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ABSTRACT 

 

 

 

 

The direct conversion of methane to liquid hydrocarbon has not yet been 

successfully implemented in an economical process. Bimetallic zeolites were shown to 

have reasonable activities for the formation of higher hydrocarbons from methane. The 

presence of combine metal, Ni and Cu leads to improved methane conversion and 

hydrocarbon selectivity and yield of liquid hydrocarbon. The purpose of this study is to 

modify zeolite with combine metal, copper and nickel for methane conversion into 

liquid hydrocarbon C5+. The yield of C5+ production is expected to be high when zeolite 

is introduced with nickel. The presence of Cu species at the surface of zeolite catalyst 

can enhance the oxidation reaction, thus improved the methane conversion and 

hydrocarbon selectivity. The catalysts are characterized for their physicochemical 

properties using the Fourier Transmitter IR Analysis (FTIR), Thermogravimetric 

Analysis (TGA), and X-ray Diffraction (XRD). The characterize result reveals that IR 

spectra of Cu/Ni-Zeolite-A sample and other modified zeolite sample match quite 

closely, indicating the presence of similar structural units and formation of identical 

chemical moieties of the modified zeolite samples. From XRD analysis, it is found that 

the synthesized modified zeolite posses a high crystallinite structure and have small 

particle size, around 3.7 Å. TGA analysis find that the modified zeolite catalyst is 

suitable for reaction in the temperature range 2000C to 7000C due to its high thermal 

stability. Methane conversion to liquid hydrocarbon is predicted to increase due to 

loading of bi-metal Copper and Nickel. This research suggest that further studies on the 

concept of bi-metal and catalytic performance for direct conversion of methane to liquid 

hydrocarbon should be done to make this research more complete. 

.  
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ABSTRAK 

 

 

 

 

Proses penukaran metana kepada hidrokarbon cecair masih belum 

diimplementasikan dengan jayanya dalam proses yang lebih ekonomik. Zeolit bimetal 

telah menunjukkan aktiviti yang menggalakkan dalam pembentukan rantaian 

hidrokarbon yang lebih panjang daripada metana. Dengan kehadiran gabungan logam, 

Ni dan Cu boleh meningkatkan penukaran metana dan kememilihan hidrokarbon dan 

hasil daripada hidrokarbon cecair. Tujuan kajian ini ialah memodifikasi zeolit dengan 

logam gabungan, kuprum dan nikel untuk penukaran metana kepada hidrokarbon cecair 

C5+. Hasil produk  C5+  lebih tinggi apabila zeolit ditambahkan dengan logam nikel. 

Kehadiran spesis Cu di permukaan zeolit boleh menggalakkan tindakbalas 

pengoksidaan, seterusnya meningkatkan penukaran metana dan kememilihan 

hidrokarbon. Pencirian mangkin dilakukan berdasarkan ciri-ciri fizikokemikal dengan 

menggunakan Fourier Transmitter IR Analysis (FTIR), Thermogravimetric Analysis 

(TGA), and X-ray Diffraction (XRD). Keputusan daripada pencirian yang telah 

dilakukan menunjukkan spektra IR sample Cu/Ni-Zeolite-A dan lain sampel zeolit yand 

diubah mempunyai struktur yang hampir sama dan bentuk formasi kemikel yang serupa. 

Daripada analisis XRD, didapati zeolit yang dihasilkan mempunyai struktur kristalit 

yang tinggi dan mempunyai saiz partikel yang kecil, sekitar 3.7 Å. Daripada analisa 

TGA menunjukkan pemangkin zeolit yang diubah sesuai untuk tindakbalas dalam suhu 

2000C to 7000C kerana sifat ketahanan termal yang tinggi. Penukaran metana kepada 

hidrokarbon cecair dijangka meningkat dengan penambahan bi-metal kuprum dan nikel. 

Kajian ini mencadangkan kajian lanjut dalam konsep bi-metal dan kajian mangkin untuk 

proses penukaran metana kepada hidrokarbon cecair harus dilakukan bagi memastikan 

kajian tentang mangkin zeolit ini lengkap.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

There is abundant of natural gas reserves in all over the world today. Natural gas 

which contains 60-90% methane, depends on its source, is gaining a great interest from 

many researchers to find the way to produce liquid hydrocarbons from natural gas, 

especially in the gasoline range fuel in more economical process. Methane, principal 

component of most natural gas, is currently used for home (in cold regions) and 

industrial heating, also use in electrical power generations. Methane is an ideal fuel for 

these purposes for its availability in most populated centers. Methane also easy to purify 

to remove sulfur compounds (Jack H. Lunsford, 2000). It also has the largest heat of 

combustion relatives to the amount of CO2 formed. The conversion of methane to useful 

products especially into gasoline range has been studied over the past decade. There are 

two routes for converting methane to gasoline; direct or/and indirect method. Direct 

methods have a distinct economic advantage over indirect methods, but up to date, no 

direct processes have progressed into a commercial stage due to its low conversion and 

selectivity. These processes are possible if carried out under controlled oxidation over a 

suitable catalyst (Sriraj Ammasi, 2005). 
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1.1.1 Natural Gas 

 

 

 Natural gas is a mixture of hydrocarbon gaseous. It is colorless, shapeless and 

odorless in its pure form. While natural gas is formed primarily of methane, it can also 

include ethane, propane, butane and pentane Like oil and coal, natural gas is a fossil 

fuel, meaning that it is the remains of plants, animal, and microorganisms that lived 

millions years ago. It is said that fossil fuels are formed when organic matter such as 

remains of plant or animal is compressed under the earth at very high pressure. This 

compression plus with high temperature of deep underneath earth break down the carbon 

bound in organic matter into oil and natural gas. As it gets deeper in earth, the 

temperature gets higher (Jack H. Lunsford, 2000).  

 

 

 

 

1.1.2 Gas to Liquids (GTL) Technology 

 

 

 GTL is a technology that converts the gas in liquid fuel for easy transportation 

(Wilhelm et al., 2001). The conversion of natural gas to liquid fuels in GTL technology 

consists of three stages: synthesis gas generation, production of heavy-chain 

hydrocarbons by Fischer-Tropsch synthesis and heavy fraction hydrocracking for 

production of useful products such as naphtha, lubricants and diesel (Aguiar et al., 2005 

and Yagi et al., 2005). Although the stages have been well studied and commercially 

available, it is still costly for commercial production plant. Plus, the synthesis gas 

generation stage has the greatest costs in investments and operation (Vosloo, 2001). 

Consequently, many companies are seeking to find a way to optimize the synthesis gas 

generation stage, in order to make the GTL technology commercially viable (Wittcoff et 

al., 2004).  
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1.1.3 Natural Gas Conversion 

 

 

 Often, in remote location of oil fields, a considerable amount of natural gas can 

be found, where the pipelines to transport the gas is not economically available. This 

condition has led natural gas to be flared, vented, or pumped undergrounds (Thomas and 

Dave, 2003). Therefore, the need to find an efficient process for utilizing natural gas 

receives considerable attention. The conversion of methane, a main component of 

natural gas, into valuable hydrocarbons has gained great interest. Until now, indirect 

processes involving partial oxidation and Fischer-Tropsch synthesis are being used for 

conversion of methane into other hydrocarbon.  

 

Direct process for converting methane and the effective chemical activation of 

methane molecule remains the most challenging step in such a process (Sriraj Ammasi, 

2005).  The direct conversion processes utilize catalysts and specific synthesis routes to 

chemically transform the molecules of methane into more complex chained substances 

with heavier molecules. But the problem is that the high stability of methane molecule 

creates a series of technical problems to make the chemical reactions involved viable. 

Thus the research and development efforts for direct conversion process are focused on 

the improvement of the catalyst for the reaction and the development of new equipment. 

Another area that is being developed to fulfill the future demand is GTL (gas-to-liquid) 

technology.   

 

 Up to now, indirect processes are being used for the conversion of methane into 

more valuable hydrocarbons. The indirect route is technically easier than that of the 

direct conversion processes. The technologies of the processes involved have been better 

studied and several pilot and commercial plants are already in operation (Wilhelm, 

2001). The processes of indirect conversion are characterized by a preliminary stage of 

transformation of natural gas into synthesis gas - syngas - (a mixture of carbon 

monoxide - CO and hydrogen - H2). Synthesis gas production requires either steam 

(steam reforming) or oxygen (partial oxidation) as a co-reactant. In either case, 

generation of these reactants is extremely energy and capital intensive and, as a result, 

the major cost of converting natural gas to liquid fuels lies in the initial synthesis gas 
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production step. After being produced, the syngas is converted into liquid hydrocarbons 

through the Fischer-Trospch Process (FT) (Gradassi and Green, 1995; and Vosloo, 

2001). 

 

 

 

 

1.2 Problem Statement 

 

 

In direct conversion of methane to hydrocarbon, many processes have been 

reported. One of the processes is Partial Oxidation Process which is used to produce 

methanol. Unfortunately, the yield of methanol is too low (below 10%) and beyond 

industrial interest  

 

Another method is called Oxidative Coupling Process. Oxidative Coupling of 

methane is used to produce C2+ hydrocarbons. Until now, the maximum yield obtained 

from this process is about 20%, which means that the process is not economically viable.  

 

Zeolite based catalysts are employed in variety of commercial processes in 

petroleum and petrochemical industries. Some researchers have investigated on the 

potentials and usefulness of modified zeolite as catalyst for the conversion of methane to 

higher hydrocarbons. 

 

The study of direct partial oxidation of methane with O2 to higher hydrocarbons 

and in particularly C5+ liquid over transition metal containing zeolite catalyst found that 

the conversion of methane to liquid hydrocarbons is due to two factors: (a) limited 

activity to generate olefins from methane, (b) low olefin oxidation activity to allow the 

olefin produced remain in the system. 
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 In this study, zeolite will be modified by combining copper and nickel via 

impregnation method. The prepared catalyst, Cu/Ni-zeolite would act as a better 

bimetallic catalyst than its parent catalyst, zeolite, and it will be characterized. The 

development of catalyst consists of three steps; preparation, characterization and 

performance prediction. Therefore, the scopes of this study are divided into three stages: 

 

• Preparation and modification of catalysts 

• The characterization of catalysts 

• To predict the catalyst’s performance of methane conversion to liquid 

hydrocarbons by study the physicochemical properties of the modified catalyst. 

 

 

 

 

1.3 Objectives of Study 

 

 

The objectives of this work are:  

 

1. To synthesis the Cu/Ni-zeolite. 

2. To investigate the physicochemical properties of the modified catalyst. 

3. To relate the physicochemical properties of the modified catalyst with 

conversion of methane to the liquid hydrocarbons reaction 



 

 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 
 
2.1 Catalyst and Catalysis 

 
 
 A catalyst is a substance that increases rate of a chemical reaction without itself 

being consumed. Chemical reactions that use catalyst in its process called catalysis. A 

more comprehensive definition of catalysis is also defined by Berzelius as follow: 

“Catalysis is a process whereby a reaction occurs faster than the uncatalyszed reaction, 

the reaction being accelerated by the presence of a catalyst” (Krische, 2005; Somorjai 

and McCrea, 2000; Haller, 2003; and Ponec, 1998). 

 
 There are three types of catalysis, depending on the nature of the rate-increasing 

substance: heterogeneous catalysis, homogenous catalysis, and enzyme catalysis. In 

heterogeneous catalysis, the reactants and the catalyst are in different phases. Usually 

the catalyst is a solid and the reactants are either gases or liquids. Heterogeneous 

catalysis is by far the most important type of catalysis in industrial chemistry. 

Heterogeneous catalysts are commonly use for the production of bulk chemicals because 

it is unmixable with products. This makes the separation of products and catalyst 

material easier, especially when gaseous products are involved. Thus the reaction can be 

performed under continuous flow conditions, allowing the scaling up of the production 

processes to attain high rates. It also reported that heterogeneous catalysis is important 

because it allows the production of fuel oil, gasoline and other bulk chemicals on a large 
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scale to provide sufficient bulk chemicals to satisfy high demand of the world market 

(Holzwarth et al., 2001; Blaser, 2000; and Kerby et al., 2005). Figure 2.1 show a 

comparison between catalyzed and uncatalyzed reaction and its activation energy.  

 

 

 
Figure 2.1  Comparison of activation energy barriers of an uncatalyzed reaction with 

the catalyzed reaction. 

 
 
 
 
2.2 Zeolite 

 

 

 Zeolite base catalyst is one of the most popular heterogeneous catalyst and was 

discovered by Axel Cronstedt, a Swedish mineralogist in 1756. Zeolites are hydrated 

aluminosilicates of the alkaline and alkaline-earth metals. About 40 natural zeolites have 

been identified during the past 200 years. The most common are analcime, chabazite, 

clinoptilolite, erionite, ferrierite, heulandite, laumontite, mordenite, and phillipsite. More 

than 150 zeolites have been synthesized; the most common are zeolites A, X, Y, and 

ZSM-5. Natural and synthetic zeolites are used commercially because of their unique 

adsorption, ion-exchange, molecular sieve, and catalytic properties (Virta, 2000). 

 
 Zeolite is a crystalline material of aluminosilicate featured by a three-

dimensional microporous framework structure built of the primary SiO4 and AlO4 

tetrahedra, and ion-exchange capability. Because the widespread use of crystalline 
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aluminosilicate zeolites in industry today, zeolite is now fairly well known (Subhash 

Bhatia, 1995).  

 Kerby et al. 2005 stated that ZSM-5 catalyst are mostly used in oil refining and 

gas conversion processes such as the conversion and upgrading of the various fractions 

into transportation fuels, conversion of syngas, light paraffins, methanol-to-gasoline, and 

olefins into gasoline and gasoil. ZSM-5 attracts a huge interest due to its unique 

properties that make ZSM-5 catalyst used widely in the industry: 

 
• High thermal and hydrothermal stability in the industrial environment 

• High internal surface area 

• Ion exchange ability to allow the formation of highly dispersed catalytically 

active sites  

• Pores structure provides shape selectivity 

• High acidity promotes the oligomerisation, isomerisation, cracking and 

aromatization reactions 

 
 Zeolite based catalysts have successfully employed in variety of commercial 

process in petroleum and petrochemical industries. But, there is not many have 

investigated the potentials and usefulness of modified zeolite as catalyst for the 

formation of higher hydrocarbon from methane (Nor Aishah et al., 2000). Recent studies 

shown that modification of ZSM-5 zeolite by ion-exchange, direct synthesis or wet 

impregnation method with metal oxides of different size and chemical properties is 

important to control its acidity and shape selectivity. These modification methods led to 

an improvement in the catalytic activity and gasoline selectivity (Han et al, 1994). Acid 

zeolites were shown to have reasonable activity but low selectivity towards 

hydrocarbons as carbon monoxides were formed (Ramli Mat 2003). It is also reported 

that the presence of acid sites was unfavorable to obtain reasonable selectivity of C5+ 

hydrocarbons. The selectivity to C5+ hydrocarbons was slightly enhanced when the 

acidity was reduced by exchanging the zeolite with alkali metal cations. The activity of 

catalyst was strongly dependent on the type of transition metal and acidity. According to 

Nor Aishah et al, the modification of ZSM-5 with transition metal has resulted lower 

acidity and improved methane conversion. 
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2.3 Zeolite A 

 

 

 Zeolite A exhibits the LTA (Linde Type A) structure. It has a 3-dimensional pore 

structure with pores running perpendicular to each other in the x, y, and z planes, and is 

made of secondary building units 4, 6, 8, and 4-4. The pore diameter is defined by an 

eight member oxygen ring and is small at 4.2Å. This leads into a larger cavity of 

minimum free diameter 11.4Å. The cavity is surrounded by eight sodalite cages 

(truncated octahedra) connected by their square faces in a cubic structure. The unit cell 

is cubic (a = 24.61Å) with Fm-3c symmetry. Zeolite A has a void volume fraction of 

0.47, with a Si/Al ratio of 1.0. It thermally decomposes at 700ºC (Subhash Bahtia, 

1990). Zeolite A is of much interest because its supercage structure is useful in spacio-

specific catalysis. The inner cavity is large enough for structure changing reactions to 

take place, but the small pore means only a specific structure can get into the cavity for 

reaction, typically n-paraffins and olefins. One use is in paraffin cracking. The small 

entry pore is selective towards linear paraffins, and cracking can occur on sites within 

the supercage (alpha-cage) to produce smaller chain alkanes. Zeolite A is also widely 

used in ion exchange separation (Ribeiro, F. R., et al, 2000). 

 
 
 
 
2.4 Effect of Metal Loaded in ZSM-5  

 

 

The conversions of methane to gasoline by direct routes are still at low activity 

and selectivity. These processes are possible if the reaction is carried out by controlled 

oxidation over a suitable catalyst (Ramli Mat et al. 1999). The main concern is to modify 

the ZSM-5 zeolite catalyst framework with suitable oxidative elements to develop highly 

active bifuntional oxidative-acid catalysts could be developed.).  

 
Ernst and Weitkamp (1989) reported that the presence of strong acid sites in the 

zeolite catalyst is detrimental for the selective oxidation of methane to higher 

hydrocarbons; otherwise oxidized products, COx (CO, CO2) predominate. When the 
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acidity is reduced by exchanging the zeolite with alkali metal cations, the selectivity to 

higher hydrocarbons is slightly enhanced. Han et al. (1994) demonstrated the successful 

production of higher hydrocarbons from methane oxidation using a ZSM-5 zeolite 

catalyst containing metal oxides. The metal oxides with sufficiently high dehydrogention 

and low olefin oxidation activities reduce acidity of ZSM-5. As a result, the metal 

containing ZSM-5 can produce higher hydrocarbons in methane oxidation. 

 
 
 
 

2.5 HZSM-5 Zeolite  

 
 
 HZSM-5 which is one of the synthetic zeolite, in its early days, was found to be a 

suitable catalyst for the conversion of methane to higher hydrocarbon. Later, some 

studies showed that acidic HZSM-5 zeolite catalyst has shown a good oligomerization 

performance for olefin products to higher hydrocarbons. Furthermore, the HZSM-5 

catalyst is more tolerant to promote the formation of C5+ products. In spites of its strong 

acidity, some researchers found a drastic increase in the catalytic activity of HZSM-5 

zeolite which consisting of metal functions in addition to their acid function.  It is also 

stated that the oligomerisation, cyclization and aromatization of hydrocarbon species are 

catalyzed by Brönsted acid sites of the HZSM-5 zeolite (Ramli Mat, 2006). HZSM-5 

also provides shape selectivity (which is shown to limit chain length growth to gasoline 

range hydrocarbons) and its high acidity is effective to promote oligomerization, 

isomerization and aromatization reactions. It is also found from the recent research, 

metal loaded HZSM-5 catalyst is suggested to be potential catalysts for direct 

conversion of methane to liquid hydrocarbons (Sriraj Amasi, 2005). 
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2.6 Effect of Metal Loaded in HZSM-5 

 

  
Catalysis by metal loaded HZSM-5 is used extensively. The presence of a metal 

on zeolite is one of the research interest providing new means to design catalytic 

performance by altering the exposure of the metal sites and it opens the way for creation 

of new types of catalysts (Sriraj Ammasi, 2005). Baba and Abe’s (2003) found that, the 

catalytic activity and the selectivity for hydrocarbons depended on the kind of metal 

cations loaded on HZSM-5. They concluded that the bifunctionality of acidic protons 

and metal cations is essential for the activation of methane.  

 
 A reaction between  mixture of methane and ethylene over HZSM-5 and metal 

loaded HZSM-5 catalysts produced high molecular weight hydrocarbons with a carbon 

number of five and more (Alkhawaldeh et al., 2003). It is also reported that the reaction 

over nickel or cobalt-containing zeolite catalyst in the presence of hydrogen donor co-

reactant produced high molecular weight hydrocarbons and the catalyst/reactant feed 

eliminates rapid catalyst deactivation (Timmons et al., 1992). 

 
 Hulea and Fajula (2004) found that both nickel and acid sites are required for the 

activation of the reaction. Moreover, the acid density plays a significant role in 

determining the activity, stability and selectivity. They showed its possibility to achieve 

a desired balance between acid and nickel ion sites so that high catalysts stabilities and 

high selectivity to suitable products could be achieved. 

 
 Chang et al. (1995) reported that the activity of catalysts in facilitating the 

reaction of ethane with oxygen decreases in order: RuII-Na-ZSM-5 > CuII-Na-ZSM-5 > 

CuI-Na-ZSM-5 > CoII-Na-ZSM-5 > VV-Na-ZSM-5 > HZSM-5 > CoII-HZSM-5 > CrIII-

HZSM-5 > FeIII-HZSM-5 > Na-ZSM-5. The performance of the catalysts is determined 

by the nature of the metal cations and the acidity of the parent zeolite precursor. Both 

CuI-HZSM-5 and CuII-HZSM-5 catalysts are found to be very active for the reaction of 

ethane with oxygen, but the selectivity to hydrocarbon are low. They are excellent 

oxidation catalysts but not for the oxydehydrogenation of ethane.  

 



 12 

 Sriraj Ammasi, (2005), reported that the yield of C5+ products is affected by the 

nature of the metal type over HZSM-5. The yield of C5+ production is highest when 

HZSM-5 is introduced with nickel. The yield of C5+ is about 6.2% when using only 

HZSM catalyst. The yield increases to 7.5% once Ni is introduced. 

 

 

 

 

2.7 Cu Loaded on ZSM-5 

 
 
 Cu loaded ZSM-5 catalyst prepared by acidic ion exchange method showed a 

promising performance in the conversion of methane to liquid hydrocarbons where the 

methane conversion and the composition of gasoline range (C5–10) in liquid 

hydrocarbons were 15.6 and 80.2%, respectively. It had been shown that HZSM-5 

zeolite can be modified by adding metal or metal oxides to obtain catalysts for selective 

hydrocarbon conversions. Since copper-based catalysts are active in oxidation processes, 

it is possible that the presence of Cu species at the surface of HZSM-5 catalyst can 

enhance the oxidation reaction (Ramli Mat et al, 2000). It is also reported that 

introduction of copper species in catalyst (Cu 1wt%BZSM-5) improved the methane 

conversion and hydrocarbon selectivity (Ramli Mat, 2006). 

 
 
 
 
2.8 Nickel Loaded on ZSM-5 

 

 

 Nickel on ZSM-5 is found to be active in the aromatization, hydrocracking and 

isomerization of hydrocarbon (Changlong Yin, 2005). It is shown that incorporating 

nickel into ZSM-5 significantly enhances the yield of liquid hydrocarbon (Sriraj 

Ammasi, 2005). Nickel also can be used as catalyst due to its surface oxidation 

properties (M.A. Abdel Rahim et al., 2004). 
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2.9 Conversion of Methane to Gasoline Ranged Hydrocarbon Chain 

 

 

 Gasoline ranged hydrocarbon (C5+) is produced from reaction olefin through 

oligomerization, dehydrocyclization, and aromatization using zeolite based catalyst 

according to the reaction scheme below (Ramli Mat, 2006). The methane oxidation 

coupling step is thought to be the first step in methane oxidation to produce olefin. 

Figure 2.2 shows the reaction scheme for the conversion of methane to gasoline ranged 

hydrocarbon. 

 

 

Figure 2.2 Reaction scheme for methane conversion to gasoline range hydrocarbon 

(Ramli Mat, 2006) 

 



 

 

 

 

CHAPTER 3 

 

 

 

 

MATERIAL & METHODOLOGY 

 

 

 

 

3.1 Introduction 

 
 
 The experiment techniques used for the preparation and characterization of the 

catalyst through this research are summarized and presented in this chapter.  

 
 The flow chart of the experimental work is shown in the Figure 3.1. The first 

stage of this experimental work is the synthesis of catalyst. Both catalysts were 

characterized using Fourier Transmitter IR Analysis (FTIR), Thermogravimetric 

Analysis (TGA) and X-ray Diffraction (XRD) in order to obtain their physiochemical 

properties. The results obtained were compared with other previous researches. Finally, 

conclusions were drawn based on the findings obtained from this study. The overall 

experimental work are summarized in the figure 3.1 below. 

  

 

Figure 3.1 Flow chart of overall experimental work 
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3.2 Materials and Chemicals 

 

 

 All chemicals and materials used in the present study are listed as Table 3.1 

below: 

 
Table 3.1 List of Chemicals 

 Molecular 

Formula 

Supplier Molecular 
Weight 
(g/mol) 

`Purity 
(%) 

Deionized Water H2O UMP source 18.00 99.9 

Copper Nitrate Cu(NO3)2.3H2O R&M Chemicals 242.55 98.5 

Nickel Sulphate NiSO4.6H2O R&M Chemicals 258.78 99.0 

 
 
 
 
3.3 Catalysts Preparation 

 

 
 Zeolite was bought and supplied by Fluka. The surface area of the zeolite is 400 

m2/g. A schematic diagram of the process is illustrated in Figure 3.2. 

 

 

Figure 3.2 Schematic diagrams of ammonium ions replaced by hydrogen ions (Amin 

and Anggoro, 2002) 
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3.3.1 Cu/Ni-Zeolite Synthesis 

 

 

 Zeolite catalysts were bought commercially from Fluka. Then Cu/Ni-Zeolite will 

be prepared by ion-exchange. 10 g of the zeolite with nickel sulphate (NiSO4) followed 

by copper nitrate (Cu(NO3)2) were mixed in the deionized water. The amount of nickel 

sulphate and copper nitrate doped was differentiating by mass ratio. Then the samples 

were dried at 1200C overnight and calcined at 5500C in air for 5 hours. The sample is 

designated as Cu/Ni-Zeolite. Table 3.2 shows the percentage of metal loading in the 

modified zeolite. 

 

Table 3.2 Percentage of Metal Loading in the Modified Zeolite 

Sample % of Nickel 

(Ni) 

Weight NiSO4 

(g) 

% of Copper 

(Cu) 

Weight Cu(NO3)2 

(g) 

1 10 4.500 0 3.750 

2 8 3.585 2 3.000 

3 5 2.240 5 1.875 

4 2 0.595 8 0.750 

5 0 0.000 10 0.000 

 
 
 
 
3.4 Catalysts Characterization 

  
 

The catalysts were characterized using Fourier Transmitter IR Analysis (FTIR), 

Thermogravimetric Analyzer (TGA), and X-ray Diffraction (XRD) in order to obtain 

their physiochemical properties.  The data that collected was used as references between 

modified zeolite and unmodified zeolite.   
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3.4.1 Fourier Transform IR Analysis (FTIR) 

  

 

 FTIR Analysis is a analysis technique that provides information about the 

functional group of materials, whether organic or inorganic. The resulting FTIR spectral 

pattern was then analyzed and matched with known signatures of identified materials in 

the FTIR library. The FTIR analysis was conducted at Membrane Research Unit, 

Universiti Teknologi Malaysia Skudai. 

 
 

 

 

3.4.2 Thermogravimetric Analyzer (TGA) 

 

 

 The thermal stability of the catalysts was determined using a thermogravimetric 

analyzer (TA Instruments Model Q 500 TGA with TA 5000 Contoller). The samples 

were placed in a pan that was heated under flow of air (25 ml min-1) from room 

temperature to 1000 0C at the heating rate of 10 0C min-1. The TGA analysis was 

conducted at FKKSA Lab, Universiti Malaysia Pahang Gambang. 

 
 
 
 

3.4.3 X-ray Diffraction (XRD) 

 

 

 XRD analysis was used to check the structure of catalyst and presence of the 

crystalline phases. The XRD analysis was carried out at the Ibnu Sina Institute, 

Universiti Teknologi Malaysia Skudai. XRD measurements were performed in the range 

of 2θ = 5° to 50° using a Siemens 5000 diffractometer with vertical goniometer and 

CuKα radiataion (λ = 1.542 Å) at 35 kV and 35 mA (scanning speed: 4°/minute). 

 



 

 

 

 

CHAPTER 4 

 

 

 

 

RESULTS & DISCUSSION 

 

 

 

 

4.1 Fourier Transform IR Analysis (FTIR) 

 

 

 The Fourier Transform IR (FTIR) spectra of the metal loaded zeolite catalysts 

are depicted in Figure 4.1.  The samples are sensitive absorption around region 700 – 

1200 cm-1 is of special interest to distinguish zeolite types (Nor Aishah et al, 2003). This 

intense vibration in the region indicates the existing of zeolite. All samples have the 

highest peak at 985 – 1001 cm-1. This also indicates the existing of zeolites (Rayalu et al, 

2003). For sample 1, which is 10% weight Ni loaded with zeolite has the highest peak at 

989.6 cm-1. This strong vibration is assigned to Si-Al-O asymmetric stretching vibration. 

Other samples, sample 2 until sample 5 also have the quite similar peak with almost the 

same intensity which is around 985 to 1000 cm-1.. In Table 4.1, the position of some 

characteristic vibration bands are summarized.  
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Figure 4.1 Infrared Spectra of Metal Loaded Zeolite 
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Table 4.1 Summary of some characteristic vibration band 

 
Wavelength (cm-1) Sample 

Asymmetric Symmetric Double Ring T-O Bending 

1 989.6 849.4 792.0 701.0 

2 1001.2 866.9 822.0 710.9 

3 989.1 883.2 760.0 717.8 

4 985.9 843.4 761.5 747.2 

5 992.6 863.1 735.5 711.8 

 
 
 From Table 4.1, the characteristic vibration band starts from 700 - 1000 cm-1 

with the highest peak intensity at 1001.2 cm-1 and the lowest peak intensity at 701 cm-1. 

It is observed that the band recorded at 849.4 cm -1 of sample 1 can be assigned to Si-Al-

O symmetric stretching has less intensity compared to asymmetric stretching of Si-Al-O 

bond. This is likely as the probability of symmetric stretching of Si-Al-O bond is less 

compare to asymmetric stretching and bending (Rayalu et al, 2003). Another intense and 

sharp bend happened at 792 cm-1 which indicates the presence of double ring in the 

framework structure of the sample 1, modified zeolite.  

 
 From Table 4.1, it can be observed that other modified zeolite sample also show 

the characteristic IR bands, in the range of the discussed sample 1. IR spectra of sample 

1 show characteristic IR band at frequencies similar to those other sample 2, 3, 4 and 5.  

 
 There are some differences between sample 2, 3, 4 and 5. Sample 1 has fewer 

peaks in region 700 cm-1 and 1000 cm-1 compare to sample 5, which has more peaks. 

The different in the amount of peaks in the region is because of presence of different 

metal composition in both samples. In sample 1, the fewer peak shows the presence of 

Nickel loaded in zeolite. Meanwhile in sample 5, there is more peak vibration shown 

due to the presence of Copper metal in zeolite sample. In other samples, sample 2, 3 and 

4 contain both peak pattern as discussed. This showed that sample 2, 3 and 4 contain 

both metal, Nickel and Copper metal in the modified zeolite. 
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  Thus it can be concluded those IR spectra of sample 1 and other modified zeolite 

sample match quite closely, indicating the presence of similar structural units and 

formation of identical chemical moieties of the modified zeolite samples.  

 
 
 
 
4.2 X-ray Diffraction (XRD) 

 
 
 X-ray Diffraction (XRD) is used to check the structure of catalyst and presence 

of the crystalline phases as shown in Table 4.2 based on the XRD diffractograms (Figure 

4.2). The diffractogram reveals that there are no obvious changes in the crystalline 

structure of the modified zeolites. The XRD pattern also illustrated peak characteristic of 

CuO and NiO crystalline on the respective sample indicated that metal species were 

distributed on the zeolite surfaces. The characteristic peak of CuO happened at 2θ = 

35.50, 38.70 and 48.70 (Irmawati et al, 2007), while characteristic peak of NiO happened 

2θ = 43.50, 51.20 and 76.60 (Kan-Sen Chou et al, 2007). 

 
 The crystallinity was calculated from the XRD diffractograms (Rayalu et al, 

2005). The detailed calculation is shown in the Appendix.  

 
 The sum total of relative intensity of zeolite standard is obtained from Rayalu et 

al (2003) assuming the standard zeolite sample has the same structure and be used in the 

comparison of the findings. The crystallinity of each modified zeolite samples are 

summarized into Table 4.2.   
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Figure 4.2 XRD pattern for modified zeolite 
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Table 4.2 Crystallinity of zeolites from XRD analysis 

 
Sample Crytallinity % 

1 108.57 

2 82.02 

3 85.14 

4 102.46 

5 113.96 

 
 
 Table 4.2 showed the percentage of crystallinity based from the XRD analysis. It 

is shown that the crystallinity of each modified zeolite sample varies from 82% to more 

than 100%. Sample 1, 4 and 5 have percentage of crystallinity more than 100% means 

that the structure of the modified zeolite is more crystallite than its parent zeolite. 

Meanwhile, sample 2 and 3 which is combination of copper and nickel loaded on the 

zeolite has lower crystallinity which is around 82% to 85%. High crystallinity means 

that the sample has high thermal stability and mechanical strength (Yushan Yan et al, 

2004). The results from Table 4.2 indicate that sample 5 which contain 10% wt Cu 

loaded zeolite is more favorable to crystalline phase. The diameters of each modified 

zeolite sample are also summarized in Table 4.3 for the comparison of size for each 

sample.  

 
 

Table 4.3 Diameter of modified zeolite sample from XRD analysis 

 
Sample Diameter, d (Å) 

1 3.685 

2 3.689 

3 3.699 

4 3.697 

5 3.704 

  
 



 24 

 The data of the diameter for each modified zeolite sample is obtained from XRD 

analysis in Table 4.3 indicates that all sample has almost the same diameter which is 

around 3.6 – 3.7 Å. This is supported because the samples are mainly composed of the 

zeolite and loaded with copper and nickel metal. Sample 5 has the highest diameter 

3.704 Å which is zeolite loaded with copper 10% weight. Meanwhile, sample 1 has the 

smallest diameter, 3.685 Å, composed of 10% weight nickel loaded in zeolite. From the 

XRD analysis, it is found that the synthesized modified zeolite posses a high crystallinite 

structure and has small particle size, around 3.7 Å . 

 

 

 

 

4.3 Thermogravimetric Analyzer (TGA) 

 
 
 The thermal stability of the catalysts was determined using a thermogravimetric 

analyzer (TA Instruments Model Q 500 TGA with TA 5000 Contoller). Figure 4.3 

shows the result obtained from TGA for all modified zeolite samples. The first stage of 

weight loss for sample 1 at temperature 500C to 2000C is due to the removal of 

impurities and water absorbed in the sample. Sample 1 start to lose weight again starting 

from temperature 7000C, until temperature 10000C (maximum temperature of TGA). 

However, sample 1 still does not lose all its weight. At 10000C, sample 1 retains 85% of 

its initial weight. From this analysis, it is seen that sample 1 only loss about 15% of its 

weight during the TGA analysis, and able to maintain its weight at 90% in temperature 

range 2000C to 7000C.  

  
 Meanwhile, sample 2 and sample 3 has the most weight loss during the analysis. 

Sample 2 and sample 3 both had maintained its final weight at 78% and 83% 

respectively. Both samples rapidly lose weight during the first stage (500C to 2000C). 

Thus showing that there are many impurities contain in the sample. Both sample lost 

about 15% of its weight in the first stage. 

  


