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ABSTRACT 

 

 

 

 

Polymer nanocomposites (PNs) is a kind of polymer which fill with the composite 

with nano size and widely used especially in food packaging, labels, coatings and 

etc. The properties of Polypropylene can be adjusted by two approaches which is to 

change its molecule structure by modification of its three basic building blocks 

(polyether or polyester, diisocyanate, and chain extender) and then, to introduce the 

inorganic fillers into the polyprpylene matrix. In this project, pure PP will reinforced 

by adding the Cloisite® C20A at 1wt%,3wt% and 5wt% composites inside PP matrix 

by melt intercalation method using twin screw extruder, then molded using hot press 

to prepare samples. Attendance of C20A in polypropylene matrix can be detected by 

using FTIR at the peak 1580 cm
-1

. Rockwell Brinell Hardness test was used to study 

the hardness and the result showed that the hardness increased up to 28%. Universal 

Mechanical test used to study the tensile of the samples and the result indicates that 

the strength of the PP with C20A had been improved up to 34%. The results show 

that, PP with additional of C20A was improved in their mechanical properties due to 

maximum intercalation and exfoliated between PP and C20A. 
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ABSTRAK 

 

 

 

 

Polimer nanokomposit ialah polimer yang diisi dengan komposit bersaiz nano dan 

digunakan secara meluas terutamanya dalam pembungkusan makanan, pembalutan 

dan lain-lain. Sifat polipropailin boleh di ubah melalui dua cara iaitu dengan 

mengubah struktur asas molekulnya (poliether atau poliester, diisosianat, dan 

pemanjangan rantaian), dan seterusnya dengan memperkenalkan pengisi bukan 

organic ke dalam acuan polipropailin.. Di dalam projek ini, PP asli akan di 

perkuatkan dengan menambah Cloisite® C20A pada komposisi 1%, 3% dan 5% 

(peratusan berdasarkan berat) ke dalam acuan PP asli melalui kaedah pencairan 

interkalasi menggunakan penonjol skrew berkembar, kemudian, diacu menggunakan 

penekan panas untuk menyediakan sampel. Kewujudan C20 dalam acuan 

polipropailin boleh di kesan menggunakan FTIR pada puncak 1580 sm
-1

. Penguji 

kekerasan Rockwell Brinell digunakan untuk mengkaji kekerasan polimer 

nanokomposit dan keputusan menunjukkan kekerasan meningkat sebanyak 28%. 

Penguji umum mekanikal pula digunakan untuk mengkaji regangan sampel, dan 

keputusan menunjukkan regangan PP dengan kewujudan C20A bertambah baik 

sebanyak 34%. Keputusan membuktikan bahawa acuan PP asli dengan C20A 

memperbaiki cirri-ciri mekanikal  berdasarkan interkalasi dan eksfolasi maksimum di 

antara matrik PP dan C20A.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of Study 

 

The field of nanotechnology is one of the most popular areas for current 

research and development in basically all technical disciplines. The investigations of 

nanotechnology cover a broad range of topics, but typically in polymer science and 

technology. Other areas include polymer-based biomaterials, nanoparticle drug 

delivery, miniemulsion particles, fuel cell electrode polymer bound catalysts, 

polymer blends and nanocomposites. There are diverse of topics to study on 

nanocomposites field including composite reinforcement, barrier properties, flame 

resistance, electro-optical properties, cosmetic applications, bactericidal and 

mechanical properties. Nanotechnology is not new to polymer science as prior 

studies before the age of nanotechnology involved nanoscale dimensions but were 

not specifically referred to as nanotechnology until recently (D.R Paul et al. 2008). 

Nanocomposites as a reinforced filler such as carbon black, colloidal silica and fiber 

has been investigated for decades. Almost lost in the present nanocomposite 

discussions are the organic–inorganic nanocomposites based on sol–gel chemistry 

which have been investigated for several decades (Wen J et al. 1996). The expended 

research’s on Polymer Nanocomposites was started by Toyota Company when they 

created the first polymer clay nanocomposite in 1985 (Usuki et al. 1993, 1995). The 

momentum has steadily built to create reinforced engineering materials on the 

nanometer scale. Research and development has proceeded excitedly in efforts to 

incorporate the three primary nanoadditives to polymers clays, single-wall and 
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multiwall Carbon Nanotubes (CNT), and metal or metal oxides, thereby improving 

performance of thermoplastics in various ways, from increasing polymer strength to 

enhancing inflammability or other properties.  

 

Polypropylene (PP) is one of the fastest growing classes of thermoplastics. 

This growth is attributed to its attractive combination of low cost, low density, and 

high heat distortion temperature (HDT). However, there are still lacks in physical 

and chemical properties that can limit universal use of any given polymer resin. Pure 

PP is poor oxygen barriers and low in dimensional and thermal stability limits their 

scopes in food packaging and automotive applications. Most schemes to improve 

polypropylene gas barrier properties involve either addition of higher barrier plastics 

via a multilayer structure or surface coatings. Even this approach effective, but 

increasing on production cost enhance PP to be used in the first place economy. 

Currently, automotive and appliance applications employ glass or mineral-filled 

systems with loading levels ranging from 15 to 50 wt%. This approach improves 

most mechanical properties, but polypropylene’s ease of processing is somewhat 

compromised. Furthermore, the need for higher filler loading leads to greater 

moulded part weight (Guoqiang Qian et al.2003). 

 

When nanocomposites are formed, they exhibit significant characteristics 

improvements in physical, chemical, and mechanical properties. Usually at very low 

layered silicate loading, nanocomposites exhibit a greatly improved tensile strength, 

stiffness, hardness, better dimensional stability, decreased thermal expansion 

coefficient, and reduced gas barrier properties in comparison with pure polymer. In 

both academic and industrial locations, the study of polypropylene nanocomposites 

is an intense area of current interest and investigation (Guoqiang Qian et al.2003). 

The driving force for such efforts is attributed to huge commercial opportunities in 

both automotive and packaging applications. Material design at relatively low clay 

loading addresses the inherent weaknesses of pure polypropylene resin by itself and 

does so with favorable cost, processing, and reduced molded-part weight profiles. 
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1.2 Research Objectives 

 

The objectives of this project is to study the effects of the introduction 

Cloisite® C20A in polypropylene matrix to its mechanical properties; by means of 

hardness and tensile strength properties.  

 

1.3 Scope of study 

 

Based on the objectives, the work carried out in this project are:  

1. To study on the morphology and interference of the Cloisite® C20A in PP 

matrix.  

2. To study the hardness properties of PP/Cloisite® C20A by mean of 

Rockwell/Brinell test.  

3. To study the tensile strength of PP/Cloisite® C20A by mean of tensile test.  

 

1.4 Main Contribution 

 

Recent years, study and research on polymer nanoclay were well develop and 

ascend due to their performance and characteristics in many applications. In 

chemical engineering, polymer nanoclay is typically analyzed in terms of their 

properties changes. To understand about their properties changes, pure polymer was 

incorporated with a few percent of nanoclay (Cloisite C20A). In  this  work,  C20A 

was added at 0%, 1%, 3% and 5% by weight into polymer matrix in case to study the 

optimum weight percent that PP/C20A can show their maximum changes in 

mechanical properties. Melt intercalation method was implemented in this work to 

carry out the best result.  
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CHAPTER 2 

 

CHEMISTRY AND PHYSICAL PROPERTY OF POLYPROPYLENE 

NANOCOMPOSITES 

 

2.1 Introduction 

 

This chapter reviews the current development on polymer nanoclay. A 

crucial review on the increment of mechanical properties with the introduction of 

nanoclay (Closite C20A) is the main interest in this study.  Besides that, a brief 

summary about the experimental measurement technique to determine the hardness 

and tensile strength was also discussed. 

Layered  silicates  dispersed  as  reinforcing  phase  in  an  engineering  

polymer matrix  are  one  of  the  most  important  forms  of  such  „„hybrid  organic–

inorganic nanocomposites‟‟.  Although  the  high  aspect  ratio  of  silicate  

nanolayers  is  ideal  for reinforcement,  the nanolayers do not easily disperse  in  the 

most polymers due  to  their preferred face-to-face stacking in agglomerated tactoids. 

Dispersion of the tactoids into discrete monolayers  is  further hindered by  the  

intrinsic  incompatibility of hydrophilic-layered silicates and hydrophobic 

engineering plastics.   

Work  in  polymer  nanocomposites  has  exploded  over  the  last  few  years.  

The prospect  of  a  new materials  technology  that  can  function  as  a  low-cost  

alternative  to high-performance  composites  for  applications  ranging  from  

automotive  to  food packaging to tissue engineering has became irresistible to 

researchers around the world.  
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The essence of nanotechnology  is  the  ability  to work at  the molecular  

level  to create  large  structures with  fundamentally new molecular organization. 

Materials with features  on  the  scale  of  nanometers  often  have  properties  

different  from  their macro scale  counterparts.  Important among nanoscale 

materials are nanohybrids or nanocomposites, materials in which the constituents are 

mixed on a nanometer-length scale.  They  often  exhibit  properties  superior  to  

conventional  composites,  such  as strength, stiffness,  thermal and oxidative 

stability, barrier properties, as well as unique properties like self-extinguishing 

behavior and tunable biodegradability (Krishnamoorti, 2001).  

Silicates  are  the  most  popular  materials  used  in  the  synthesis  of  

polymer nanocomposites. They are composed of layers that have one dimension in 

nano-scale. The most common nanofiller is sodium montmorillonite, i.e. a natural 

smectite clay (2:1 phyllosilicate) that consists of regular stacks of aluminosilicate 

layers with a high aspect ratio  and  a  high  surface  area.  Because  of  the  hydrated  

sodium  cations  in  the  clay galleries, natural montmorillonite  is hydrophilic, which  

is a major drawback  to have  it homogeneously dispersed in organic polymers. The 

penetration of polymer or monomer molecules  into  the  silicate  galleries  in  the  

nanocomposite  system  determines  the homogeneity of the clay dispersion by 

breaking up the layered structure. The wetting of particle surfaces by organic 

polymers is very difficult due to this organophobic behavior of the natural clay. This 

may be overcome by the modification of clay with surfactants including onium ions.  

In  this  modification,  a  cation  exchange  reaction  takes  place between  the  metal  

cations  in  the  galleries  and  the  surfactant  onium  ions.  The intercalation of 

interlayer spacing between silicate galleries occurs within organophilic clays due to 

the modification. This  improves  the  diffusion  of monomer  and  polymer 

molecules  into  the  silicate  galleries  effectively  during  polymer/layered  silicate  

nanocomposite synthesis.     
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2.2 Polypropylene 

 2.2.1 Synthesis of PP 

 

An important concept in understanding the link between the structure of 

polypropylene and its properties is tacticity. The relative orientation of each methyl 

group (CH3 in the figure 2.1) relative to the methyl groups in neighboring monomer 

units has a strong effect on the polymer's ability to form crystals. 

 

 

Figure 2,1: Short segments of polypropylene, showing examples of isotactic 

(above) and syndiotactic (below) tacticity. 

 

A Ziegler-Natta catalyst is able to restrict linking of monomer molecules to a 

specific regular orientation, either isotactic, when all methyl groups are positioned at 

the same side with respect to the backbone of the polymer chain, or syndiotactic, 

when the positions of the methyl groups alternate. Commercially available isotactic 

polypropylene is made with two types of Ziegler-Natta catalysts. The first group of 

the catalysts encompases solid (mostly supported) catalysts and certain types of 

soluble metallocene catalysts. Such isotactic macromolecules coil into a helical 

shape; these helices then line up next to one another to form the crystals that give 

commercial isotactic polypropylene many of its desirable properties. 

 

When the methyl groups in a polypropylene chain exhibit no preferred 

orientation, the polymers are called atactic. Atactic polypropylene is an amorphous 

rubbery material. It can be produced commercially either with a special type of 

supported Ziegler-Natta catalyst or with some metallocene catalysts. 
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Modern supported Ziegler-Natta catalysts developed for the polymerization 

of propylene and other 1-alkenes to isotactic polymers usually use TiCl4 as an active 

ingredient and MgCl2 as a support (Kissin, 2008, Severn and Jones, and Moore) The 

catalysts also contain organic modifiers, either aromatic acid esters and diesters or 

ethers. These catalysts are activated with special cocatalysts containing an 

organoaluminum compound such as Al(C2H5)3 and the second type of a modifier. 

The catalysts are differentiated depending on the procedure used for fashioning 

catalyst particles from MgCl2 and depending on the type of organic modifiers 

employed during catalyst preparation and use in polymerization reactions. Two most 

important technological characteristics of all the supported catalysts are high 

productivity and a high fraction of the crystalline isotactic polymer they produce at 

70-80°C under standard polymerization conditions. Commercial synthesis of 

isotactic polypropylene is usually carried out either in the medium of liquid 

propylene or in gas-phase reactors. 

 

 

Figure 2.2: Molecular structure of PP ( Busico and Cipullo, 2001) 

 

2.2.2 Physical Properties of PP 

 

Another physical property of Polypropylene is a colourless, translucent to 

transparent solid with a glossy surface. Polypropylene does not present any risk to 

the skin. The polymer should not be exposed to flames as it gives off smoke on 

burning. Hence, PP is one of the most secure thermoplastics that can be use in most 

applications. Even Polypropylene has its own advantages in certain properties, but it 

still needed some modification to fulfill the current requirements from industries, 

automotives and etc. Table 2.1, 2.2, 2.3 shows the mechanical, thermal, physical, 

electrical and process properties for polypropylene. 
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Table 2.1: Mechanical properties for polypropylene. 

 Mechanical Properties 

Elastic Modulus (MPa)   7590 - 10350 

Flexural Modulus (MPa)   6555 - 6900 

Tensile Strength (MPa)   58 - 104 

Compressive Strength (MPa)   61 - 68 

at yield or break 

Flexural Strength (MPa)   72 - 15 

at yield or break 

Elongation at break (%)   2 - 4 

Hardness  102 - 111 

Izod Impact (J/cm of notch)   0.7 - 1.1 

1/8" thick specimen unless 

noted 

 

Table 2.2: Thermal properties for polypropylene. 

 Thermal Properties 

Coef of Thermal Expansion (10
-6

/ºC)   27 - 32 

Deflection Temperature (ºC)  166 

 149 - 166 

Thermal Conductivity (W/m-ºC)  0.351 - 0.368 

 

Table 2.3: Processing properties for polypropylene 

 Processing Properties 

Melt Flow (gm/10 min)  1 - 20 

Melting Temperature (ºC)  168 

Processing Temperature (ºC)  232 - 288 

Molding Pressure (MPa)   69 - 172 

Linear Mold Shrinkage (cm/cm)  0.003 - 0.005 

 

 

http://www.efunda.com/units/convert_units.cfm?From=165&mrn=0.125#ConvInto
http://www.efunda.com/units/convert_units.cfm?From=165&mrn=0.125#ConvInto
http://www.efunda.com/units/convert_units.cfm?From=55&mrn=165%2E555555556#ConvInto
http://www.efunda.com/units/convert_units.cfm?From=55&mrn=168#ConvInto
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Table 2.4: Physical and Electrical properties for polypropylene 

 Physical & Electrical Properties 

Specific Gravity  1.22 - 1.23 

Water Absorption (% weight increase)  0.09 - 0.1 

 0.05 - 0.06 

Dielectric Strength (V/mil);   500 - 510 

1/8" thick specimen unless noted  

 

2.2.3 Application of PP 

 

PP is widely used for many applications due to its low cost, low density, high 

thermal stability and resistance to corrosion and it is one of thermoplastic polymer, 

made by the chemical industry and used in a wide variety of applications, including 

food packaging, textiles, plastic parts and reusable containers of various types, basic 

euqipment for military, laboratory equipment, automotive components, and polymer 

banknotes (Michail Dolgovski et al.2003). 

Many plastic items for medical or laboratory use can be made from 

polypropylene because it can withstand the heat in an autoclave. Its heat resistance 

also enables it to be used as the manufacturing material of consumer-grade kettles. 

Food containers made from it will not melt in the dishwasher, and do not melt during 

industrial hot filling processes. For this reason, most plastic tubs for dairy products 

are polypropylene sealed with aluminum foil (both heat-resistant materials). 

Polypropylene is widely used in ropes, distinctive because they are light 

enough to float in water. For equal mass and construction, polypropylene rope is 

similar in strength to polyester rope. Polypropylene costs less than most other 

synthetic fibers. 

Polypropylene is also used as an alternative to polyvinyl chloride (PVC) as 

insulation for electrical cables for LSZH cable in low-ventilation environments, 

primarily tunnels. This is because it emits less smoke and no toxic halogens, which 

may lead to production of acid in high-temperature conditions. 

http://www.efunda.com/units/convert_units.cfm?From=165&mrn=0.125#ConvInto
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Polypropylene is also used in particular roofing membranes as the 

waterproofing top layer of single-ply systems as opposed to modified-bit systems. 

Polypropylene is most commonly used for plastic moldings, wherein it is injected 

into a mold while molten, forming complex shapes at relatively low cost and high 

volume; examples include bottle tops, bottles, and fittings. 

 

2.3 Nanofiller 

 

Fillers are defined as materials that are added to a polymer matrix 

formulation to lower the compound cost or to improve properties. Such materials can 

be in the form of solid, liquid or gas. By the appropriate selection of these materials, 

not only the economics but also the other properties such as processing and 

mechanical behavior can be improved. Although these fillers retain their inherent 

characteristics, very significant differences are often seen, depending on the 

molecular weight, compounding technique, and the presence of other additives in the 

formulation. In terms of nanocomposites, there are 3 commons nano filler that 

always used in polymerization which are clay, metal and carbon nanotube 

composites. 

S. K. Samal et al. (2007) investigated that polymer clay nanocomposites have 

been the subject of many recent papers due to their excellent properties and 

industrial applications. While Patino-Soto et al. (2008) found that polymer-layered 

silicate nanocomposites enhanced the improvement of polymer properties, such as 

thermal and dimensional stability, lower gas permeability, better surface finish, 

improved biodegradability, and enhanced mechanical behavior.  

Blending polypropylene with clays to form nanocomposites is a way to 

increase its utility by improving its mechanical properties. Compared to 

conventional composites, polymer layered-silicate (PLS) nanocomposites have 

maximized polymer-clay interactions since the clay is dispersed on a nanometer 

scale. This results in lighter materials with higher modulus and reduced linear 
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thermal expansion making them desirable for some applications such as exterior 

automobile parts (Michail Dolgovski et al.2003). 

 

2.3.1 Structure of Layered Silicate Organoclay 

 

Layered silicates dispersed as a reinforcing phase in polymer matrix are one 

of the most important forms of hybrid organic-inorganic nanocomposites (Okada 

and Usuki, 1995). Their  crystal  structure  consists  of  layers made  up  of  two  

tetrahedrally coordinated silicon atoms fused  to an edge-shared octahedral sheet of 

either aluminum or  magnesium  hydroxide.  The  layer  thickness  is  around  1  nm,  

and  the  lateral dimensions  of  these  layers  may  vary  from  30  nm  to  several  

microns  or  larger, depending  on  the  particular  layered  silicate. Van der Waals 

forces stack the layers leading to a regular gap named as interlayer or gallery.  

MMT, hectorite, and saponite are the most commonly used layered silicates. 

Layered silicates have two types of structure which are tetrahedral-substituted and 

octahedral substituted. In the case of tetrahedrally substituted layered silicates the 

negative charge is located on the surface of silicate layers, and hence, the polymer 

matrices can interact more readily with these than with octahedrally-substituted 

material. The structure and chemistry for these layered silicates are shown in Figure 

2.3(Süd-Chemie, 2000) and Figure 2.4. 

Figure 2.3: Schematic Illustration of 2:1 phyllosilicates structure and its SEM Image 

(Source: WEB_1 2000) 
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Figure 2.4: Layered silicate structure (T, tetrahedral sheet; O, octahedral sheet; C, 

intercalated cations; d, interlayer distance). Reproduced with permission from 

Lagaly copyright (1993) of Marcel Dekker. 

 

There  are  two  particular  characteristics  of  layered  silicates  that  are  

generally considered  for  polymer/layered  silicate nanocomposites. The first is the 

ability of the silicate particles to disperse into separate layers. The second is the 

ability to modify their surface chemistry through ion exchange reactions with 

organic and inorganic cations. These two characteristics are related to each other 

since the degree of dispersion of layered silicate in a particular polymer matrix 

depends on the interlayer cation. 

 

 2.3.2 Organoclay Modified Layered Silicate 

 

Nanocomposite  synthesis  may  not  be  successful  with  a  physical  

mixture  of polymer and layered silicate. In immiscible systems, conventionally 

filled polymers, the poor  physical  interaction  between  the  organic  and  the  

inorganic  components  leads  to poor mechanical  and  thermal  properties.  In  

contrast,  strong  interactions  between  the polymer and the layered silicate in 

polymer/layered silicate nanocomposites lead to the organic  and  inorganic  phases  

being  dispersed  at  the  nanometer  level.  As  a  result, nanocomposites  exhibit  



13 

 

unique  properties  not  shared  by  their  micro  counterparts  or conventionally 

filled polymers (Usuki et al. 1990, Biswas et al. 2001).   

Pristine layered silicates usually contain hydrated Na+ or K+ ions (Brindly et 

al.1980). Obviously,  in  this  pristine  state,  layered  silicates  are  only  miscible  

with hydrophilic  polymers,  such  as  poly(ethylene  oxide)  (PEO)  (Aranda  et  al.  

1992), or poly(vinyl alcohol) (PVA) (Greenland 1963). To render  layered silicates 

miscible with other polymer matrices, one must normally convert the hydrophilic 

silicate surface to an organophilic  one,  making  the  intercalation  of  many  

engineering  polymers  possible.  

Generally,  this  can  be  done  by  ion-exchange  reactions  with  cationic  

surfactants including  primary,  secondary,  tertiary,  and  quaternary  

alkylammonium  or alkyl phosphonium  cations.  Alkyl ammonium  or  

alkylphosphonium  cations  in  the organosilicates  lower  the surface energy of  the  

inorganic host and  improve  the wetting characteristics  of  the  polymer  matrix,  

and  result  in  a  larger  interlayer  spacing. Additionally,  the alkylammonium or 

alkylphosphonium cations can provide  functional groups  that  can  react  with  the  

polymer  matrix,  or  in  some  cases  initiate  the polymerization  of  monomers  to  

improve  the  strength  of  the  interface  between  the inorganic and the polymer 

matrix (Blumstein 1965, Krishnamoorti et al. 1996).  

The  replacement  of  inorganic  exchange  cations  by  organic  onium  ions  

on  the gallery surfaces of smectite clays not only serves to match the clay surface 

polarity with the  polarity  of  the  polymer,  but  it  also  expands  the  clay  galleries  

(Figure  2.5).  This facilitates  the  penetration  of  the  gallery  space  intercalation  

by  either  the  polymer precursors  or  preformed  polymer.  Depending on  the  

charge  density  of  clay  and  the onium ion surfactant, different arrangements of the 

onium ions are possible. In general, the longer the surfactant chain length, and the 

higher the charge density of the clay, the further apart the clay layers will be forced.  

This is expected since both of these parameters contribute to increasing the volume 

occupied by the intra gallery surfactant. Depending on the charge density of the clay, 

the onium ions may lie parallel to the clay surface as a monolayer, a lateral bi-layer, 

a pseudo-tri-molecular layer, or an inclined paraffin structure. At very high charge 
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densities, large surfactant ions can adopt lipid bi-layer orientations in the clay 

galleries.(Lagaly, 1986)   

 

Figure 2.5: Ion Exchange Reaction between Na-MMT and Alkyl Ammonium 

Molecules (Lagaly, 1986).   

 

Traditional structural characterization to determine the orientation and 

arrangement    of the alkyl chain was performed using wide angle X-ray diffraction 

(WAXD). Depending on  the packing density, temperature  and  alkyl  chain  length, 

the chains were thought to lie either parallel to the silicate layers forming mono or 

bi-layers, or  radiate  away  from  the  silicate  layers  forming  mono  or  

bimolecular  arrangements. (Lagaly,1986). The alkyl chains can vary from liquid-

like to solid-like, with the liquid-like  structure  dominating  as  the  interlayer  

density  or  chain  length  decreases  (Figure 2.6), or as the temperature increases. 

There are three models for alkyl chain aggregation: (a) short  chain  lengths,  the  

molecules  are  effectively  isolated  from    each  other,  (b) medium lengths, quasi 

discrete layers form with various degree of in plane disorder and inter digitations  

between    the  layers  and  (c)  long  lengths,  interlayer  order  increase leading   to  

a liquid-crystalline   polymer    environment.    This  occurs   because    of the 

relatively  small  energy   differences   between   the  trans  and   gauche   

conformers;  the idealized  models  described    earlier  assume   all trans  

conformations.  In    addition, for longer chain length surfactants, the surfactants in 
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