouli Oil	7
2.3 Micro	wave Ass	isted Extraction	8
2.3.1	Microwave Theory 9		
2.3.2	Factors	Affecting MAE	
	2.3.2.1	Solvent Nature	10
	2.3.2.2	Extraction Time	12
	2.3.2.3	Microwave Power	12

3 METHODOLOGY

3.1 Introduction	14
3.2 Pre-treatment Methods	14
3.3 Extraction Methods	15
3.4 Separation Methods	16
3.5 Analysis Methods	17

4 **RESULTS AND DISCUSSION**

4.1 Influence of Microwave Power and Extraction Time		
on Patchoulol Yield		
4.1.1 GC-MS Analysis Results	21	

4.2 Influe	nce of Dielectric Properties on Extraction of	22
Patche	oulol Yield	
4.2.1	GC-MS Analysis Results	23

5	CONCLUSIONS AND RECOMMENDATIONS		
	5.1 Conclusions	24	
	5.2 Recommendations	25	

REFERENCES

26

APPENDIX A – L

30

LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	Composition of Patchouli oil	6
2.2	Dielectric constant for some solvents commonly use in MAE	11
4.1	Results of influence of microwave power an extraction time on <i>patchoulol</i> yield	19
4.2	Comparison retention time main compounds of the <i>Pogostemon cablin</i> essential oil	21
4.3	Results of influence of dielectric properties on <i>patchoulol</i> yield	22

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Pogostemon Cablin	4
2.2	Structure of <i>patchoulol</i>	5
2.3	Representation of the two heating modes: convection (a) and microwave energy (b)	10
3.1	Microwave extractor	15
3.2	Patchouli leave with solvent after extraction	16
3.3	GC-MS Agilent	17
3.4	Summary of methodology	18

LIST OF ABBREVIATIONS

MAE	-	Microwave Assisted Extraction
SME	-	Solvent Microwave Extraction
GC	-	Gas Chromatograph
MS	-	Mass Spectrometer
W	-	Watt

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Gantt chart for Undergraduate Research Project I	30
В	Gantt chart for Undergraduate Research Project II	31
С	GC-MS analysis: Research 1	32
D	GC-MS analysis: Research 2	36
Е	GC-MS analysis: Research 3	39
F	GC-MS analysis: Research 4	42
G	GC-MS analysis: Research 5	45
Н	GC-MS analysis: Research 6	47
Ι	GC-MS analysis: Research 7	48
J	GC-MS analysis: Research 8	52
К	GC-MS analysis: Research 9	53
L	GC-MS analysis: Research 10	54

CHAPTER 1

INTRODUCTION

1.1 Pogostemon Cablin

Patchouli oil is often obtained by steam distillation and solvent extraction of the dried leaves of *Pogostemon cablin*, a plant from the *Lamiaceae* family, and is widely appreciated for its characteristic pleasant and long lasting woody, earthy, camphoraceous odor. Patchouli oil serves as an important ingredient in many fine fragrance products like perfumes, soaps and cosmetic products [1]. Patchouli oil is essential oil that contains sesquiterpene alcohols as its main active component or also known as *patchoulol*.

1.2 Microwave Assisted Extraction

•

Microwave assisted extraction (MAE) is a new separation technique that combines the uses of the energy of microwave radiation and traditional solvent extraction. Microwave extraction of biologically active compounds was first presented by Ganzler as a novel and effective sample preparation technique in 1986 [2]. By using a closed system, extraction can be performed at higher temperatures and extraction time can be reduced drastically. This technique can be applied to both liquid and gas phase extraction. Several studies showed that microwave assisted extraction has many advantages, such as shorter time extraction, less solvent needed, higher extraction rate and better products with lower cost [3,4]

1.3 Problem Statement

The concentration and purification of patchouli oil have been important processes for many years. The conventional methods used so far are mainly based on solvent extraction and steam distillation. The drawbacks linked to these techniques have led to the searching for new alternative extraction processes. The commercial methods currently used for folding or unfolding essential oils are fractional vacuum distillation, selective solvent extraction and chromatographic separation. All these methods have drawbacks such as low yields, formation of by-products owing to the time of exposure to high temperatures and the presence of toxic organic residues in the extracts.

1.4 Objective

The objective of this research was to extract patchouli essential oil with microwave assisted extraction (MAE) by using hexane as solvent extraction.

1.5 Scope of Research Work

This research focus on two main scopes:

- (i) Investigate the influence of microwave power and extraction time
- (ii) Determine the influence of dielectric properties on extraction of patchouli oil

CHAPTER 2

LITERATURE REVIEW

2.1 Essential Oil

Essential oil is defined as concentrated, hydrophobic liquid containing volatile aroma compounds from plants. Essential oils are aromatic substances that are widely used in the perfume industries, in the pharmaceutical sector and in the food and human nutrition field. They are mixtures of more than 200 compounds that can be grouped into two fractions, a volatile fraction, that constitutes 90-95% of the whole oil and contains *monoterpenes* and *sesquiterpene* hydrocarbons and their oxygenated derivatives, along with aliphatic aldehydes, alcohols and esters, and a non-volatile residue, that constitutes from 5 to 10% of the whole oil and contains hydrocarbons, fatty acids, sterols, carotenoids, waxes, coumarins, psoralens and flavonoids [5]. The *terpene* fraction, ranging from approximately 99% of the volatile fraction in grapefruit oil to 60% in bergamot oil, makes little contribution to the favour or fragrance of the oil. Since *terpenes* are mostly unsaturated compounds, they are decomposed by heat, light and oxygen to produce undesirable compounds which can give off-flavours and off-aromas. The oxygenated fraction is highly odoriferous and is mainly responsible for the characteristic favors.

Essential oils are produced using several techniques. Distillation uses water and steam to remove the oils from dried or fresh plants, and the expression method uses machines to squeeze the oil out of plants. Other techniques may use alcohol or solvents to remove essential oils from plant materials. Essential oils generally have very complex chemical constituents, containing many different substances and compounds. Scientific research has isolated hundreds of chemicals in essential oils, and has shown many essential oils to have anti-bacterial, anti-fungal, and antiparasitic.

2.2 Pogostemon Cablin

Pogostemon Cablin is both a plant and essential oil (patchouli oil) obtained from the leaves of a plant of the same name. The scent of patchouli is heavy and strong. It has been used for centuries in perfumes, and is grown in the East and West India. Figure 2.1 show the picture of *Pogostemon Cablin*.

Figure 2.1 Pogostemon Cablin [6]

Patchouli oil has a rich musky-sweet, strong spicy and herbaceous smell with a nearly hidden fruity note. It is light yellow to dark golden brown in color and is a viscous liquid. Patchouli oil has found widespread uses in modern industry. It is a component in about a third of modern, high-end perfumes, including more than half of perfumes for men. It is used as a scent in products like paper towels, laundry detergents, and air fresheners. The essential oil is obtained by steam distillation of the dried leaves of the plant, a process which provides a relatively high yield of the oil. Patchouli is mostly grown in Indonesia. The yield of oil from the dried leaves is about 2 %. An important component of the essential oil is *patchoulol. Patchoulol* is the volatile oil of *Pogostemon Cablin* and commonly used as an indicator for the quality assessment of dried *Pogostemon Cablin*. Figure 2.2 shows the chemical structure of *patchoulol*.

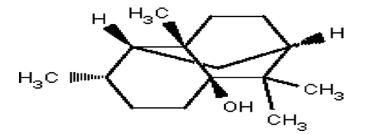


Figure 2.2 Structure of *patchoulol* (patchouli alcohol) [7]

Patchoulol or patchouli alcohol ($C_{15}H_{26}O$) is a *terpene* extracted from Patchouli. Other names for patchoulol are Patchouli camphor. The IUPAC name is *3,4,4aβ,5,6β,7,8,8a-Octahydro, 4a,8aβ,9,9-tetramethyl, 1,6-methanonaphthalen-1β(2H)-ol.* IUPAC nomenclature is a system of naming chemical compounds and of describing the science of chemistry in general. Based on their components, *Pogostemon cablin* volatile oils from different regions can be classified into three types, they have a characteristic of high level of *pogostol* [8], high level of *patchoulol* [9,10], and high level of *patchoulol* and *pogostol* [11,12], respectively. *Patchoulol* has been known for well over a century. It is a major constitute of the pungent oil from the East Indian shrub *Pogostemon cablin* and widely used in fragrances. Patchouli alcohol was considered as Ca²⁺ antagonist and antibacterial component in *Pogostemon cablin*. In addition, *pogostol* was also considered as antibacterial agent. Patchouli oil contains many chemical compositions. Table 2.1 shows the composition of patchouli oil in patchouli leaves.

Table 2.1Composition Patchouli Oil in Patchouli Leaves [13]

Compound	Patchouli Oil Weight Percentage
β -patchoulene	2.10%
α-bulnesene	16.60%
(+)-germacrene	1.00%
trans-β-caryophyllene	3.50%
α-humulene	0.79%
(-) pogostol	2.54%
Seychellene	7.40%
Patchoulol	34.80%
y-patchoulene	7.90%
guai-4,11-diene	4.00%
α-patchoulene	7.90%
Norpatchoulenol	0.82%
α-guaiene	13.80%
Other sesquiterpenes	4.71%

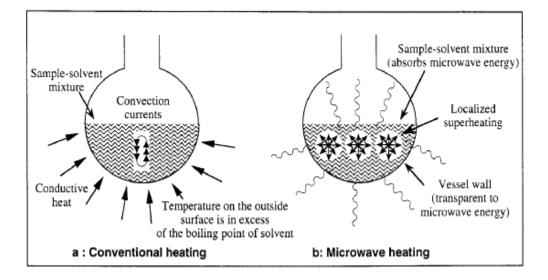
2.2.1 Uses of Patchouli Oil

There are many uses of patchouli oil recorded. One of the major uses is in the aromatherapy treatment. The oil is used as a topical remedy for skin problems such as acne, eczema, inflamed, cracked, chapped and irritated skin. It is known as a cell rejuvenator and helpful in healing wounds and scars. As an antifungal, patchouli oil has been used to treat athlete's foot. For the hair, patchouli oil has been used for dandruff and to aid oily hair. For the nerve system, patchouli essential oil helps to reduce tension, insomnia and anxiety. It is also know as uplifting fragrance that helps to soothe away everyday cares, and to bring about a sense of nourishment. In this way, and due to its wine-like intoxicating aroma, patchouli oil is also known an aphrodisiac.

In the perfume industry, patchouli acts as a base note and fixative par excellence. A little patchouli oil, used as a fixative can be used in many natural perfume formulations. Patchouli oil mixes well with many essential oils including sandalwood, frankincense, bergamot, myrrh, jasmine, rose and the citrus oils. The traditional use of the patchouli is as incense in temples. It is said to assist in grounding and centering the mind prior to meditation. It is also produces a strong connection to the earth as it is an aid to connection with the natural beauty of the planet.

2.3. Microwave Assisted Extraction (MAE)

Microwave Assisted Extraction is a simple technique that provides a novel way of extracting soluble products into a fluid, from a wide range of materials, helped by microwave energy [14]. The technique can be applied to both liquid phase extraction and gas phase extraction. The extraction process in liquid phase extraction like isolation of essential oil is based on a basic physical principle, namely the different ability to absorb microwave energy depending on the chemical nature of the species being subjected to microwave irradiation. The parameter generally used as a measurement of this physical property is the dielectric constant. Thus, liquid phase extraction assisted by microwaves is based on the fact that it is possible to immerse the matrix to be extracted into a solvent that is characterized both by a low dielectric constant and a relative transparency to microwaves.


The first applications of the technique dealt with the extraction of essential oils from plant products [15]. The kinetics of the microwave extraction of rosemary leaves in hexane, ethanol or hexane-ethanol mixtures, as well as the influence of factors such as the source of the leaf, the microwave energy, duration of irradiation and sample load, on the rate of extraction of the compounds have been reported [16]. In more recent research, MAE has been coupled with liquid chromatography for the determination of herbicides in plant tissue [17].

Moreover, MAE offers other advantages over conventional techniques, such as reduced energy consumption, smaller volumes of chemical solvents, use of less toxic solvents and a smaller quantity of waste products. Compared with the traditional methods, MAE has many advantages, such as shorter time, less solvent, higher extraction rate, better products with lower cost because the microwaves heat the solvent or solvent mixture directly, and the direct interaction of microwaves with the free water molecules presents in the glands and vascular systems, which results in the subsequent rupture of the plant tissue and the release of the active compounds into the organic solvent.

2.3.1 Microwave Theory

Microwaves are non-ionizing electromagnetic waves of frequency between 300 MHz to 300 GHz and positioned between the X-ray and infrared rays in the electromagnetic spectrum [18]. In modern day science, microwaves serve two major purposes: communication and as energy vectors. The latter application is the direct action of waves on materials that has the ability to convert a part of the absorbed electromagnetic energy to heat energy. Microwaves are made up of two oscillating perpendicular field's like electric field and magnetic field and the former is responsible for heating [18]. Unlike conventional heating which depends on conduction where convection loses the heat energy to the environment. Whereas in case of MAE, heating occurs in a targeted and selective manner with practically no heat being lost to the environment as the heating occurs in a closed system. This unique heating mechanism can significantly reduce the extraction time which normally less than 30 minutes as compared to Soxhlet [19].

The principle of heating using microwave is based upon its direct impact with polar materials/solvents and is governed by two phenomenon's: ionic conduction and dipole rotation, which in most cases occurs simultaneously [18,20]. Ionic conduction refers to the electrophoretic migration of ions under the influence of the changing electric field. The resistance offered by the solution to the migration of ions generates friction, which eventually heats up the solution. Dipole rotation means realignment of the dipoles of the molecule with the rapidly changing electric field. Figure 2.3 show the difference between conventional heating and microwave heating.

Figure 2.3 Representation of the two heating modes: convection (a) and microwave energy (b) (from Neas and Collins, 1988 [21]).

2.3.2 FACTORS AFFECTING MAE

2.3.2.1 Solvent Nature

A correct choice of solvent is fundamental for obtaining an optimal extraction process. Solvent choice for MAE is dictated by the solubility of the target analyst, by the interaction between solvent and plant matrix, and finally by the microwave absorbing properties of the solvent [20]. Preferably the solvent should have a high selectivity towards the analyst of interest excluding unwanted matrix components. This is important particularly in the extraction of pesticide and organic pollutants from soil sample. Another important aspect is the compatibility of the extracting solvent with further chromatographic analytical steps. MAE can also be performed with the same solvent as used for the conventional extraction methods. However, the optimal extraction of solvents for MAE cannot always be deduced from those used in conventional procedures. MAE of ginger using hexane gave lesser yield than the Soxhlet extraction procedure [22]. On the other hand use of ethanol as the extracting solvent gave significantly higher yield than Soxhlet ethanol extraction. This can be accounted due to the difference in dielectric properties of the solvent. Hexane is transparent to microwave and so does not heats up under microwave, whereas ethanol has good microwave absorbing capacity and hence heats up faster and can enhance the extraction process. Thus, dielectric properties of the solvent towards microwave heating play an important role in microwave extraction. It was established that both the efficacy and selectivity of MAE depend significantly on the dielectric constant of the extracting solvent mixture. Table 2.2 shows dielectric constant for some solvents commonly used in MAE.

Table 2.2	Dielectric constant fo	r some solvents commonl	y used in MAE [23]
-----------	------------------------	-------------------------	--------------------

Solvent	Dielectric constant (ε)	
Acetone	20.7	
Acetonitrile	37.5	
Ethanol	24.3	
Hexane	1.89	
Methanol	32.6	
2-propanol	19.9	
Water	78.3	

2.3.2.2 Extraction time

As in other extraction technique, time is another parameter whose influence needs to be taken into account. Generally, by increasing the extraction time, the quantity of analysts extracted is increased, although there is the risk that degradation may occur. Often 15 - 20 minute is sufficient, but even 5 minute have been demonstrated to have given excellent recovery [24,25]. MAE of polyphenols and caffeine was found to increase up to 4 min and later decreased with the increase of time [26]. In the extraction of artemisnin an overall high of 92% extraction was achieved with 12 min after which extraction yield dropped down [27], as over exposure may lead to thermal degradation of effective constituents. A proper study on optimization of extraction time is vital because extraction time may vary with different plant part used. Irradiation time is also influenced by the dielectric properties of the solvent. Solvents like water, ethanol, and methanol may heat up tremendously on longer exposure thus risking the future of thermolabile constituents.

2.3.2.3 Microwave Power

Microwave power and irradiation time are two such factors, which influences each other to a great extent. A combination of low or moderate power with longer exposure may be a wise approach. Amount of ginsenosides extracted by MAE method under different microwave conditions were studied [28]. In general, the extraction efficiency was improved by raising microwave power from 30 to 150 W. During short extraction time such as 1 and 2 minutes, recovery was enhanced with increased microwave power. The difference of the ginsenosides extracted between 30W and 150W appeared to be more significant with short extraction time compared to long extraction time. High power with prolonged exposure always involves the risk of thermal degradation. Reports on the other hand also shows that varying of power from 400 W to 1200 W had no significant effects on the yield of flavonoids extraction but the extraction time was shortened by 45 min when using 1200 W [29]. At higher power level settings the extraction pattern was same whereas purity reduced substantially. Rapid rupture of cell wall takes place at higher temperature when kept at higher power, as a result together with the desired analytes impurities are also leached out into the solvent.

Whereas at low power levels the cell wall rupture might take place gradually this enables selective MAE. In closed vessel systems, the chosen power settings depends on the number of samples to be extracted during a single extraction run, as up to 12 vessels can be treated in a single run [20]. The power must be chosen correctly to avoid excessive temperature, which could lead to solute degradation and overpressure inside the vessel.

CHAPTER 3

METHODOLOGY

3.1 Introduction

In order to extract the patchouli essential oil, the technique used in this research was solvent microwave extraction (SME) where hexane will act as solvent.

3.2 Pre-treatment Methods

Two pre-treatment methods which were drying and grinding methods should apply before proceeds to solvent microwave extraction methods. Drying was a mass transfer process resulting in the removal of water moisture or moisture from another solvent, by evaporation. The patchouli leaves was dried by using Desiccators at room temperature for 48 hour where inside the desiccators contain silica gel that able to absorb water. After the drying process, the blender was used to ground the patchouli leaves into the small particle. The purpose of grinding methods was to reduce the size into relatively fine particles. The fine particle of patchouli leave was put in the beaker for weighing by using the high precision electronic balance.

3.3 Extraction Methods

Extractions were performed using an Ethos microwave lab station from Milestone Inc. operated via a compact terminal touch screen display with Milestone Easy-Control software as shown in Figure 3.1. The temperature was set at 55°C and pressure at 1 bar. 150ml hexane solvent was used in this research. Solvent hexane and the patchouli were mixed at the large glassware.

Figure 3.1 Microwave extractor

Figure 3.2 shows that patchouli leave with solvent after extraction. After that, the patchouli oil was filtered by using the filter paper to remove the patchouli leave for separation process.

Figure 3.2 Patchouli leave with solvent after extraction

3.4 Separation Methods

After extraction process, the patchouli oil with the solvent hexane is separated by using the rotary evaporator. The purpose of separation is to remove large amount of traces hexane solvent in the patchouli oil. The rotary speed was set at 3 rpm and temperature at 60° C.

3.5 Analysis Methods

The patchouli oil was analyzed by GC–MS Agilent 6890 gas chromatography instrument coupled to an Agilent 5973 mass spectrometer and an Agilent Chem Station software as shown in Figure 3.3 to determine qualitative analysis of the volatiles. Compounds were separated on a 30m×0.25mm capillary column coated with 0.25 µm film 5% phenyl methyl siloxane. The column temperature was at 80°C for injection, temperature program began at 10°C min⁻¹ to 110°C, then at 3°C min⁻¹ to 120°C and held for 10 min. Furthermore, the temperature was increased at 2°C min⁻¹ to 134°C, at 1°C min⁻¹ to 143°C and held for 5 min, then at 5°C min⁻¹ to 240°C, finally at 20°C min⁻¹ to 280°C and held for 5 min. Split injection (2µl) was conducted with a split ratio of 1:10 and helium was used as carrier gas of 1.0 ml min⁻¹ flow-rate. The spectrometers were operated in electron-impact (EI) mode, the scan range was 40–550 amu, the ionization energy was 70 eV and the scan rate was 0.34 s per scan. The inlet, ionization source temperature were 250°C min and 280°C, respectively.

Figure 3.3 GC-MS Agilent

Figure 3.4 show the summary of methodology that been conduct in this research

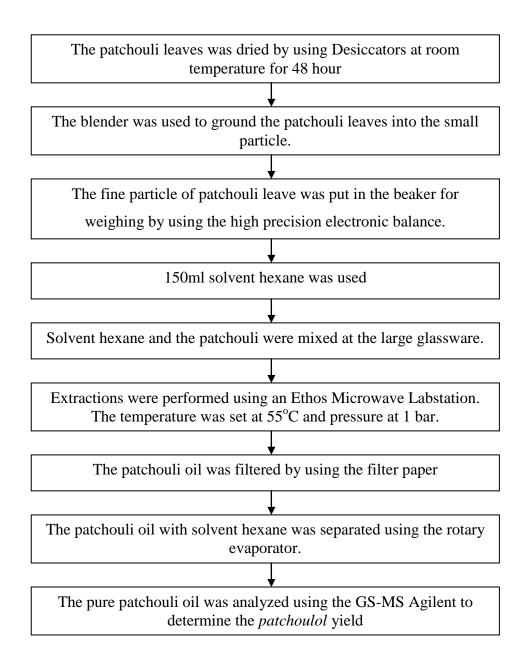


Figure 3.4 Summary of methodology

CHAPTER 4

RESULTS AND DISCUSSSION

4.1 Influence of Microwave Power and Extraction Time on *Patchoulol* Yield

In this research, pure patchouli oil with little traces of hexane solvent was analyzed with GC-MS Agilent to determine the component in the patchouli oil and the *patchoulol* yield. Table 4.1 shows the result of the research on the effect of influence of microwave power and extraction time on *patchoulol* yield.

Table 4.1	Results of influence of microwave power and extraction time on
	patchoulol yield

No	Power	Time	Patchouli	Hexane +	Hexane +	Patchoulol
Research	(W)	(min)	leave (g)	patchouli	Patchouli	Yield (%)
				oil after	oil after	
				extraction	separation	
				(ml)	(ml)	
1	300	5	10	112	3.6	0
2	300	10	10	106	4	76.073
3	400	5	10	106	4.2	82.166
4	400	10	10	110	4	66.215
5	500	5	10	109	3.7	0
6	500	10	10	107	3.4	0

In general, the extraction efficiency was improved by raising microwave power from 300W to 500W because the microwave radiations would increase the mechanisms of interaction between the microwaves and the materials. Besides that, increasing the extraction time resulted in a higher percentage of *patchoulol* extracted from patchouli oil.

From the Table 4.1, it shows that power 300W at 5 minutes and 400W at 10 minutes and 5 minutes had yield *patchoulol*. The highest *patchoulol* yield was power 400W at 5 minutes. There is no *patchoulol* yield at 300W at 5 minutes because the time extraction time is short and low power extraction. Hexane has low dielectric constant which it heats up slow and unable to extract the *patchoulol* and other component.

On the other hand, there is no *patchoulol* yield at 500W at 5 minutes and 10 minutes because the high power of extraction. The high power of extraction causes the thermal degradation of *patchoulol*. Thermal degradation refers to molecular deterioration because of overheating. It occurs at a temperature at which some components of the material were separating or reacting with one another to modify the macrostructure or microstructure.

There was drop in *patchoulol* yield at power 400W and time 10 min because the solvents heat up tremendously on longer exposure thus risking the thermolabile constituents. Thermolabile refers to a substance which is subject to destruction or change in response to heat.

4.1.1 GC-MS Analysis Results

From the GC-MS analysis, research 2, 3 and 4 had yielded the two same components which are *patchoulol* and *pogostol*. The oil analyzed in this research belongs to the third type which is high level of *patchoulol* and *pogostol*. In research 2 and 4, there is other component of patchouli oil was detected which were β *patchoulene*, α -guaiene and α -bulnesene [8]. There is no other component detected in research 3 because the extraction time was short. Therefore, longer time of extraction would increase the extraction efficiency in this research. Table 4.2 shows the comparison retention time main compounds of *Pogostemon cablin* essential oil.

T 11 4 A	<u> </u>	· · ·		1	C .1
Table 4.2	Comparison	retention	fime maii	n compounde	of the
\mathbf{I} and \mathbf{T} .	Companson	ICICILIUM	time man	i compounds	or unc
	r · · · · ·			r r	

Compounds	Research 2	Research 3	Research 4
	Retention Time	Retention Time	Retention Time
Patchoulol	45.189	45.178	45.172
Pogostol	45.029	45.040	45.023
β -patchoulene	35.937	-	36.635
α-guaiene	35.937	-	35.942
α-bulnesene	45.029	-	45.023

Pogostemon cablin essential oil

From Table 4.2, the peak of retention time of *patchoulol* in research 2, 3 and 4 almost same with each other. The little difference occurs because different microwave power and time extraction was used. Research 2 and 4 had components α -bulnesene and pogostol at the same peak of retention time while experiment 3 did not contain the α -bulnesene because short extraction time. Therefore, the 4 major components of *Pogostemon Cablin* was *patchoulol*, α -bulnesene, α -guaiene and β -patchoulene.

4.2 Influence of Dielectric Properties on Extraction of *Patchoulol* Yield

In this research, the pure patchouli oil with little traces of hexane solvent and water was analyzed with GC-MS Agilent to determine the component in the patchouli oil and the *patchoulol* yield. Table 4.3 shows the result of the research on the effect of influence of dielectric properties on *patchoulol* yield.

No	Patchouli	Water	Hexane	Hexane +	Hexane +	Patchoulol
Research	leave	(ml)	(ml)	water +	water +	Yield (%)
	(g)			patchouli	patchouli	
				oil after	oil after	
				extraction	separation	
				(ml)	(ml)	
7	10	15	135	102	3.5	61.739
8	10	30	120	95	3.1	0
9	10	45	105	78	2.8	0
10	10	60	90	65	2.3	0

Table 4.3 Result of Influence of dielectric properties on *patchoulol* yield

Generally, absorption of the microwave energy increases with the dielectric constant of the molecule, resulting in power dissipated inside the solvent and material and generating more effective molecular movement and heating [12,13]. Water was a relatively good absorber ($\varepsilon = 78.3$) of microwave energy but not a good extraction solvent. However, hexane was a good extraction solvent but not a good absorber of microwave energy ($\varepsilon = 1.89$).

From Table 4.3, only research 7 had yielded *patchoulol* when the water was 10% weight percentage and hexane was 90% weight percentage. There was no yield of *patchoulol* at research 8, 9 and 10 when the water weight percentage increase. Research 4 with 100% weight percentage hexane at power 400 W and time 10

minutes had yielded 66.215% *patchoulol* while research 7 with 90% weight percentage hexane and 10% weight percentage water at same parameter had reduce the *patchoulol* yield to 61.739%.

In this research, the dielectric properties of the solvent towards microwave heating play an important role in microwave extraction. Water heat up tremendously than the hexane because the ability to absorb the microwave energy. Therefore, hexane will need longer time of extraction in order to increase the extraction efficiency as it takes more time to absorb the microwave energy.

4.2.1 GC-MS Analysis

From the GC-MS analysis, only research 7 had yielded *patchoulol*, the main component in patchouli oil. In research 7, there was other component of patchouli oil detected which was β -patchoulene, seychellene, α -Selinene, α -patchoulene, norpatchoulenol, pogostol and α -bulnesene [8]. Research 8, 9 and 10 did not extract any components of patchouli oil because water was not a good solvent extraction.

The peak of retention time of *patchoulol* research 7 almost same with research 2, 3 and 4. Research 7 able to extract more components more than research 4 at the same power and time extraction because some presence of water able to heat up the faster and increase the extraction efficiency. Therefore, the 5 major components of *Pogostemon Cablin* of research 7 was *patchoulol*, α -*bulnesene*, α -*patchoulene*, α -*Selinene and* β -*patchoulene*.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The objective of this research was to extract patchouli essential oil with microwave assisted extraction (MAE) by using hexane as solvent. In this research, the patchouli leave that used was contains high level of *patchoulol* and *pogostol*. Power and time extraction play important role in microwave assisted extraction (MAE). The higher percentage extract of *patchoulol* was obtained at power 400W and time 10 minutes. Besides that, MAE able reduces the extraction time and obtained higher percentage extract of *patchoulol*.

In this research, the dielectric properties of the solvent towards microwave heating play an important role in microwave extraction. Water heat up faster than the hexane in the microwave because water had the higher ability to absorb the microwave energy. Although water had the higher dielectric properties, but it is not a good extraction solvent. Solvent hexane was a good extraction solvent but need longer time to absorb microwave energy as it was not good absorber of microwave energy. From GC-MS analysis, the major components of *Pogostemon Cablin* were *patchoulol*, α -*bulnesene*, α -guaiene and β -patchoulene.

5.2 **Recommendations**

It has been proven that MAE offers a huge potential in the area of essential oil extraction. There are some recommendations for further improvement in future research:

- i. Use another solvent like ethanol and methanol because it is a good extraction solvent and absorber of microwave energy.
- Future study of microwave assisted extraction should be done in large scale as it will save production cost and time.
- iii. Longer time of extraction for solvent hexane at the right extraction power to get the optimum yield of *patchoulol*.
- iv. Use another species of patchouli leaves which posses high level of *pogostol* and high level of *patchoulol*.

REFERENCES

- K. Bauer, D. Garbe, H. Surburg, in: Common Fragrance and Flavour Materials: Preparation, Properties and Used, third ed., Wiley-VCH, Weinheim, 1997, p. 205
- [2] Ganzler K., Salgo A. and Valko, K., Microwave extraction- a novel sample preparation method for chromatography. Journal of Chromatography 371 (1986) pp. 299-306
- [3] Hao J. Y., Huang R. H., Deng X. et al., Microwave extraction of seed of Passion flower. Journal of East China University of Science and Technology 27 (2001) pp. 117-120.
- [4] Jean F. I., Collin G. J. and Lord D., Essential oil and microwave extracts of cultivated plants. Perfum & Flavor 17 (1992) pp. 35-41
- [5] P.E. Shaw, J. Agric. Food Chem. 27 (1979) 246.
- [6] http://commons.wikimedia.org/wiki/Image:Pogostemon_cablin0.jpg, retrieved August 15, 2007.
- [7] Brooks M. Hybertson: Solubility of the Sesquiterpene Alcohol Patchoulol in Supercritical Carbon Dioxide, J. Chem. Eng. Data, 52 (1), 235 -238, 2007
- [8] J.P. Luo, Y.F. Peng, X.L. Guo, Chin. Tradit. Herb. Drugs 32 (2001) 299.
- [9] G.W. Zhang, W.J. Lan, J.Y. Su, L.M. Ceng, D.P. Yang, F.S. Wang, Chin. Tradit. Herb. Drugs 33 (2002) 210.

- [10] Q. Zhang, Z.W. Li, J.Y. Zhu, West Chin. J. Pharm. Sin. 11 (1996) 249.
- [11] J.H. Wang, H. Fu, Lishizhen. Med. Mater. Med. Res. 11 (2000) 579.
- [12] J.Y. Su, W.G. Zhang, H. Li, Chin. Tradit. Herb. Drugs 32 (2001) 204.
- [13] Fabienne Deguerry , Laurence Pastore, Shuiqin Wu, Anthony Clark, Joseph Chappell, Michel Schalk. The diverse sesquiterpene profile of patchouli, *Pogostemon cablin* is correlated with a limited number of sesquiterpene synthases, 454 (2006) 123–136
- [14] J.R.J. Pareè, J.M.R. Beèlanger, S.S. Stafford, Trends Anal. Chem. 13 (1994), 176.
- [15] J.R.J. Pareè, J.M.R. Beèlanger, Proc. 28th Microwave Power Symposium, International Microwave Power Institute, Manassas, 1993, p. 62.
- [16] S.S. Chen, M. Spiro, Flavour Fragr. J. 10 (2) (1995) 101.
- [17] S.J. Stout, A.R. daCunha, G.L. Picard, M.M. Safarpour, J. Food Agric. Chem. 44 (1996) 3548.
- [18] M. Letellier and H. Budzinski. Microwave assisted extraction of organic compounds. Analusis. 27: 259-71 (1999).
- [19] C.W. Huie. A review of modern sample preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 373: 23-30 (2002).
- [20] M. letellier, H. Budzinski, L. Charrier, S. Capes and A.M. Dorthe. Optimization by factorial design of focused microwave assisted extraction of polycyclic aromatic hydrocarbons from marine sediment. J. Anal. Chem. 364: 228-37 (1999).

- [21] H. Zhou and C. Liu. Microwave assisted extraction of solanesol from tobacco leaves. J. Chromatogr. A. 1129: 135-39 (2006).
- [22] M.J. Alfaro, J.M.R. Belanger, F.C. Padilla and J.R.R. Pare. Influence of solvent, matrix dielectric properties and applied power on the liquid-phase microwave assisted extraction of ginger (Zingiber officinale). Food Res. Int. 36: 499-504 (2003).
- [23] J.R.J. Pareè, J.M.R. Beèlanger, Proc. 28th Microwave Power Symposium, International Microwave Power Institute, Manassas, 1996, p. 57.
- [24] H. Li, B. Chen, Z. Zhang and S. Yao. Focused microwave assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv.Talanta. 63: 659-65 (2004).
- [25] S. wang, F. Chan, J. Wu, Z. Wang, X.Liao and X. Ha. Optimization of pectin extraction assisted by microwave from apple pomance using response surface methodology. J. Food Eng. Article in press (2007)
- [26] X. Pan, G. Niu, and H. Liu. Microwave assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem.Eng.Process. 42:129-33 (2003).
- [27] J. Hao, W. Han, S. Huang, D. Xue and X. Deng. Microwave assisted extraction of artemisnin from Artemisia annua L. Sep. Purif. Technol. 28: 191-196 (2002).
- [28] Y.Y. Shu, M.Y. Ko and Y.S. Chang. Microwave assisted extraction of Ginsenosides from ginseng root. Microchem. J. 74: 131-39 (2003).

- [29] M. Gao, B. Song and C. Lin. Dynamic microwave assisted extraction of Flavonoids from Saussurea medusa Maxim. Cultured cells. Biochem. Eng. J. 332: 79-83 (2006).
- [30] http://ciencies.udg.es/ciencies/CienciaSenseFronteres/Extraction%20liquid%20liquid.pdf, retrieved August 28, 2007.

APPENDIX A

Grant Chart for Undergraduate Research Project I

Subject \ Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	2	5	4	5	0	/	0)	10	11	12	15	14	15
Tittle comfirmation															
Discussion with supervisor															
Preparation of report															
a) Abstract															
b) Introduction															
c) Literature Review															
d) Methodology															
e) Expected Result and Discussion															
f) Conclusion															
g) Reference															
Submission 1st draft report															
Seminar 1 presentation															
Preparation final draft															
Submission final draft report															
Preparation for PSM II															

APPENDIX B

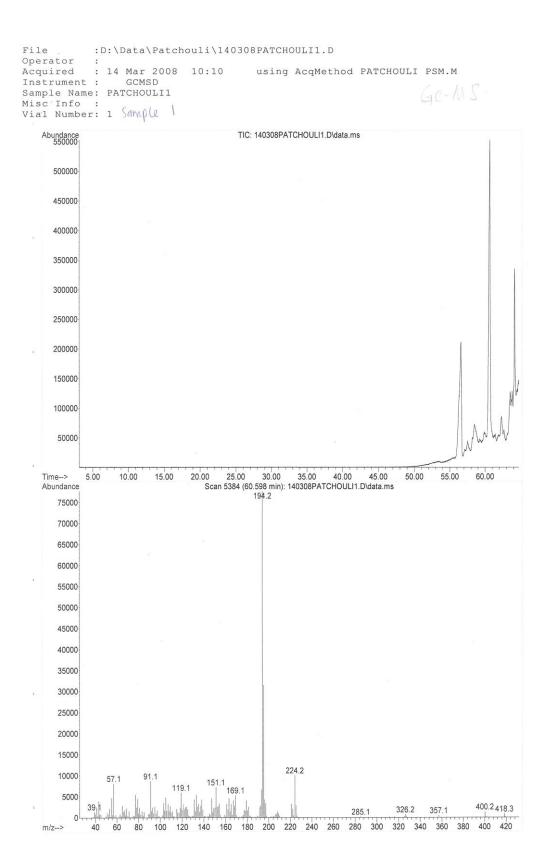
Grant Chart for Undergraduate Research Project II

Subject \ Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Literature Research															
Experiment familiarization															
Experiment work															
a) Pre-treatment methods															
b) Extraction methods															
c) Separation methods															
d) Analysis methods															
Discussion with supervisor															
Preparation of Full Thesis															
a) Abstract															
b) Introduction															
c) Literature Review															
d) Methodology															
e) Result and Discussion															
f) Conclusion															
g) Reference															
h) Appendix															
Preparation of technical paper															
Seminar II presentation															
Submission final draft thesis															
Submission of full thesis															
Submission of technical paper															

APPENDIX C

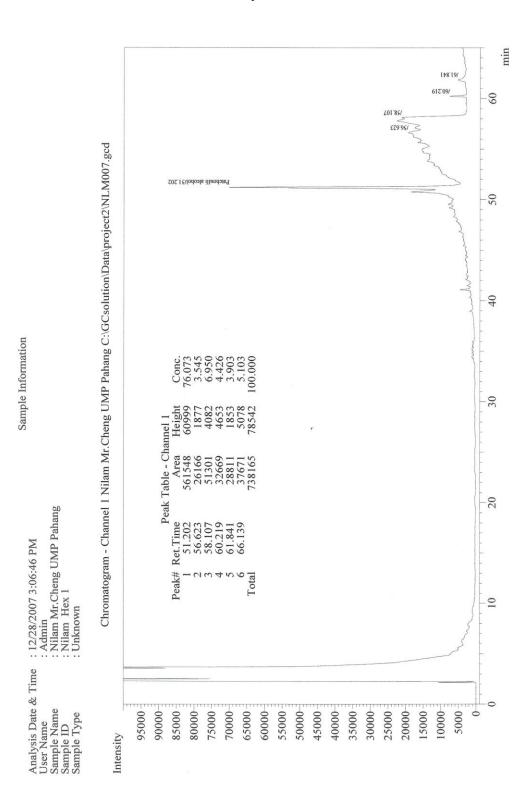
GC-MS analysis: Research 1

Data File C:\CHEM32\1\DATA\PATCHOULI 130308\SMP3 PAT.D Sample Name: patchouli 3 Location : Vial 1 Inj : 1 Acq. Method : C:\CHEM32\1\METHODS\PATCHOULI.M Last changed : 13/03/2008 11:35:20 by fiza Analysis Method : C:\CHEM32\1\METHODS\NUTMEG PSM.M Last changed : 14/03/2008 12:21:52 by fiza (modified after loading) FID1A, (PATCHOULI 130308\SMP3 PAT.D) PA 900 900 .550 800 700 600 500 400 2.21 300 49.136 200 41.838 43.933 45.782 48.384 48.384 395 51.110 55.803 55.543 100 462 105 37. 科 0 10 0 20 30 40 50 60 min _____ External Standard Report Sorted By Signal 09/11/2005 15:02:23 1.0000 Calib. Data Modified Multiplier . Dilution 1.0000 2.00000 Sample Amount : 2.00000 [ppm] Use Multiplier & Dilution Factor with ISTDs (not used in calc.) Signal 1: FID1 A, RetTime Type Area Amt/Area Amount Grp Name [min] [pA*s] 2.169 VV 9.25360 [ppm] ---- | ------ | ---13.45225 124.48185 7.65873 1622.32140 --- | -- | ------2.211 VB 2.308 211.82648 -2.359 2.788 BB 83.07826 7.30717 607.06717 4.814 Totals : 2353.87042 2 Warnings or Errors : Warning : Calibration warnings (see calibration table listing) Warning : Calibrated compound(s) not found Instrument 1 14/03/2008 12:24:22 fiza Page 1 of 2

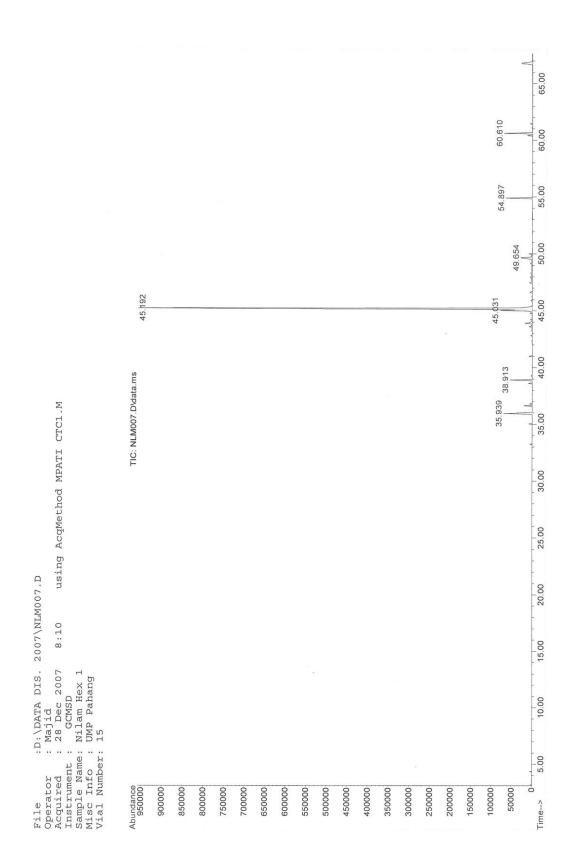

Data File C:\CHEM32\1\DATA\PATCHOULI 130308\SMP3 PAT.D Sample Name: patchouli 3

S	
	Integration Results
1	

Signal 1: FID1 A,


Peak #	Time [min]	Тур		Area [pA*s]	Height [pA]	Width [min]	Start [min]	End [min]
1	1.462		1	30.83645	33.44904	0.0138	1.438	1.501
2	1.520			86.44424	113.93655	0.0138	1.438	1.534
3	1.550			729.36328	739.61090	0.0115	1.534	1.590
4	1.607			254.99718	261.36902	0.0155	1.590	1.645
5	1.675		C	1.59267e4	1.14854e4	0.0134	1.645	1.045
6	1.715			7559.36230	4255.52637	0.0222	1.700	
7	1.802			8.01303e5	4235.52637 3.32106e5	0.0298	1.736	1.736 1.843
8	1.887			4545.17969	6635.11182	0.0402	1.843	1.945
9	1.982		0	2.00734	2.93541	0.0110	1.843	2.005
10	2.034			262.79727	286.17197	0.0110	2.014	2.005
11	2.034			24.93998	29.47372	0.0147	2.014	
12	2.136			7.95143	10.15358	0.0129		2.105
13	2.150			9.25360	6.56771	0.0121	2.116	2.146
14	2.211			211.82648	269.81876	0.0194	2.146	2.187
15	2.788			83.07826				2.242
16	3.105			1.78063	1.45367	0.0168	2.768	2.822
17	37.995			361.33148	18.50825	0.0193	3.080	3.142
18	39.122			640.56470	37.03511	0.2318		38,615
19	41.838			1070.42371		0.2148	38.735	39.575
20	41.838			1231.89197	62.48431 65.33131	0.2059	41.412	42.049
20	42.512					0.2240	42.049	42.995
22	43.933			107.25565	10.72614	0.1197	43.772	44.056
23	44.198			126.65145	13.28438	0.1172	44.056	44.408
23	44.562			108.69543	9.53155	0.1360	44.425	44.792
24	45.782			96.47518	8.50251	0.1364	45.642	46.068
				406.57547	28.46336 116.34180	0.1706	46.675	47.308
26	47.894			1410.57544		0.1585	47.445	48.113
27	48.384			356.08417	33.16934	0.1342	48.113	48.601
28	49.136			2090.62256	160.17036	0.1663	48.601	49.212
29	49.340			765.99371	71.29499	0.1293	49.212	49.434
30	49.477			308.05280	54.72771	0.0797	49.434	
31	49.923			188.60239	23.17892	0.1019	49.749	50.011
32	50.258			1135.70654 369.42789	88.48461	0.1567	50.011	50.355
33	50.420			369.42789	71.86764	0.0730	50.355	50.555
34	50.966			109.49111	15.93982	0.0901	50.816	51.051
35	51.110			54.61675	9.44913	0.0764	51.051	51.206
36	51.386			321.34100	43.49831	0.0922	51.206	51.598
37	52.177			433.89307	50.64148	0.1090	51.978	52.395
38	52.803			21.76453	4.15597	0.0661	52.725	52.869
39	52.958			69.89442	11.45034	0.0792	52.869	53.036
40	53.129			75.75340 406.43008	8.01970	0.1132	53.036	53.335
41	53.733				48.33926	0.1031	53.552	53.955
42	54.301				63.91293	0.1009	54.102	54.518
43	54.781			60.76591	8.33130	0.0981	54.628	54.998
44	55.543	BB		58.12566	8.02109	0.0905	55.406	55.738
======	========						==========	

Instrument 1 14/03/2008 12:22:14 fiza

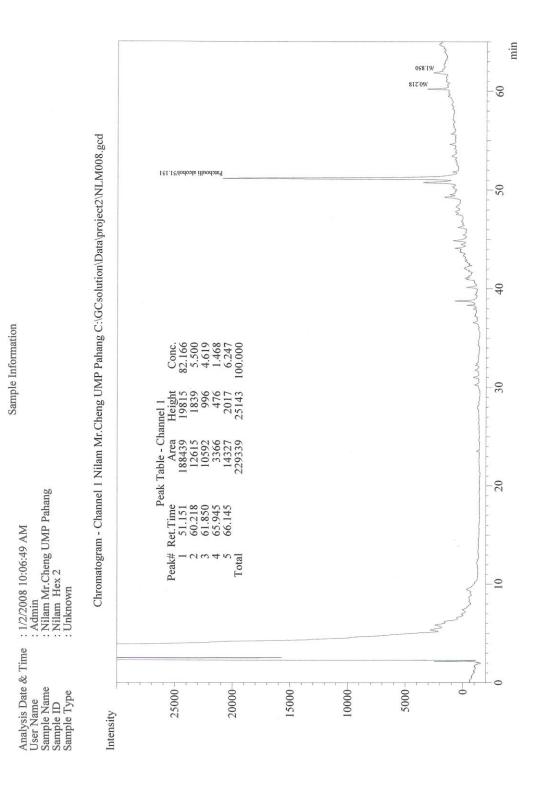

Library Search Report

Data Path : D:\Data\Patchouli\ Data File : 140308PATCHOULI1.D : 14 Mar 2008 10:10 Acq On Operator : PATCHOULI1 Sample Misc ALS Vial : 1 Sample Multiplier: 1 Search Libraries: C:\Database\NIST05a.L Minimum Quality: 30 Minimum Quality: 30 C:\Database\Flavor2.L Unknown Spectrum: Apex Integration Events: ChemStation Integrator - autoint1.e Library/ID Ref# CAS# Qual Pk# RT Area% 1 56.593 28.93 C:\Database\NIST05a.L 7H-Furo[3',2':4,5]furo[2,3-c]xanth 154351 020797-80-2 87 en-7-one, 3a,12c-dihydro-12c-hydro xy-6,8-dimethoxy-9,9'-Biphenanthrene 154697 020532-03-0 58 1,3-Difluoro-5-pentafluorophenyldi 154218 1000299-10-3 50 methylsilyloxybenzene 2 58.494 5.33 C:\Database\NIST05a.L 5H-Dibenz[b,e]azepine, 6,11-dihydr 53660 000449-55-8 56 0-Desmethylnomifensine 74439 073999-34-5 49 5H-Dibenz[b,f]azepine-5-carboxamid 83808 003564-73-6 46 e, 10,11-dihydro-60.716 46.94 C:\Database\NIST05a.L 3 N-(4-Methoxyphenyl)-2-hydroxyimino 53297 1000143-61-3 95 -acetamide 2-Hydroxy-4-isopropyl-7-methoxytro 52474 089647-85-8 53 pone Phenol, 2,6-dimethoxy-4-(2-propeny 52464 006627-88-9 49 1)-63.547 3.85 C:\Database\NIST05a.L 4 2-Cyclopenten-1-one, 3-methyl-2-(1 30784 022610-80-6 30 ,3-pentadienyl)-, (E,Z)-Tetrapentacontane, 1,54-dibromo- 190704 1000156-09-4 25 2-Cyclopenten-1-one, 3-methyl-2-(2 30782 022610-79-3 25 ,4-pentadienyl)-, (Z)-'5 63.707 1.11 C:\Database\NIST05a.L 2-Hydroxy-4-isopropyl-7-methoxytro 52474 089647-85-8 50 pone 2(1H)-Naphthalenone, octahydro-4a, 52865 054699-31-9 43 7,7-trimethyl-, trans-2-Propenoic acid, 3-(4-hydroxy-3-m 52320 001135-24-6 41 ethoxyphenyl)-6 63.835 1.78 C:\Database\NIST05a.L Aciphyllene 59792 087745-31-1 55 2,3-Dehydro-4-oxo-.beta.-ionone 59625 077503-87-8 27 2-Cyclopenten-1-one, 3-methyl-2-(2 30782 022610-79-3 25 ,4-pentadienyl)-, (Z)-64.177 11.63 C:\Database\NIST05a.L 7 4(1H)-Quinazolinone 21337 000491-36-1 38 4-Hydroxy-1,7-naphthyridine 4(1H)-Quinazolinone 21349 053454-31-2 35 21336 000491-36-1 35 8 64.551 0.44 C:\Database\NIST05a.L Cyclohexaneethanol, 4-methyl-.beta 25803 015714-12-2 30 .-methylene-, trans-Bicyclo[2.2.2]octan-2-one, 5-acety 52682 1000277-97-9 30 1-8,8-dimethyl-3-Hexen-2-one, 3-cyclohexyl-4-ethy 62952 1000150-19-1 18 1 -

GC-MS analysis: Research 2

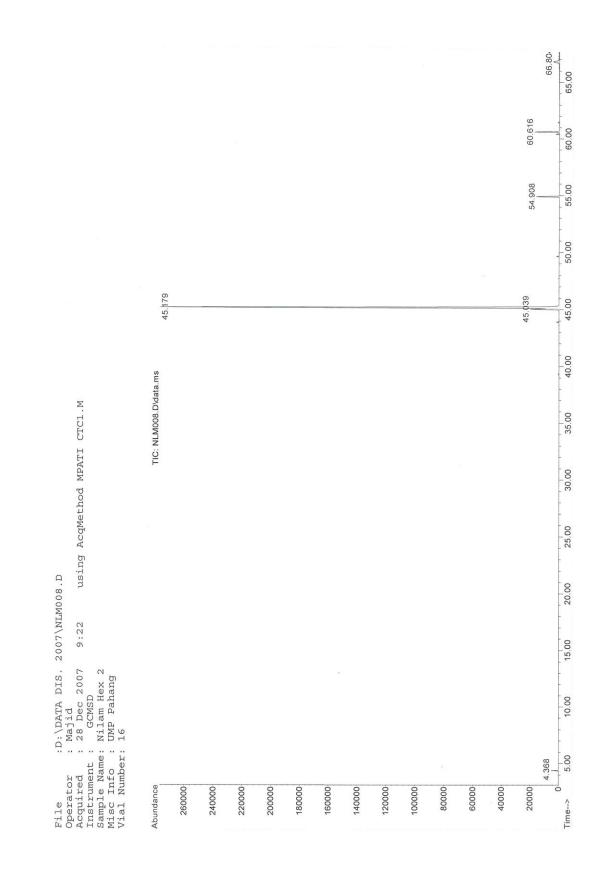
APPENDIX D

Library Search Report

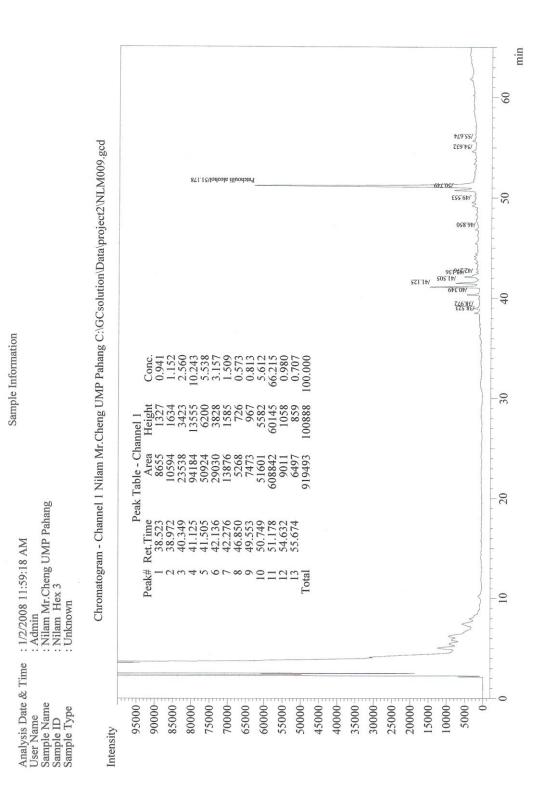

00

Qual

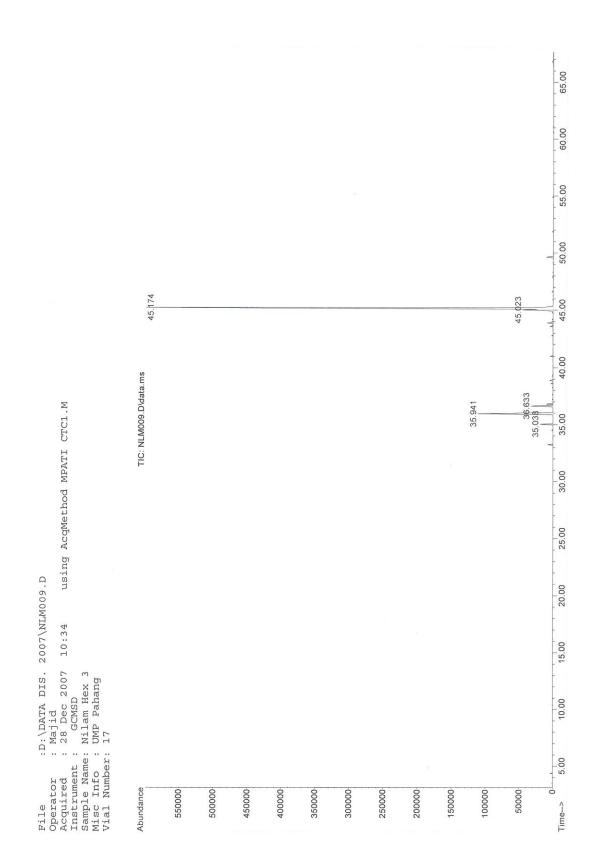
	Minimum Qualicy: Minimum Quality: autoint1.e	Ref# CAS# Qual	831 003691-12-1 95 1360 068832-35-9 53 1242 000508-55-4 49	1244 003691-11-0 99 1314 006813-05-4 60 6 021747-46-6 58	1645 021698-41-9 55 1244 003691-11-0 43 1232 056684-97-0 30	1239 005986-55-0 98 402 013567-45-8 52 1530 055528-90-0 22	634 210482-74-9 78 107 085760-81-2 35 1887 000470-41-7 30	955 000112-39-0 96 1091 000110-42-9 58 1094 000111-82-0 53	2107 018485-38-6 12 1217 003452-07-1 10 797 000109-29-5 10
DATA DATA Dec 2 id am He Paha Sam	es: C:\Database\NFTCAZO5.L C:\Database\NTST05a.L um: Apex ents: ChemStation Integrator -	Pk# RT Area% Library/ID	<pre>1 35.937 5.76 C:\Database\HPCH2205.L 26.20 Guaiene<alpha-> 27.33 Caryophyllene<9-epi-(E)-> 28.91 Patchoulene<gamma-></gamma-></alpha-></pre>	<pre>2 38.912 3.35 C:\Database\HPCH2205.L 29.20 Bulnesene<alpha-> 24.21 Sativene 28.68 Viridiflorene</alpha-></pre>	<pre>3 45.029 5.66 C:\Database\HPCH2205.L 34.89 Pogostol 29.20 Bulnesenecalpha-> 23.78 Panasinsenecbeta-></pre>	<pre>4 45.189 74.42 C:\Database\HPCH2205.L 35.08 Patchouli alcohol 35.68 Cedranol<5-iso-> 35.74 Valeranone</pre>	<pre>5 49.652 2.60 C:\Database\HPCH2205.L 29.35 Modhephen-8-beta-ol 34.42 Aromadendrene epoxide-callo- 37.06 Thujopsenal</pre>	<pre>6 54.899 3.82 C:\Database\HPCH2205.L 44.64 Methyl hexadecanoate 21.23 Methyl decanoate 29.82 Methyl dodecanoate</pre>	<pre>7 60.610 4.40 C:\Database\HPCH2205.L 29.77 Dodecadienol<2E,4E-> 46.92 Eicosene<1-> 45.07 Cyclohexadecanolide</pre>


Flavor RTL.M Wed Jan 09 15:43:28 2008

Page:

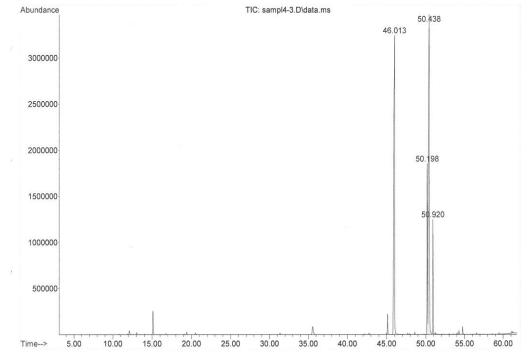


APPENDIX E



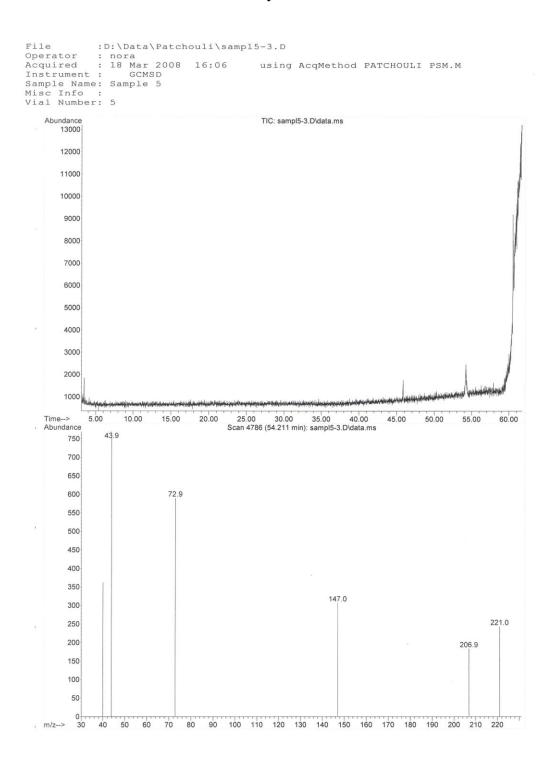
Minimum Quality: Minimum Quality:	- U	Ref# CAS# Qual	1975 069112-21-6 3 1750 000123-42-2 2	825 000107-74-4 2	1645 021698-41-9 74 742 029873-99-2 60 1867 051371-47-2 49	1239 005986-55-0 98 402 013567-45-8 83 1530 055528-90-0 14	955 000112-39-0 96 1111 000124-10-7 53 1094 000111-82-0 42	797 000109-29-5 38 2131 002277-19-2 23 2107 018485-38-6 12	1850 000499-89-8 2 1595 063891-61-2 2 1506 001076-56-8 2
Operator : Majid Sample : Nilam Hex 2 Misc : UMP Pahang ALS Vial : 16 Sample Multiplier: 1 Search Libraries: C:\Database\HPCH2205.L C:\Database\NIST05a.L	nknown Spectrum: Apex ntegration Events: ChemS	Pk# RT Area% Library/ID	<pre>1 4.369 0.59 C:\Database\HPCH2205.L 3.10 Hexenal<3E-> 3.72 Pentanone<4-hydroxy-4-methyl- 2</pre>	22.83 Hydroxy citronellol	<pre>2 45.040 5.14 C:\Database\HPCH2205.L 34.89 Pogostol 26.08 Elemene<gamma-> 32.50 Globulol</gamma-></pre>	<pre>3 45.178 84.09 C:\Database\HPCH2205.L 35.08 Patchouli alcohol 35.68 Cedranol<5-iso-> 35.74 Valeranone</pre>	 4 54.911 3.73 C:\Database\HPCH2205.L 44.64 Methyl hexadecanoate 37.57 Methyl tetradecanoate 29.82 Methyl dodecanoate 	<pre>5 60.616 4.16 C:\Database\HPCH2205.L 45.07 Cyclohexadecanolide 11.38 Nonenal<6Z-> 29.77 Dodecadienol<2E,4E-></pre>	<pre>6 66.807 2.28 C:\Database\HPCH2205.L 23.75 Thujic acid 32.89 Rosifoliol 17.19 Thymol, methyl ether</pre>

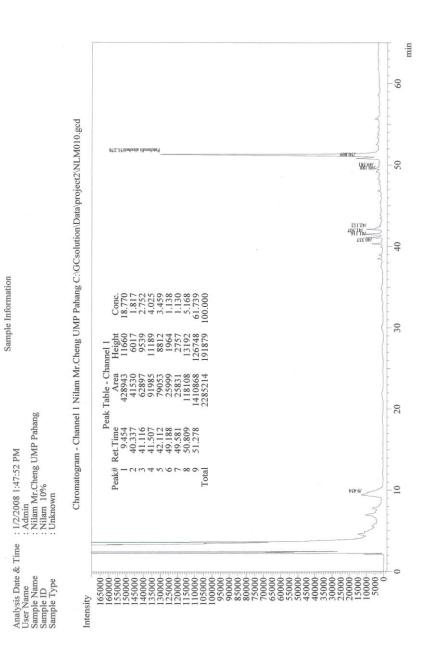
GC-MS analysis: Research 4

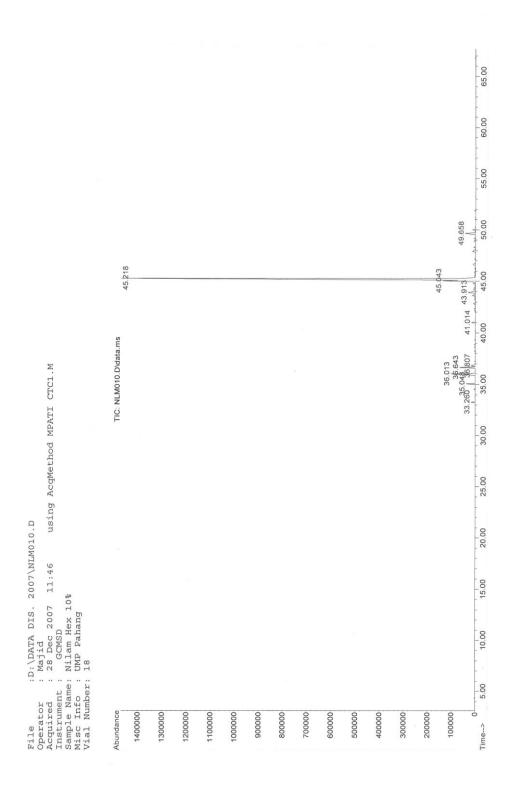

APPENDIX F

				I				
	00		н					
	:		Qual	99 58 50	90 62 83 83	99 49 49	93 64 50	98 14 14
	i t t		0	t - 5 5 - 0 7 - 4	- 1 - 9 - 10 - 10	2 - 7 0 - 8 1 - 0	00 0	0 8 0
	Quality: Quality:		CAS#	- 69	- 10	1202	- 41 - 11	1400
			CP	000087-44-5 000118-65-0 074284-57-4	003691-12-1 068832-35-9 017066-67-0	000560-32-7 135267-20-8 053585-13-0	021698-41-9 003691-11-0 022567-17-5	986 567 697
	Minimum Minimum			000 000 074	003 068 017	000560-32-7 135267-20-8 053585-13-0	021 003 022	005986-55-0 013567-45-8 205697-15-0
	Min Min	U	Ref#	830 386 2167	831 1360 420	1241 1347 357	1645 1244 762	
		t1.	Re	8 21 21	13 13 4	1241 134 35	16 12	1239 402 1031
		oin						
		autoint1.			^			
		1			tabase\HPCH2205.L Guaiene <alpha-> Caryophyllene<9-epi-(E)-> Selinene<beta-></beta-></alpha->	Λ		12205.L .lcohol iso-> acetate <iso-></iso->
	5.L .L	tor			् । :न	י א שמי שמי		Ч-Г- У
Ч	220 05a	gra		Ц. С V	-ер	.L ha- cci gam	н 	ol. ate
	PCH IST	nte	D	202 6 (日 6 205	202 8 - 2 9 - 2 9 - 2	205 alp ene	205 oha nma	CH2205.L alcohol 5-iso-> [acetat
lie	e/H e/N	H C	Library/ID	len e	CH2 lph len oet	non non e< ()	cH2: <al]< td=""><td>CH2 al 5-i</td></al]<>	CH2 al 5-i
ci p	oa si	ciol	ora:	\HP(IV1 IV1 IV1	\HP(e <a. nyl. ne<l< td=""><td>\HP(len(len(</td><td>\HP(01 ene</td><td>\HP(LLL DL<</td></l<></a. 	\HP(len(len(\HP(01 ene	\HP(LLL DL<
/ult	atal atal	otat	LiJ	ase vopl vopl	lene voph	ase' chou nyl abol	ase' osto nese june	thou chou canc
e a	C:\Database\HPCH2205.L C:\Database\NIST05a.L	Apex ChemStation Integrator		tabase\HPCH2205.L Caryophyllene(E-) Caryophyllene <z-> Silphinene</z->	tabase\HPCH220 Guaiene <alpha- Caryophyllene< Selinene<beta-< td=""><td>tabase\HPCH2205.L Patchoulene<alpha-> Prenyl limonene<cis-> Bisabolene<(E)-gamma-></cis-></alpha-></td><td>tabase\HPCH2205.L Pogostol Bulnesene<alpha-> Gurjunene<gamma-></gamma-></alpha-></td><td>tabase\HPCH2205. Patchouli alcoho Cedranol<5-iso-> Longifolol aceta</td></beta-<></alpha- 	tabase\HPCH2205.L Patchoulene <alpha-> Prenyl limonene<cis-> Bisabolene<(E)-gamma-></cis-></alpha->	tabase\HPCH2205.L Pogostol Bulnesene <alpha-> Gurjunene<gamma-></gamma-></alpha->	tabase\HPCH2205. Patchouli alcoho Cedranol<5-iso-> Longifolol aceta
Majid Nilam Hex 3 UMP Pahang 17 Sample Multiplier:	υυ			l rd	d	m d	đ	
Ld Pal Sa		l: Its:		2 4 U C	C:\Da 26.20 27.33 28.37		C:\Da 34.89 29.20 27.80	C:\Da 5.08 5.68 1.09
Maji Nila UMP 17	0 1	run	% %	1.73 2 2 2	47 2 2 2	3.41 22 3	4.82 200	57 33 4
2204	rar	ect n E	Area%	H.	15.	с.	4.	74.
L K	Lib	l Sp ttic	RT	038	42	35	.023	172
cato ble via	cch	IOWI	щ	<u>،</u>	5.942	6.63	S	Б
Operator Sample Misc ALS Vial	Search Libraries:	Unknown Spectrum: Integration Events:		m	m	m	4	4
	01	ЧЧ	Pk#		0	с	4	ы

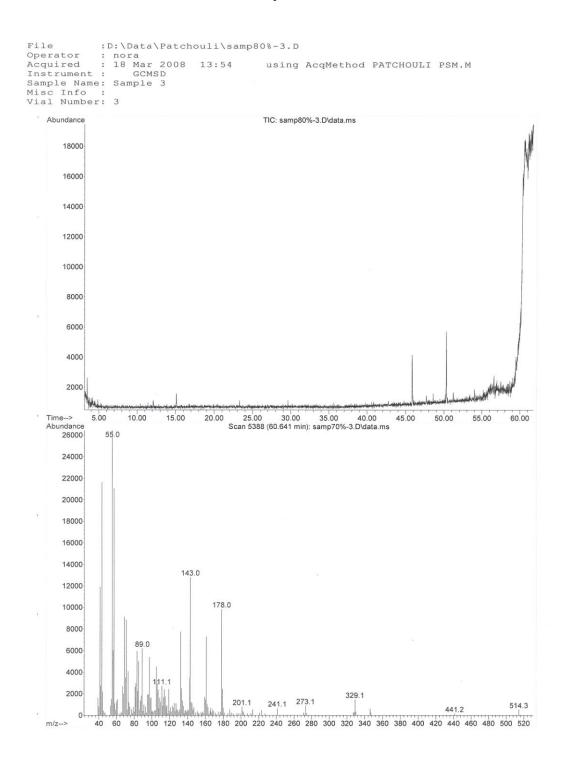
APPENDIX G


```
File :D:\Data\Patchouli\sampl4-3.D
Operator : nora
Acquired : 18 Mar 2008 15:00 using AcqMethod PATCHOULI PSM.M
Instrument : GCMSD
Sample Name: Sample 4
Misc Info :
Vial Number: 4
```

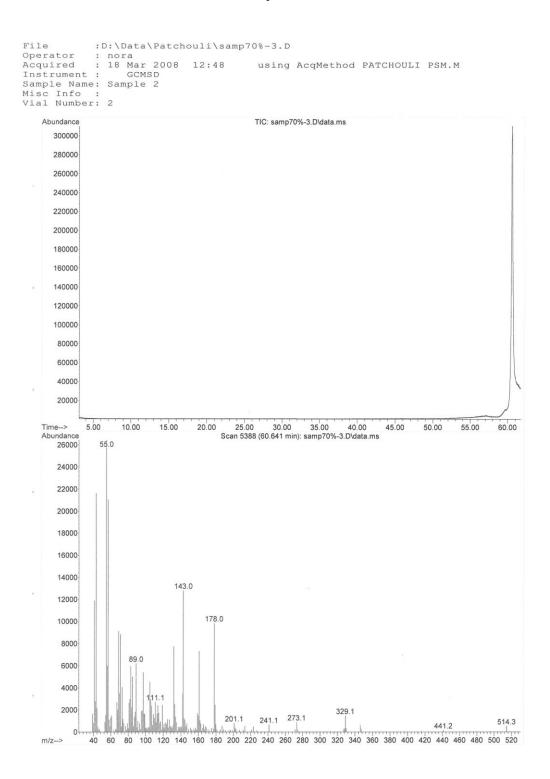


Library Search Report


Da Ac Op Sa Mi AL	ta File q On erator mple sc S Vial	: sampl4- : 18 Mar : nora : Sample :	2008 15:00	[ST05a.]			nimum Qualit nimum Qualit	
			Apex ChemStation Ir	ntegrat	or – auto	intl.e		
₽k#	RT	Area%	Library/1	E D		Ref#	CAS#	Qual
1	46.018	Pent thyl Hexa	Database\NISTO adecanoic acid, ester decanoic acid, decanoic acid,	14-me methyl	ester	105644	005129-60-2 000112-39-0 000112-39-0	95
2	50.194	9,12 este 9,12 meth 9,12	Database\NISTO -Octadecadienoi r -Octadecadienoi yl ester -Octadecadienoi yl ester	ic acid ic acid	(Z,Z)-,	121105	002462-85-3 000112-63-0 000112-63-0	99
	50.440	9-Oc ster 9-Oc ster	Database\NIST05 tadecenoic acio tadecenoic acio tadecenoic acio	d (Z)-, d (Z)-,	methyl e	122321	000112-62-9	99
4	50.921	6.05 C:\ Octa Octa	Database\NIST05 decanoic acid, decanoic acid, decanoic acid,	a.L methyl methyl	ester ester	123709 123700	000112-61-8 000112-61-8 000112-61-8	98 98

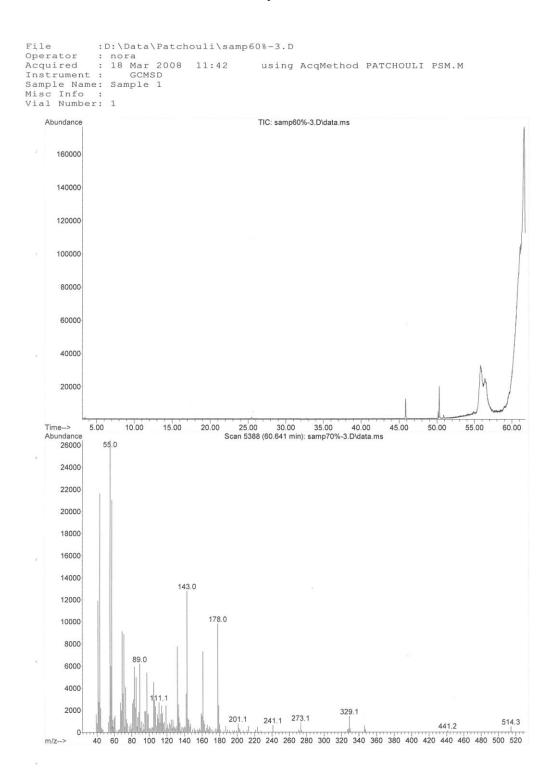
APPENDIX H


<pre>Data Path : D:\DATA DIS. 2001 Data File : NLMADD DIS. 2007 Data File : NLMADD DI : 46 Deg On : :28 Dec 2007 11:46 Sample : :NLMADD T: 46 Sample : :NLMADD T: 46 Sample : :NLMADD T: 46 Sample : :NLMADD T: 46 Deg On : :UNP Palang Mis : :0000000000000000000000000000000000</pre>				¢	ίΪ.		
<pre>arch Libraries: C:\Database\HPCH2205.L Minimum Qualit C:\Database\HPCH2205.L Minimum Qualit nknown Spectrum: Apex regration Events: ChemStation Integrator - autointl.e RT Area% Library/ID Reff CAS# 33.259 0.59 C:\Database\HPCH2205.L 1240 000514-51-2 23.70 patchoulene beta-> 1230 0000314-51-2 23.70 patchoulene beta-> 1230 0000314-51-2 23.70 patchoulene beta-> 1230 0000314-51-2 23.70 patchoulene beta-> 1230 000087-44-5 23.70 patchoulene beta-> 1240 000514-51-2 23.70 factabase\HPCH2205.L 1243 020085-93-2 23.97 Caryophyllene(E-) 1243 020085-93-2 24.95 Caryophyllene(E-) 1243 020085-93-2 24.95 Caryophyllene(E-) 1243 020085-93-2 24.95 Caryophyllene(E-) 1243 055668-93-2 24.95 Caryophyllene(E-) 1241 000560-32-7 26.50 1.31 C:\Database\HPCH2205.L 1243 05566-32-7 36.011 6.86 C:\Database\HPCH2205.L 1243 05566-32-7 26.30 0560-32-7 26.44 Prenyl limone<cis-> 1347 135567-20-8 30.03 Bisabolene<(B)-gamma-> 537 138752-23-5 30.03 Bisabolene<(B)-gamma-> 357 05567-17-5 26.39 Guaidene<cis-> 357 05567-27-9 27.00 Aromadendrene<cilo-> 762 022567-17-5 27.00 Aromadendrene<cilo-> 762 022567-17-5 27.00 Aromadendrene<cilo-> 762 022567-17-5 27.00 Aromadendrene<cilo-> 762 000576-26-1 11.74 Dimethyl Phenol<2,6-> 11.74 Dimethyllene 11.74 Dimethyl Phenol<2,6-> 1644 041429-52-0 11.74 Dimethyllene 28.64 Berguithuriferol 10-8 28.64 Acherol</br></cilo-></cilo-></cilo-></cilo-></cis-></cis-></br></br></br></br></br></pre>	Data Data Acq (Oper Samp: Misc ALS J		<pre>D:\DATA DIS. 2007\ NLM010.D 28 Dec 2007 11:46 Majid NNIP Hex 10% UMP Pahang 18 Sample Multiplier:</pre>				
Jhnown Spectrum: Apex RT Area% Library/ID Ref# CAS# RT Area% Library/ID Ref# CAS# 33.259 0.59 C:\Database\HPCH2205.L 1240 000514-51-2 23.70 Perschoulene <beta -=""> 636 080331-09-5 23.70 Pressiphiperfol-7-ene 636 080331-09-5 23.70 Patchoulene<beta -=""> 1240 000087-44-5 23.97 Pressiphiperfol-7-ene 636 03031-09-5 23.97 Database\HPCH2205.L 1243 000087-44-5 24.95 Carryophyllene(E-) 386 000118-65-0 24.95 Carryophyllene<(E-)</beta></beta>	Sear		0 	205.L 5а.L	Mir Mir	iimum Quali iimum Quali	: 7:
RT Area% Library/ID Ref# CAS# 33.259 0.59 C:>Database(HPCH2205.L 1240 000514-51-2 29.97 Zonarene 1240 000514-51-2 29.97 Zonarene 1240 000514-51-2 29.97 Zonarene 1240 000087-44-5 29.07 Database(HPCH2205.L 198 0800418-65-0 25.36 Caryophyllene(E>) 380 000087-44-5 27.16 Arcwadendrane <dehydro-> 198 085048-01-7 36.011 6.86 C:\Database\HPCH2205.L 386 000188-65-09 36.011 6.86 C:\Database\HPCH2205.L 1243 020085-93-2 36.011 6.86 C:\Database\HPCH2205.L 1243 0200850-32-7 36.641 2.80 Silphiperfol-5-ene 633 055868-33-7 36.641 2.80 Silphiperfol-5-ene 633 055865-13-0 36.641 2.80 Silphiperfol-5-ene 633 055865-13-0 36.641 2.80 Silphiperfol-5-ene</dehydro->	Unkne	1)	:trum: Apex Events: ChemStation	1	ч. е.		
33.259 0.59 C:\Database\HPCH2205.L 1240 000514+51-2 23.70 Patchoulene <beta-> 1240 000514+51-2 29.7 Zonarene 1051 041929-05-9 21.70 Presilphiperfol-7-ene 636 080931-09-5 35.050 1.31 C:\Database\HPCH2205.L 830 000118-65-0 35.051 1.31 C:\Database\HPCH2205.L 830 000118-65-0 24.95 Caryophyllene<z-> 198 085048-01-7 27.16 Aromadendrane<dehydro-> 198 085048-01-7 27.15 Aromadendrane 637 138752-23-5 36.011 6.86 C:\Database\HPCH2205.L 1241 000560-32-7 36.641 2.80 C:\Database\HPCH2205.L 1243 020085-93-2 36.641 2.80 C:\Database\HPCH2205.L 1241 000560-32-7 36.641 2.80 C:\Database\HPCH2205.L 1241 000560-32-7 36.641 2.80 C:\Database\HPCH2205.L 1241 000560-32-7 36.641 2.80 C:\Database\HPCH2205.L 1241 0005566-32-7 36.6</dehydro-></z-></beta->	k#	\mathbf{RT}	0/0	E	Ref#	CAS#	ŏnġ
35.050 1.31 C:\Database\HPCH2205.L 830 000087-44-5 25.36 Caryophyllene(E-) 386 000087-44-5 24.95 Caryophyllene<(E-)	m	. 25	0.59	ene	1240 1051 636	000514-51 041929-05 080931-09	2000 000 0000
36.011 6.86 C:\Database\HPCH2205.L 1243 020085-93-2 26.50 Seychellene 637 138752-23-5 40.11 Eudesmol acetate <beta> 637 138752-23-5 21.20 Silphiperfol-5-ene<7-epi-> 637 138752-23-5 36.641 2.80 C:\Database\HPCH2205.L 1241 000560-32-7 36.641 2.80 C:\Database\HPCH2205.L 1241 000560-32-7 36.641 2.80 C:\Database\HPCH2205.L 1347 135267-20-8 36.807 1.02 C:\Database\HPCH2205.L 1347 135267-20-8 36.807 1.02 C:\Database\HPCH2205.L 1347 135267-20-8 36.807 1.02 C:\Database\HPCH2205.L 467 025246-27-9 27.07 Aromadendrene<cilo-> 357 053585-117-5 27.07 Aromadendrene<cilo-> 1795 037839-64-8 27.07 Aromadendrene<cilo-> 1795 037839-64-8 27.08 Guridiene<6, 9-> 1795 037839-64-8 27.08 Guridiene<6, 9-> 1795 037839-64-8 31.00 Norpatchoulenol<</cilo-></cilo-></cilo-></beta>	ŝ	0.	1.31 C:\Da 25.36 24.95 27.16	-orb/	830 386 198	-44 65 01	
<pre>36.641 2.80 C:\Database\HPCH2205.L 26.92 Patchoulene<alpha-> 26.92 Patchoulene<alpha-> 36.44 Prenyl linonene<cis-> 30.03 Bisabolene<(E)-gamma-> 357 053585-13-0 36.807 1.02 C:\Database\HPCH2205.L 27.07 Aromadendrene<allo-> 27.07 Aromadendrene<gamma-> 27.80 durjunene<gamma-> 27.80 durjunene<gamma-> 27.80 durjunene<gamma-> 27.80 durjunene<gamma-> 27.80 furjunene<gamma-> 1795 037839-64-8 31.00 Norpatchoulenol 31.01 0.63 C:\Database\HPCH2205.L 31.00 Norpatchoulenol 31.01 0.63 C:\Database\HPCH2205.L 31.01 Norpatchoulenol 31.03 Assequithuriferol 31.04 041429-52-1 31.01 0.63 C:\Database\HPCH2205.L 31.01 0.63 C:\Database\HPCH2205.L 31.02 000576-26-1 43.913 1.86 C:\Database\HPCH2205.L 34.89 Aciphyllene</gamma-></gamma-></gamma-></gamma-></gamma-></gamma-></allo-></cis-></alpha-></alpha-></pre>	ŝ	. O1	6.86 C:\Da 26.50 40.11 22.20	Â	4 0 m	5-93- 3-98- 2-23-	o n n
<pre>36.807 1.02 C:\Database\HPCH2205.L 27.07 Aromadendrene<allo-> 27.07 Aromadendrene<allo-> 27.07 Aromadendrene<allo-> 27.80 Gurjunene<gamma-> 26.39 Guaiadiene<6,9-> 1795 037839-64-8 1795 037839-64-8 1795 037839-64-8 31.00 Norpatchouleno1 31.00 Norpatchouleno1 33.08 Sesquithurifero1 11.74 Dimethyl phenol<2,6-> 11.74 Dimethyl phenol<2,6-> 11.74 Dimethyl phenol<2,6-> 11.74 Dimethyl phenol<2,6-> 11.74 Dimethyl phenol<2,6-> 31.86 C:\Database\HPCH2205.L 28.89 Acaiphyllene 34.89 Pogostol 34.89 Pogostol 1645 021698-41-9</gamma-></allo-></allo-></allo-></pre>	ŝ	9.	2.80 C:\Da 26.92 26.44 30.03		1241 1347 357	-32- -20-	
<pre>41.012 0.63 C:\Database\HPCH2205.L 31.00 Norpatchoulenol 33.08 Sesquithuriferol 11.74 Dimethyl phenol<2,6-> 750 000576-26-1 43.913 1.86 C:\Database\HPCH2205.L 28.68 Aciphyllene 34.89 Pogostol 1645 021698-41-9 34.89 Pogostol</pre>	Ś	°.	1.02 C 27 27 27 27	^	467 762 1795		
43.913 1.86 C:\Database\HPCH2205.L 28.89 Aciphyllene 1642 087745-31-1 28.66 Valencene 1528 004630-07-3 34.89 Pogostol 1645 021698-41-9	4	. O1	<pre>0.63 C:\Database\HPCH2205 31.00 Norpatchoulenol 33.08 Sesquithurifero 11.74 Dimethyl phenol</pre>	< - >	1644 963 750	55.55	
	4	3.91	<pre>1.86 C:\Database\HPCH2205 28.89 Aciphyllene 28.66 Valencene 34.89 Pogostol</pre>		1642 1528 1645	-31- -07-	

Page: 1


Library Search Report

	Minimum Quality: 0 Minimum Quality: 0	autoint1.e	Ref# CAS# Qual	1645 021698-41-9 91 421 000473-13-2 64 1244 003691-11-0 45	1239 005986-55-0 98 402 013567-45-8 50 1530 055528-90-0 22	634 210482-74-9 46 220 064180-68-3 20 1850 000499-89-8 16
Data Path : D:\DATA DIS. 2007\ Data File : NLM010.D Acq On : 28 Dec 2007 11:46 Operator : Majid Sample : UMP Pahang Misc : UMP Pahang ALS Vial : 18 Sample Multiplier: 1	Search Libraries: C:\Database\HPCH2205.L C:\Database\NIST05a.L	Unknown Spectrum: Apex Integration Events: ChemStation Integrator -	Pk# RT Area% Library/ID	<pre>8 45.040 6.18 C:\Database\HPCH2205.L 34.89 Pogosto1 28.74 Selinene<alpha-> 29.20 Bulnesene<alpha-></alpha-></alpha-></pre>	<pre>9 45.218 76.10 C:\Database\HPCH2205.L 35.08 Patchouli alcohol 35.68 Cedranol<5-iso-> 35.74 Valeranone</pre>	<pre>10 49.658 2.66 C:\Database\HPCH2205.L 29.35 Modhephen-9-beta-o1 34.81 Vulgarone B 23.75 Thujic acid</pre>


APPENDIX J

APPENDIX K

APPENDIX L

