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ABSTRACT

This  study  is  about  the  scaling  up  for  production  of  poly-β-

hydroxybutyrate (PHB) from shake flask to 20 liter  stirred tank fermenter.   This 

scale-up operation used the method of constant volumetric transfer coefficient (KLa) 

of oxygen.  KLa values were derived by fitting the dissolved oxygen tension (DOT) 

versus time on computer with two unknowns, namely KLa and the electrode mass 

transfer coefficient (Kap) of oxygen.  The stirrer speed (RPM) and the air flow rate 

(A) in the 20 liter fermenter that produce the value of KLa found in the shake flask 

was approximated using trial and error method which is 200 rpm for both scale. A 

fermentation run in 20 liter fermenter using these values of rpm and A gave a PHB 

yield comparable to that achieved in shake flask.  From the research work, the KLa 

for  500 ml  shake  flask and 20  l  stirred  tank fermenter  were  0.2809 and 0.2564 

respectively.  Meanwhile  the  Kap  for  500  ml  shake  flask  and  20  l  stirred  tank 

fermenter were 0.0010 and 0.0008 respectively.  The holding time for sterilization 

cycle is also calculated at 7.75 minutes which is recommended to make it longer for 

safety precautions. The results for cell dry weight of shake flask and 20 l fermentor 

are 7.15g/L and 6.90g/L respectively.  Meanwhile, the PHB yield for shake flask and 

20  l  are  1.0190  g/L and  0.926  g/L respectively.  From  these  results,  it  can  be 

concluded that this research work had achieved its objectives.



ABSTRAK

Kajian ini adalah mengenai produksi poly-β-hydroxybutyrate (PHB) 

dalam fermenter tangki teraduk yang diskala naik daripada kelalang goncang ke 20 

liter  tangki  teraduk.   Operasi  menskala  naik  ini  menggunakan  kaedah  pekali 

pemindahan  jisim kepada  data  tekanan  oksigen  terlarut  (DOT)  menentang  masa 

dengan komputer  dengan 2 pembolehubah iaitu KLa dan pekali pemindahan jisim 

(Kap)  bagi  oksigen.   Kadar  pengadukan (RPM) dan kadar  alir  udara  (A)  dalam 

fermenter  20  liter  yang  menghasilkan  nilai  KLa  yang  didapati  daripada  kelalang 

goncang dengan menggunakan kaedah cuba-cuba di mana telah didapati sebagai 200 

rpm pada kedua-dua skala. Fermentasi di dalam fermenter 20 l menggunakan nilai 

rpm dan A tersebut telah menghasilkan paras enzim yang hampir sama dengan  yang 

didapati dalam kelalang goncang.  Daripada kajian, didapata bahawa nilai KLa untuk 

kelalang goncang dan 20 l fermenter tangki aduk adalah masing-masing 0.2809 dab 

0.2564.  Nilai Kap untuk kelalang goncang dan 20 l fermenter tangki aduk masing-

masing ialah 0.0010 dan 0.0008.  Tempoh masa diperlukan untuk pengekalan suhu 

pada 121oC ialah sebanyak 7.75 minit.  Bagaimana pun, adalah digalakkan untuk 

memanjangkan  tempoh masa  itu  sebagai  langkah  berjaga-jaga.  Nilai  untuk berat 

berat kering pada kelalang goncang dan 20 l fermentor tangki aduk ialah masing-

masing sebanyak 7.15g/L dan 6.90g/L. Manakala, nilai PHB adalah masing-masing 

sebanyak 1.0190 g/L and 0.926 g/L.  Daripada keputusan ini, dapatlah dirumuskan 

bahawa kajian ini berjaya mencapai objecktif.
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CHAPTER 1

INTRODUCTION

1.1 Background of study

The research on the production and application possibilities of such polymers 

was commenced at the beginning of the 1970’s when the economically developed 

western  countries  encountered  very  serious  problems  caused  by  the  amount  of 

polymeric  materials  of  everyday  applications  building  up  in  waste.  The 

biotechnology produced (PHB) turned out to be the most promising biodegradable to 

counter this problem.

Poly-β-hydroxybutyrate  (PHB)  is  an  intracellular  storage  compound  that 

provides carbon and energy reserves in several microorganisms.  PHB is produced 

by microorganisms like Alcaligenes eutrophus or Bacillus megaterium apparently in 

response to conditions of physiological stress. The polymer is primarily a product of 

carbon assimilation from glucose or starch and is employed by microorganisms as a 

form of  energy reserve  when other  common energy resources  are  not  available. 

Alcaligenes eutrophus accumulate PHB during the stationary phase of growth when 

the cells become limited for an essential nutrient but have excess of carbon source.

Definitions of scale up is a process used to go from a small scale production 

(several culture dishes) to a large scale (a reactor of several liters) or to perform an 

experiment  in  bulk,  after  the  optimal  conditions  have  been  determined  by  a 

screening experiment.  Both definitions referred to a process in which the data from 



an experimental scale operation is used in a larger scale (scaled up) unit for larger 

production.

The basis of constant volumetric transfer coefficient (KLa) of oxygen is used 

in order to scale up.  The purpose of scaling up is to obtain the same product per 

volume in both small scale and big scale at the same time. During scale up, there are 

three  factors  should  be  stressed  which  are  inoculum  development,  medium 

sterilization and aeration.

1.2 Problem statement

Development of fermentation process is usually carried out in three steps. 

The  to  steps  are  firstly,  the  flask  scale  to  screen  strains  and  evaluate  medium 

composition and second are pilot scale to establish optimal fermentation condition 

and finally are the industrial scale process to produce desired product economically.

Usually, the productivity of the desired product is high in flask scale, and will 

be  gradually  reduced  as  the  scale  is  enlarged  because  of  the  complexity  of 

fermentation  process.   This  will  affect  the  efficiency  of  industrial  fermentation 

process.

During fermentation, another factor that is very important is the sterilization 

process.  When in small scale, the effect of sterilization is minimized because of the 

shorter time exposure towards the high temperature and pressure. However, when in 

larger scale the exposure is longer so the productivity is reduced significantly.

So,  it  is  important  to  study  scale  up  in  fermentation  process  and  adopt 

suitable strategy of scaling up in order to increase the productivity of the desired 

product on the industrial level.



1.3 Objective of research project

The objective of the research project is to scale up biopolymer (PHB) from 

shake flask to 20 l stirred tank fermentor.

1.4 Scope of research project

The scope of research project is to determine these following aspects.  The 

aspects are:

• Determine the volumetric transfer coefficient (KLa) of oxygen of biopolymer 

in shake flask. 

• Obtain the similar value of KLa in 20 L stirred tank fermentor.

• Determine the maintenance time of sterilization temperature in 20 L stirred 

tank fermentor.

• Fermentation in 500 ml shake flask

• Fermentation in 20 l fermentor



CHAPTER 2

LITERATURE REVIEW

2.1 History 

PHAs  (polyhydroxylalkanoates)  is  the  chemical  term  for  a  naturally 

occurring form of polyester ultimately derived from sunlight,  carbon dioxide and 

water through the process photosynthesis. They were first identified by the French 

microbiologist  Maurice  Lemoignr  in  1925.   Lemoigne  discovered 

polyhydroxybutyrate (PHB), one of the most abundant PHAs in nature.  PHB is a 

highly crystalline thermoplastic and melts closely to its decomposition temperature 

making it very difficult to process commercially. 

Over the past two decades, over a hundred more PHA polymers have been 

described in the scientific literature.  The properties of these polymers range from 

stiff, highly crystalline materials like PHB to soft, low melting thermoplastics like 

polyhydroxyoctanoate (PHO) to other PHAs which are completely amorphous and 

tacky substances.

2.2 Microorganisms 

There  are  many organisms that  produce  PHB under  nutrient  stress  while 

having an excess of carbon sources. A wide variety of prokaryotic organisms have 



been  shown  to  accumulate  this  polymer,  including  numerous  heterotrophic  and 

autotrophic  aerobic  bacteria,  photosynthetic  anaerobic  bacteria,   gliding bacteria, 

cyanobacteria  and  recently  in  anaerobic,  fatty  acid-oxidizing,  gram  negative 

bacterium(Anderson and Dawes, 1990).

The  microorganism  that  is  used  to  produce  PHB  in  this  research  is 

Cupriavidus necator (also known as  Ralstonia eutropha or Alcaligenes eutrophus). 

The reason for choosing this microorganism is because it had been found out that 

Alcaligenes eutrophus is the prime PHB producer that accumulates PHB up to 80% 

of its dry weight (Doi et al, 1987)

Alcaligenes  eutrophus  can  use  inexpensive  carbon  sources,  which  is 

important in industrial scale production.  The organisms show differences in their 

growth and polymer production conditions but they were chosen because of their 

high polymer production capacity.  The other criterion for the selection is the ease of 

separation of the polymer from the cells.

2.3 Poly-β-hydroxybutyrate (PHB)

2.3.1 Characteristics of Poly-β-hydroxybutyrate (PHB)

Poly-β-hydroxybutyrate  (PHB)  is  the  storage  polymer  separated  from 

cytoplasm.  β-hydroxyl butyrate is connected by ester linkage and form PHB.  PHB 

is  a  biodegradable  thermoplastic  which  can  be  extracted  from a  wide  range  of 

bacteria.  The polymer which provides a reserve of carbon and energy accumulates 

as intracellular granules.  Reusch and Sadoff have shown that PHB is an important 

molecule on cytoplasm and cell wall in 1983.



PHB  is  accumulated  when  culture  medium is  unbalanced  due  to  limited 

sources  of  oxygen,  nitrogen,  phosphorus,  sulphur  or  magnesium  and  excess  of 

carbon source (Kim et al, 1994; Lee, 1996)

Biopolymers  which  are  synthesized  by  microorganisms  from  agricultural 

substrates  (PHB)  are  able  to  become  degraded  to  carbon  dioxide  and  water  in 

aerobic conditions or to methanol in anaerobic conditions in such diverse habitats as 

soil, sea, stagnant water or sewage (Lee, 1996; Reusch, 2002)

2.3.2 Poly-β-hydroxybutyrate (PHB) formation

In  their  metabolism,  bacteria  produce  acetyl-coenzyme-A  (acetyl0CoA), 

which is converted into PHB by three biosynthetic enzymes which are 3-kethiolase 

(PhaA), acetoacetyl-CoA reductase (PhaB) and PHB synthase (PhaC). In the first 

step, -kethiolase (PhaA) combines 2 molecules of acetyl-CoA to form acetoacetyl-

CoA.  acetoacetyl-CoA reductase (PhaB) allows the reduction of acetoacetyl-CoA by 

NADH  to  3-hdroxybutyryl-CoA.   Finally  PHB  syntase  (PhaC)  polymerizes  3-

hdroxybutyryl-CoA to PHB, coenzyme-A being liberate.  Only (R) – isomers are 

accepted as substrates for the polymerizing enzyme (Tsuge et al, 2005).

During normal bacterial growth, the 3-ketothiolase will be inhibited by free 

coenzyme-A coming out of the Krebs cycle.  But when entry of acetyl-coA into the 

Krebs cycle is restricted (during non carbon nutrient limitation), the surplus acetyl-

CoA is channeled into PHB biosynthesis (Ratledge and Kristiansen, 2001).

PHB is a homopolymer whose monomer units have a D (-) configuration due 

to the stereospecificity of the enzymes involved in the synthesis (Lee, 1996).



Sugars

Acetyl-CoA Krebs cycle

3-ketothiolase (PhaA)

Acetoacetyl-CoA

Acetoacetyl-CoA- reductase (PhaB)

                              (R)-3-hydroxybutyryl-CoA

                                                                        PHB synthase

                                                  PHB

Figure 2.1: Metabolic pathway to PHB

The poly-3-hydroxybutyrate form of PHB is probably the most common type 

of polyhydroxyalkanoate, but many other polymers of this class are produced by a 

variety  of  organisms,  these  include  poly-4-hydroxybutyrate,  polyhydroxyvalerate, 

polyhydroxyhexanoate,  polyhydroxyoctanoate  and their  copolymers.  Some of  the 

structures are shown as in Figure 2.2.

Figure 2.2: Chemical structures of copolymers of PHA



As PHA is insoluble in water, the copolymers are accumulated in intracellular 

granules inside the cells.  It  is  advantageous for bacteria to store excess nutrients 

inside their cells, especially as their general physiological fitness is not affected.

The surface of a PHA granule is coated with a layer of phospholipids and 

proteins. Phasins, a class of proteins are the predominant compounds in the interface 

of a granule.  The phasins influence the number and size of PHA granules (Potter et  

al, 2002 and Steinbuchel, 2005).

2.3.3 Advantages of Poly-β-hydroxybutyrate (PHB)

The biopolymer is a biodegradable and biocompatible thermoplastic with an 

isotactic  structure  (Isotatactic  refers  to  those  polymers  formed  by  branched 

monomers that  have the characteristics  of having the entire branch group on the 

same side of  the  polymeric  chain),  a  high degree  of  crystallinity (approximately 

80%), a high number average molecular weight (approximately 105±106) and a high 

melting temperature (about  1750C)  (Dawes,  1990; Scandola, 1995; Madison and 

Huisman, 1999.

Production of organic polymeric materials is currently one of the principal 

areas of PHB is a thermoplastic material that has attracted much attention due to 

such properties as biocompatibility and biodegradability.

Microorganisms in nature are able to degrade PHa using their enzymes such 

as PHA hydrolase and PHA depolymerases ( Jendrossek and Handrick, 2002; Choi  

et  al,  2004).   The  activities  of  these  enzymes  may  vary  and  depend  on  the 

composition of the polymer and the environmental conditions. The degradation rate 

of a piece of PHB is typically in the order of a few months (in anaerobic sewage) to 

years (in seawater)  (Madison and Huisman, 1999). Ultraviolet light can accelerate 

the degradation of PHAs (Shangguan et al, 2006). 

PHAs have been proved biocompatible,  which  means they have no  toxic 

effects in living organisms (Volova et al, 2003). Within mammals, the polymer is 



hydrolysed only slowly. After a 6 months period of implantation in mice, the mass 

loss was less than 1.6% (w/w) (Pouton and Akhtar, 1996).

2.3.4 Disadvantages of Poly-β-hydroxybutyrate (PHB)

There are drawbacks of using PHB as a plastic material such as its tendency 

to be brittle.   When it  was spun into fibres  it  behaves as a hard-elastic material 

(Antipov  et  al,  2006).  This  problem could  be  solved  by  using  by  synthesis  of 

copolymers of 3-hydroxybutyrate and other hydroalkanoates with a relatively low 

molecular weight and melting point (De Koning, 1995; Scandola, 1995; Fukui and 

Doi, 1997).

2.4 Comparisons of Poly-β-hydroxybutyrate (PHB) to propylene

Within the last 50 years petrochemical plastics have become one of the most 

applied materials.  Their versatility, outstanding technical properties and relatively 

low price (1 kg of propylene costs about US$ 0.70) caused their success.

Today’s applications are nearly universal; components in automobiles, home 

appliances,  computer  equipments,  constructions,  sport  and  leisure  equipments, 

packages  and  even  medical  applications  are  areas  where  plastics  clearly   have 

become indispensable. However, we all know that these plastics are environmentally 

unfriendly; they are not biologically degraded (Manfred Zinn et al, 2001).

The current cost of the PHB production is considerably more than that of the 

synthetic plastics (Byroms, 1987). The current costs are approximated about US$ 15-

30 per 1 kg of PHB.

2.5 Material applications

 



 
The  majority  of  expected  applications  of  PHB  are  as  replacements  for 

petrochemical polymers.

The plastics currently used for packaging and coating applications can be 

replaced partially or entirely by PHB.  The extensive range of physical properties of 

the PHA family and the extended performance obtainable by chemical modification 

(Zinn and Hany, 2005) or blending  (Zhang et al, 1997; Avella et al, 2000; Lee and  

Park, 2002; Wang et al, 2005; Gao et al, 2006; Kunze et al, 2006) provide a broad 

range of potential end-use applications.

Applications focus in particular on packaging such as containers and films 

(Bucci and Tavares, 2005).  In addition, their use as biodegradable personal hygiene 

articles  such as  diapers  and their  packaging have already been described  (Noda,  

2001).  It is also processes into toners for printing applications and adhesives for 

coating applications (Madison and Huisman, 1999.

Composites of bioplastics are already used in electronic products, like mobile 

phones (NEC Corporation and UNITIKA Ltd.).  Potential agricultural applications 

include  encapsulation  of  seeds,  encapsulation  of  fertilizers  for  slow  release, 

biodegradable  plastic  films  for  crop  protection  and  biodegradable  containers  for 

hothouse facilities.

The main  advantage  in  the  medical  field  is  that  PHB is  a  biodegradable 

plastic which can be inserted into the human body and does not to be removed again. 

It  is  also  biocompatible  as  it  is  a  product  of  cell  metabolism  and  also  3-

hydroxybutyric acid, the product of degradation which is normally present in blood 

concentrations between 0.3 and 1.3 mmoll-1 (Zinn et al, 2001).

In pure form or as composites, PHB can be used as sutures, repair patches, 

orthopedic pins, adhesion barriers, stents, nerve guides and bone marrow scaffolds. 

It  was  concluded  hat  PHB  and  its  copolymers  may  be  a  promising 

alternatives to the materials of petrochemical origin in the treatment of osteomyelitis, 



due to their being biodegradable and eliminating the need for a second operation. 

The  copolymer  used  in  osteomyelitis  operation  is  PHV.  Figure  3  shows  the 

difference between PHB and PHV in their chemical structures.

Figure 3: structures of PHB and PHV

Research shows that PHA materials can be useful in bone healing processes. 

PHA together  with  hydroxyapatite  (HA)  can  find  applications  as  bioactive  and 

biodegradable  composite  for  applications  in  hard  tissue  replacement  and 

regeneration (Chen and Wu, 2005). 

Polymer implants for targeted drug delivery, an emerging medical application 

can be made out of PHAs (Chen and Wu, 2005; Park et al, 2005).  However, because 

of the high level of specifications for plastics used in the human body not every PHA 

can be used in medical applications (Vert, 2005). PHA can be used in contact with 

blood which has to be free of bacterial endotoxins and consequently there are high 

requirements  for  the  extraction  and  purification  methods  for  medical  pHAs 

(Sevastianov et al, 2003). 

2.6 Factors affecting KLa and OTR

The value of the volumetric mass transfer coefficient KLa depends among 

other factors. First factor is medium viscosity which when viscosity increased, the 

KLa decrease.  Second factor is degree of mixing.  Increased mixing caused KLa to 

increase.  Third factor is velocity increase which reduces the KLa and vice versa. 

Finally, antifoaming agents decrease KLa substantially.



The following methods are frequently used to increase the oxygen transfer 

rate  (OTR).   First  is  to  increase  the  stirrer  speed  and  second is  to  increase  the 

aeration rate.

2.6 In-situ sterilization

Steam sterilization is commonly used in sterilization for in-situ procedure. 

The sterilization system design must ensure that the steam comes in contact with all 

sites exposed to process materials and gasses, culture materials or product.  All inlet 

ports, outlet ports, supply line, harvest line, sensors, regulators, the reactor vessel 

itself and any stretch of piping that carried materials critical to the process must be 

sterilized.  

Steam should reach each of these sites at a temperature and pressure adequate 

to destroy contaminating organisms and must remain at these levels for a specified 

period  of  time.   The  design  of  bioreactors  and  their  associated  components  are 

usually designed to compatible with steam sterilization.  For examples, the pitch of 

the piping and the positioning of ports, feed lines and regulatory devices can affect 

their  accessibility  to  the  steam).   Sterilization  is  important  to  be  designed  to 

eliminate probability of microorganisms evading the sterilization and stopping them 

from flourish.

Medium sterilization within the fermentor vessel is performed in the batch 

mode by direct steam sparging.  Sterilization cycle is composed of heating, holding 

and cooling stages. This cycle can be calculated using the total Del Factor (measure 

the size of a task to be completed) required for a complete sterilization should be 

equal to the sum of the Del Factor for heating, holding and cooling. ( Deindoerfer 

and Humphrey, 1960)



CHAPTER 3

METHODOLOGY

3.1 Theory

3.1.1 DOT curve

Gassing out Technique was used to obtain the value of KLa for distilled water. 

One oxygen probe which had been connected to the monitor that can show the value 

of dissolved oxygen tension was immersed into a 500 mL shake flask which had 

been filled with 200 mL distilled water. 

Nitrogen gas was supplied to the distilled water until the reading of the DOT 

reached zero. After that, the shake flask was shook using orbital shaker at 200 RPM 

at the room temperature. Simultaneously, the reading of DOT is taken to develop the 

DOT curve versus time.

3.1.2 KLa and Kap determination

 YR(t) = C*[((Kap.exp(-KLa.t)/(Kap- KLa))- (KLa.exp(-Kap.t)/( KLa-Kap))]

*taken from scaling up fermentation process based on constant volumetric transfer 

coefficient (KLa) of oxygen by Ahmad Jaril Asis, Zulaikha Paidi, Michael A. Winkler 

and Jailani Salihon.



By applying this equation in matlab software (Fminsearch) it can be solved which 

will give results of two variables involved which are KLa and Kap.

3.2 Experimental methodology

There are 4 stages in the production processes:

Regeneration of the bacteria (for routine maintenance of the culture)

Fermentation for Starter 1

Fermentation for Starter 2

Fermentation in 2L bioreactor (batch)

3.2.1 Regeneration of the bacteria

1. The  culture  was  maintained  at  slant  medium.  Regeneration  is  conducted 

every two weeks. Slant was prepared as the following procedure:

2. NGY agar medium was prepared with the following composition:

Table 3.1 NGY agar medium composition

No. Chemicals Amount (g/L)
1 Peptone 5
2 Glucose 10
3 Yeast extract 3
4 Beef extract 0.3
5 Agar 15
6 Aqueduct Added until total volume= 1L

3. The  solution  was  heated  in  a  beaker  glass  with  continuous  stirring  on 

laboratory hot   plate until the solution comes into boiling.

4. 10 ml of the hot agar solution was poured into each sterilized test tube.

5. The tube was closed with sterile cotton and wrap in aluminum foil.



6. The tubes were sterilized in autoclave for 20 minutes at 121ºC.

7. The tubes were put in incline position so that the agar will set with inclined 

surface  in  the  tubes.  The  tubes  were  left  to  set  for  one  night  in  sterile 

incubator.

8. The bacteria were transferred from the old slant to the new slant in sterile 

laminar air flow hood with the following procedure:

The metal loop was heated until burning red.

The old slant containing bacteria to be regenerated was opened.

The loop was cooled down by touching it on the agar surface.

One loop full of bacteria was scrapped.

The loop was transferred to the new slant by slightly scratching the 

agar surface quickly.

9. The slant was incubated in the sterile incubator at room temperature for about 

24 hours until the bacteria seem to grow.

10. It was kept in the refrigerator at 4ºC for long time maintenance.

3.2.2 Fermentation for Starter 1

Table 3.2 Medium for Starter 1 NGY without agar

No. Chemicals Amount (g/L)
1 Peptone 5
2 Glucose 10
3 Yeast extract 3
4 Beef extract 0.3
5 Aqueduct Added until total volume= 1L

1. The medium for starter 1 NGY without agar was prepared by following the 

medium compositions.

2. 20 ml of NGY medium was put into 100 ml Erlenmeyer flask.

3. The flask was closed with sterile cotton.

4. The flask was sterilized in autoclave for 20 minutes at 121ºC.

5. It was left to stand in sterile incubator for 24 hours at room temperature.



6. One  loop  of  the  bacteria  was  taken  from the  slant  and was  put  into  the 

incubated medium. The transfer was conducted in sterile laminar air  flow 

hood.

7. It was incubated for 24 hours before moving the content into Starter 2.

3.2.3 Fermentation for Starter 2

Table 3.3 Medium for Starter 2 is Ramsay medium 

No. Chemicals Amount (g/L)
1 Glucose 10
2 Na2HPO4.7H2O 6.7
3 KH2PO4 1.5
4 (NH4)2SO4 1.0
5 MgSO4 0.2
6 CaCl2.2H2O 0.01
7 Ferri ammonium sulfate 0.06
8 *Trace element 1ml
9 Aqueduct To make total volume 1L

Table 3.4 Trace elements composition

No. Chemicals Amount (g/L)
1 H3BO3 0.3
2 CoCl2.6H2O 0.2
3 ZnSo4.7H2O 0.1
4 MnCl2.4H2O 0.03
5 (NH4)6MO7O4.4H2O 0.03
6 CuSO4.5H2O 0.01
7 NiSO4.6H2O 0.02
8 Aqueduct To make total volume 1L

To grow bacteria in Starter 2, the following procedure is conducted:

1. 180 ml of Ramsay medium was put into 500 ml Erlenmeyer (plug the inlet 

with sterile cotton) and was sterilized in autoclave for 20 minutes at 121ºC.

2. After sterilization, let the flask to stand for 24 hours in sterile incubator.

3. Starter 1 was poured into the flask.

4. It was shook on shaker for 24 hours.



3.2.4 Fermentation in batch bioreactor (20 l)

1. The bioreactor was cleaned thoroughly before using.

2. 1800 ml of Ramsay medium was poured into the bioreactor, sterilized for 20 

minutes at 121ºC.

3. 0.5 M NaOH and 0.5 M HCl were prepared for pH control.

4. Si  solution  was  prepared  for  antifoaming  (dilute  100x  from  the  original 

solution)

5. The lines were connected to sterilize bioreactor (containing medium), turned 

on the bioreactor and the cooling tower and air supply were .opened

6. Starter 2 was flowed into the bioreactor through the automatic input.

7. The  bioreactor  was  let  to  run.  If  samplings  were  needed,  samples  were 
withdrawn through the sampling line periodically.

3.3 Solving techniques

The solving technique used is to perform dissolved oxygen tension (DOT) 

curve  by  plotting  Dissolved  Oxygen  Tension,  DOT (%).versus  time  (minute)  in 

MATLAB 7.1 to solve for values of KLa and Kap.

Firstly, the DOT curve in shake flask will be obtained by setting the RPM 

and air flow rate to the optimum condition which is 200 RPM and 300C. From the 

DOT curve, the values of KLa and Kap will be obtained by using Fmin search in 

MATLAB. By trial and error, the values of RPM and air flow rate that produce the 

similar value of KLa and Kap will be chosen for scaling up in 20 l fermenter .

3.4  Method of analysis



The methods of analysis that is applied in this research are:

1. Cell  dry  mass.  This  analysis  is  done  periodically  by  taking  10ml  of 

fermentation sample every 6 hours.

2. PHB  harvesting.  This  analysis  is  done  by  taking  10  ml  of  fermentation 

sample every 6 hours.

3. Dinitrosalycilic method (DNS method) for glucose analysis

3.4.1 Cell dry mass

The method for cell dry mass analysis is by doing the following steps:

1. 10 ml sample was taken at designated time intervals (every 6 hours).

2. The sample was centrifuged using the refrigerant centrifuge at 5000rpm, 

4oC for 12 minutes.

3. The  supernatant  of  the  centrifuged  samples  will  be  used  for  glucose 

analysis meanwhile the pellet is used for cell dry mass analysis.

4. The pellet was added with 10ml deionized water for washing.

5. Then, it will be vortex to mix the pellet with deionized water.

6. Steps 2, 4 and 5 were repeated.

7. The sample was filtered with filter paper and left to dry at 90oC for 15-20 

hours.

8. The dried filter paper will be cooled by using desiccator for 30 minutes.

9. The filter paper was weighed.

Cell dry weight = (weight of filter paper+ dried sample) – (weight of filter paper)

3.4.2 Glucose analysis

The method for glucose analysis is as follows:



1. 1 ml of supernatant was added with 1 ml DNS reagent and mixed evenly.

2. 2 drops of Natrium Hydroxide (NaOH) was added to the mixture.

3. A blank was also prepared which consist of 1ml deionized water, 1ml DNS 

reagent and 2 drops of NaOH.

4. The mixture from step 3 and 4 were soaked in water bath for 5 minutes at 

100oC.

5. The samples were cooled under running water.

6. The samples including the blank were added with 10 ml of deionized water 

and mixed evenly.

7. The absorbance was read using uv-vis at 540nm.

3.4.3 PHB analysis

The steps for PHB analysis is as follows:

1. 10 ml of sample was centrifuge at 4oC, 5000 rpm for 12 minutes.

2. The pellet was taken for PHB analysis.

3. The pellet was added with 10 ml NaCl (0.625%).

4. The mixture was centrifuged at the same parameters as in step 1.

5. The pellet was added with 10 ml, 100 μm hydrogen peroxide (H2O2).

6. The mixture was soaked in water bath for 4 hours at 30oC.

7. Step 4 was repeated.

8. The pellet was added with 10 ml chloroform.

9. The mixture was mixed using vortex and was poured to a petri dish to dry.

10. 5 ml of sulphuric acid (H2SO4) was added into the petri dish.

11. The mixture was then collected into a centrifuge bottle.

12. It was left soaked in boiling water at 100oC for 10 minutes.

13. It was cooled under running water before reading the absorbance at 238nm.



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

4.1.1 KLa and Kap determination

The results  from this research project  are  the KLa from 20 l  fermenter  is 

similar to the KLa from 500 ml shake flask. After running the data in MATLAB 7.1 

using the Fminsearch with Nelder-Mead implementation, the KLa for 500 ml shake 

flask  and  20  l  stirred  tank  fermenter  were  0.2809  and  0.2564  respectively. 

Meanwhile the Kap for 500 ml shake flask and 20 l  stirred tank fermenter were 

0.0010 and 0.0008 respectively. 

Using trial and error method, the values of agitation speed and air flow rate 

were manipulated to achieve the similar value of KLa and Kap.in 500 mL shake 

flask. After many trials and error, the agitation speed of 20 l fermenter that had 

achieved the similar result in shake flask was 200 RPM. Meanwhile, the value of air 

flow rate is 5 l/min. These values of KLa and Kap will be used in scaling up process 

from shake flask to 20 l fermenter.



Figure 4.1 Comparison between DOT by experiment and calculation for 

500mL shake flask.

           Figure 4.2    Comparisons between DOT by experiment and calculation for 
20 l stirred tank fermenter.



            Figure 4.3      Dissolved Oxygen Tension (DOT) for shake flask and 20 l 
stirred tank fermenter.

4.1.2 Sterilization cycle

Deindoerfer and Humprey (1960) have investigated the thermal destruction 

of B. stearothermophilus spores by moist heat and have calculated the values of the 

activation energy and Arrhenius constant as follows:

Activation energy     = 67.7 Kcal/mol

Arrhenius constant   = 1 x 10 36.2 sec-1

No = 5 x 106 cells/mL x 103 x 20L

N = 10-3 (1:1000 probability of contamination)
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Figure 4.4 The heating up period for in-situ steam sterilization
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Figure 4.5 the cooling period for in-situ steam sterilization
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km = thermal death rate constant at sterilization temperature (121oC)

tm = holding time at sterilization temperature
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Temperature at the sterilization temperature:

T = 121+273 = 394 K
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So, the calculated holding time at sterilization temperature is for 7.75minutes

4.1.3 Shake flask fermentation

Dry cell weight vs time
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Figure 4.6  Dry cell weight versus time in shake flask fermentation



PHB concentration vs time

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

time (hour)

P
H

B
 c

o
nc

en
tr

at
io

n
 (

g/
L

)

Figure 4.7 PHB concentrations versus time for shake flask fermentation

Glucose concentration vs time
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Figure 4.8 Glucose concentration versus time for shake flask fermentation


