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ABSTRACT

In many industrial processes, the most desirable variables to control are

measured infrequently off-line in a quality control laboratory. In these situations, use

of advanced control or optimization techniques requires use of inferred

measurements generated from correlations. For well-understood processes, the

structure of the correlation as well as the choice of inputs may be known a priori.

However, many industrial processes are too complex and the appropriate form of the

correlation and choice of input measurements are not obvious. Here, process

knowledge, operating experience, and statistical methods play an important role in

development of correlations. This paper describes a systematic approach to the

development of nonlinear correlations for inferential measurements using neural

networks. A three-step procedure is proposed. The first step consists of data

collection and preprocessing. Next, the process variables are subjected to simple

statistical analyses to identify a subset of measurements to be used in the inferential

scheme. The third step involves generation of the inferential scheme.
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ABSTRAK

Dalam kebanyakan proses yang dijalankan di industri, pembolehubah-

pembolehubah yang penting untuk dikawal adalah diukur secara “off-line” dalam

makmal kawalan kualiti. Dalam situasi sebegini, pengunaan kaedah kawalan yang

canggih atau teknik pengoptimuman memerlukan ukuran yang diperolehi melalui

korelasi. Untuk proses yang difahami sepenuhnya, struktur korelasi dan pilihan input

diketahui selepas kajian dijalankan. Sungguhpun begitu, kebanyakan proses yang

dijalankan di industri adalah terlalu kompleks dan gaya sesuai korelasi dan pilihan

ukuran input adalah kurang jelas. Dengan ini diketahui bahawa pengetahuan

mengenai sesuatu proses, pengalaman mengoperasi dan kaedah statistik memainkan

peranan penting dalam penghasilan satu sistem korelasi. Kertas kerja ini mengkaji

satu pendekatan sistematik untuk menghasilkan sistem korelasi berdasarkan ukuran-

ukuran inferens menggunakan Neural Network. Tiga langkah bertatacara telah

dicadangkan untuk melaksanakan kajian ini. Langkah pertama adalah pengumpulan

data dan pemprosesan data. Selepas itu, pembolehubah-pembolehubah proses

dianalisis untuk mengenalpasti satu subset ukuran yang sesuai untuk digunakan

dalam kaedah pengukuran inferens. Langkah ketiga melibatkan penghasilan kaedah

pengukuran inferens.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Over the years, the application of Artificial Neural Network (ANN) in

process industries has been growing in acceptance. This is because ANN is capable

of capturing process information in a black box manner. Given sufficient input

output data, ANN is able to approximate any continuous function to arbitrary

accuracy. This has been proven in various fields such as pattern recognition, system

identification, prediction, signal processing, fault detection and others (Demuth and

Beale, 1992).

In general, the development of a good ANN model depends on several

factors. The first factor is related to the data being used. This is consistent with other

black box models where model qualities are strongly influenced by the quality of

data used. The second factor is network architecture or model structure. Different

network architecture results in different estimation performance. Commonly,

multilayer perceptron and its variances are widely used in process estimation. The

third factor is the model size and complexity. What is required is a parsimonious

model. This is because a small network may not able to represent the
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real situation due to its limited capability, while a large network may overfit noise in

the training data and fail to provide good generalization ability. Finally, the quality of

a process model is also strongly dependent on network training. This stage is

essentially an identification of model parameters that fits the given data; and is

perhaps the most important factor among all (Sexton et al., 2002).

In this research, the ANN model is used for inferential estimation of air

density in a Gas Flow Pressure Temperature Control Training System. The aim is to

address the difficulty in measuring air quality in process plants. Most quality

variables in process industries require some kinds of analysis to be carried out. The

use of online analyzer for product quality variables has been limited due to large

measurement delay, the need for frequent maintenance as well as high capital and

operating costs.

In order to adapt to market conditions while maximizing profit, the demand

for accurate inferential estimators for controlling the product quality variable

becomes paramount. For this reason, this study introduces ANN as means of

improving inferential measurement.

1.2 Problem Statement

Due to the complexity of process plants, the amount of information required

to measure the variables is dependant both on the physics and the level of precision

of analysis tools. Although physical experimentation provides accurate

environmental measurements without the need for modeling assumptions, a

comprehensive analysis would not only require expensive equipment, but would also

require large amounts of time. Numerical modeling techniques as ANN can offer an

effective method of measuring the air density under various design conditions within
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a virtual environment. Thus the amount of physical experimentation can be reduced

considerably, although, as of yet, not eliminated.

1.3 Objective

The objective of this work was to develop an inferential measurement

system for air density using Neural Network which is incorporated with

Matlab.

1.4 Scope of the Research

To fulfill the objective, the following scope of research was carried

out:

i. Data Collection using AFPT plant available in FKKSA lab

ii. Development of ANN based inferential estimator for air density using

other secondary measurements using MATLAB

iii. Evaluation of modelling using experimental results of particular

AFPT plant
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1.5 Contribution of the Research

As over many years chemical plant systems have become tailored for

specialized production, the need to maintain control over the primary output so that

the requirements of the production system can be continuously met has become even

more important. So, it is important to understand the interaction of all variables,

alongside their contribution to the product quality. For this reason, this work has

proposed an enhancement to inferential measurement. The ANN model was

implemented in inferential estimation and control scheme for air density.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The birth of Artificial Neural Network (ANN) was believed to be founded by

the fact that brain is far superior compared to conventional computation techniques.

Although conventional computation techniques may perform better in task requiring

high degree of numerical computation and repeatable steps, our powerful brain is

fault tolerant and is able to perform parallel computation. The brain is also adaptive

to new environment and is capable of interpreting imprecise information. Due to this

reason, scientists have been trying to apply the knowledge gained in neural biology

in the effort to improve the performance of conventional computing (Bhartiya et al.,

2000).

Over the past few decades, ANN has generated considerable interest among

researchers and various different courses of ANN research have been explored.

These included network architecture and training algorithm. As a result, different

types of ANN model were developed. These models were implemented in diverse

field including computer science, medicine, mathematics, physics, and engineering.

The amount of research activities are expected to grow to improve the
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performance of ANN in various applications. This would be facilitated by the

advancement in computing technology that enables complex network to be

implemented. It is not a surprise that the ultimate ANN model would be a powerful,

robust and reliable tool to be implemented in various areas (Demuth and Beale,

1992).

2.2 Overview of Artificial Neural Network

Artificial Neural Network (ANN) is collections of mathematical models that

emulate the real neural structure of the brain. In general, ANN is made up of

individual interconnected simple processing elements called neurons, arranged in a

layered structure to form a network that capable of performing massively parallel

computation. Architecture of a general ANN is illustrated in Figure 2.1.

ANN can perform a human-like reasoning, learns and stores the relationship

of the processes on the basis of the available representative data set. By mimicking

the network of real neuron in the human brain, ANN performs mapping from an

Figure 2.1: Architecture of Artificial Neural Network
(Basheer & Hajmeer, 2000)
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input space to an output space. Generally, the ANN does not need much of a detailed

description or formulation of the underlying process. Depending on the structure of

the network, a series of connecting neuron which weights are adjusted in order to fit

a series of inputs to another series of known outputs. Since the connecting weights

are not related to physical identities, the approach is considered as a black-box

model. Such methods provide an analytical alternative to conventional techniques

which are often limited by strict assumptions of normality, linearity, variable

independence and so on (Hassoun, 1995).

2.2.1 Basic Element of ANN

A multilayer ANN is made up of at least three layers of neurons that are

connected to each other. Input layer and output layer serve to receive the information

from external resources and send the results out to external receptor. That also means

most of the computing process is carried out in the hidden layer. In most networks,

the output layer also performs similar transformation carried out by the hidden layer

(Hassoun, 1995).

An example of artificial neuron is illustrated in Figure 2.2. The neuron input,

x i, is multiplied by the corresponding weight factor, wi, before being sent to the

neuron. This is followed by performing summation of all input in the neuron body.

An internal bias, b is also introduced to enhance performance of the network. The

result is passed through a nonlinear activation transfer function to obtain the output y:

(2.1)
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Typical activation functions include sigmoidal function, hyperbolic tangent

function, sine or cosine function. Some of these are shown in Figure 2.3. So far, there

are no rules for the selection of transfer function but the sigmoidal function is the

most popular choice. Besides, it is also not conclusively understood that the use of

different types of transfer function will have major effect on the network

performance (Demuth and Beale, 1992).

Figure 2.3: Different types of transfer function
(Demuth & Beale, 1992)

Figure 2.2: An example of artificial neuron (Hassoun, 1995)
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2.2.2 Network Topology

Topology of an ANN refers to how the inner structure is or how the neurons

are interconnected. Generally, each neuron’s output from previous layer feeds into all

neurons in the subsequent layer. In the ANN model development, the topology has to

be pre-specified but leave the numerical values of weight and bias up to the training

phase. The inner connection is therefore particularly important for obtaining a good

result.

The various structure of an ANN can be classified into three groups by the

arrangement of neurons and the connection patterns of the layers. These are the

feedforward network (e.g. multilayer feedforward, radial basis), recurrent network

(e.g. Elman, Hopfield) and self-organizing network (e.g. Kohonen). Different types

of networks may be used for different purposes. In chemical engineering application,

the most influential and mostly adopted by researchers is multilayer feedforward

network. Recently, the trend of using recurrent network (Elman) is also increasing.

The topology for these two types network is shown in Figure 2.4 (Demuth and Beale,

1992).

Figure 2.4: Topology of feedforward and Elman network
(Demuth and Beale, 1992)
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The feedforward network is named as such because the input data is

transferred from input layer through hidden layers to output layers in a single

direction. For Elman network, the connections are mainly feedforward but also

include a set of carefully chosen feedback connections that let the network remember

recent past values. The input layer is divided into two parts, i.e., the true input units

and the context units that hold a copy of the activations of the hidden units from the

previous time step. From the performance point of view, a feedforward network is

much easier to construct and train compared to Elman network. However, since

recurrent network is dynamic network that has the ability to store memory and

produce output dependent of previous state of the network, it would be advantageous

for the use in chemical processes since the process data are often auto correlated

(Demuth and Beale, 1992).

Another important issue in ANN model development is topology selection

which is referred to selection of the optimum number of hidden layers and hidden

neurons. It was stated in the literature that one hidden layer is sufficient to

approximate any continuous function to any desired accuracy (Irie and Miyake,

1988; Cybenko, 1989). However, some researcher used two hidden layers by

considering that one hidden layer may require too many hidden neurons and this will

worsen the network generalization ability and increase training time (Barron, 1994).

Some researcher found that network with two hidden layers may benefit in certain

specific problems. For example, Masters (1994) reported that two hidden layers may

suitable for learning functions with discontinuities.

Compared to the number of hidden layers, the determination of required

number hidden neurons is more complicated. Until today, the systematic way of

selecting this parameter is still not well established. However, a number of rules of

thumb had been proposed. In general, the optimum number of hidden neurons (Nhdn)

is related to number of training data (Ntrn), number of input neurons (Ninp), number of

output neurons (Nout) and total number of weights (Nwgh). These examples are

summarized in the Table 2.1. It is regretted that none of these rules can be applied

perfectly to all problems.
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The most practically and widely used method for optimum topology selection

is trial and error search method. Basically, this was done by increasing the number of

neurons from small to considerable large number of hidden neurons to be trained and

then cross-validated. An increase in the number of hidden neurons used will decrease

the cross-validation error. However, if too many hidden neurons are been used the

network will tend to overfit the trend. Nevertheless, the final number of neuron is

determined based on the smallest cross-validation error. In addition, rules of thumb

may also apply as a starting point for try and error searching. Another more

sophisticated method for network topology optimization is the growing and pruning

methods (Sietsma and Dow, 1988).

Table 2.1: Optimum number of hidden neurons suggested
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2.2.3 Network Training and Validation

To develop an accurate process model using ANN, the learning process or

training and validation are among the important steps. In the training process, a set of

input-output patterns is repeated to the ANN. From that, weights of all the

interconnections between neurons are adjusted until the specified input yields the

desired output. Through these activities, the ANN learns the correct input-output

response behaviour. For validation, the ANN is subjected to input patterns unseen

during training, and introduces adjustment to make the system more reliable and

robust. It is also used to determine the stopping point before overfitting occurs. A

typical fitting criterion may be introduced to emphasis the model validity. Such

criterion may be mean square error (MSE), sum square error (SSE) which is

calculated between the target and the network output.

There are many different approaches to train the ANN. Basically, a successful

learning process involves three main aspects, i.e., learning paradigm, learning rule

and learning theory. Learning paradigm concerns about what information is fed to

ANN. There are two types of learning paradigm, namely, supervised and

unsupervised learning. In supervised learning, network is trained with the correct

answer for every input data while correct answer is not provided in the unsupervised

learning. Typically, most of the networks are using supervised learning except ANN

model implemented in clustering or categorization.

Learning rule defines how network weight should be adjusted in the learning

procedures. There are four basic types of learning rule: error-correlation learning

(ECL), Boltzmann learning (BL), Hebbian learning (HL) and competitive learning

(CL). Due to space limitation, the detail descriptions of these learning rules are

referred to the work of Jain et al. (1996). Among all the training algorithms,

backpropagation (BP) which follows error-correlation learning rule is the most

popular choice. The famous BP is essentially a gradient steepest descent method,

searching at error surface. Basically, BP involved two steps in each iteration: forward
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calculation to produce a solution and based on the error, backward propagation to

adjust weights. However, the standard BP however is reported to suffer from several

weaknesses such as slow convergence, lack of robustness and inefficiency

(Rumelhart et al., 1986). A number of modifications have been proposed for the BP

algorithm such as adaptive method and second order method to achieve better

training process. Among them, Levenberg-Marquardt (LM) method which is hybrid

of the Gauss-Newton nonlinear regression method and gradient steepest descent

method is recommended in most optimization packages such as MATLAB.

The learning theory addresses the training data which is including issue

related to data quality, data quantity and computation time. The selection data for

training is important since it can affect the adaptability, reliability and robustness of

an ANN. Normally, data that covers a wide range with sufficient excitation but free

from outliers is preferred. Sometimes, the random noise may be injected to the

training data to enhance the ANN robustness against measurement error. There is no

defined rule to determine the amount of training data for ANN modelling. Generally,

the data quantity is related to network structure, training method and complexity of

the problem. Since ANN is needed to generalize unseen data, normally sufficient

large quantity of data is needed to cover the possible unknown variable in the

problem domain. The larger training data can increase the accuracy of network

generalization. However, this also will increase the computation time for the learning

process. Hence, there should be trade-off between these two criteria (Branke, 1995).

Another important issue regarding learning process is data normalization. The

scaling of training data is needed to prevent data with larger magnitude from

overriding the smaller and impede the premature learning process. Again, in this case

there is no any standard approach to perform the data normalization. The simplest

way is scale the variables (v i) in the defined interval [ λ1,λ2 ] using the maximum

(v i
max ) and minimum value (vi

min ) of vi in the database:
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vnorm = (2.2)

where vi
norm is the normalize value of vi

Training of an ANN is an optimization problem where convergence to global

minimum is desired. Similar to other optimization tasks, the choice of algorithm will

influence the end results. Gradient-based methods such as backpropagation provide

fast convergence but are susceptible to sub-optimal solutions. On the contrary,

random methods offer better probability for convergence at global minimum but can

be relatively time consuming. When computing time is within acceptable level,

global minimum convergence should be given consideration in this trade-off

(Branke, 1995)

2.2.4 Application of ANN in Chemical Engineering

ANN is attractive due to its information processing characteristic such as

nonlinearity, high parallelism, fault tolerance as well as capability to generalize and

handle imprecise information (Basheer and Hajmeer, 2000). These characteristics

have made ANN suitable for solving a variety of problems. The application of ANN

in chemical engineering began in the late 1980’s. One of the pioneering works was

reported by Hoskins and Himmelblau (1988). In subsequent years, the number of

research publications on ANN in chemical engineering was steadily increased. Most

of these publications cover five major areas: process control, dynamic modelling,

forecasting fault diagnosis, and optimization.

In the area of process control, ANN was applied through adaptive control or

model-based control. By monitoring the on-line process data, ANN could be used to
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adjust controller parameter for optimal performance. Dynamic modelling using ANN

was also well practising in process industries. By exploiting the relationship among

the process variables, ANN model was developed as estimator and to be

implemented in advance control techniques. Similar to dynamic modelling,

forecasting can also contribute in process industries by using prediction based on the

history data. This enabled behaviour of important process variable to be forecasted in

the next sampling time, thus preventive action could be taken. ANN was also useful

in fault diagnosis since it has the ability to store knowledge about the process and

learn from the quantitative historical fault information. ANN could be trained based

on the normal operating condition and then compared to current operational data to

determine faults that might happen (Hoskins and Himmelblau, 1988). Lastly, ANN

was implemented in plant optimization for optimal parameter searching to ensure

process plant is always safe and productive.

2.2.5 Process Estimation and Control using ANN

In recent years, ANN had been extensively studied in academia as process

models and controllers (Hunt et al., 1992; Ungar et al., 1996; Hussain, 1999;

Bhartiya and Whiteley, 2001; Ahmad et al., 2001). Bhat and McAvoy (1990) applied

ANN to dynamic modelling for a pH-controlled CSTR. The predicted pH values

when compared to two other approaches demonstrated that ANN could predict more

accurately than conventional method. Willis et al. (1992) discussed the application of

ANN as both inferential estimator and predictive controller. Their results

demonstrated that ANN could accurately predict the process output and significantly

improved the control scheme. Pollard et al., (1992) utilized backpropagation trained

ANN for process identification. They concluded that ANN was particularly useful

when the input-output mapping was unknown since ANN was able to accurately

represent nonlinear behaviour in a black box manner. All the successful

implementations of ANN in process estimation and control had proved the suitability

of ANN in solving chemical engineering problems.



16

2.2.6 Limitation of ANN

Undeniable, ANN has been well known for its effectiveness in representing

nonlinear process system. However, ANN is not a solution that can solve all

problems in the real world. Among the limitation of ANN, the followings should be

given added emphasis:

i. Network architecture

There is a lack of fixed rule or systematic guideline for optimal ANN

architecture design. Since there is no a prior knowledge about the

problem complexity, the network architecture was typically set

arbitrarily. The network topology was often determined by trial and

error. This subjected the network to performance uncertainties since

the size of network influence the network performance: too small a

network cannot learn well, but too large may lead to overfitting. Thus,

algorithms that can find appropriate network architecture are needed.

This includes the determination of optimum number of neuron in each

layer as well as number of hidden layer needed. Many networks were

developed on the assumption of being fully connected. This can be

implemented on a small network but it may not be feasible for more

complicated network (Hintz and Spofford, 1990).

ii. Training algorithm

The best training algorithm still cannot be singled out for general

neural network. Although BP algorithm has been widely used, it does

not guarantee the global optimal solution. The training may result in

ANN model that is only accurate in the same operating zones as in the

training data set but inaccurate in others. Besides, the selection of

some parameters in BP training also lacks of systematic guideline.

iii. Training data

The quality and quantity of training data is an important issue for

ANN modelling. Usually, the success of ANN relies heavily on a
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large amount of data, but this demand more computing time for

training. In order to reduce the amount of data whilst maintaining the

model quality, the data used must be carefully selected to ensure that

they are sufficiently ‘rich’. This demands project understanding on the

process involved. Additionally, to eliminate noise and outliers,

process data may require pre-processing prior to application in neural

network model development.

iv. Process relationship

Being black-box method for modelling, ANN is criticized for unable

to explain and analysis the relationship between inputs and outputs.

This may cause difficulties in interpreting results from the network.

2.3 Process Estimation and Control

The increase of global competitiveness has pushed chemical plant operations

into highly nonlinear regions near process constraints in order to meet the ever

increasing product capacity and quality. For such operating condition, process

control becomes more challenging. In general, two main issues aroused with respect

to process control needs. First, operating in nonlinear regions, particularly near the

constraints required advanced controllers. Secondly, the limitations due to

measurement difficulties must be overcome. This work concentrates on the second

issue. Measurement difficulties prevail due to a variety of reasons, including: lack of

appropriate on-line instrumentation and reliability of on-line instruments. Process

operation has to depend on laboratory assays, which means that results can be

infrequent and irregular, in addition to long analysis delays. Depending on how the

laboratory analyses are carried out, the reliability of the results are being questioned

too. On-line sensors may be available but they may suffer from long measurement

delays (e.g. gas chromatographs) or may be subjected to factors that affect the

reliability of the sensor (e.g. drifts and fouling), despite the high capital and
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maintenance costs. As an alternative, inferential estimation has been designed for

tackling this issue.

The inferential estimator, which is designed on the basis of the model, should

provide an accurate and reliable estimation even when un-measurable disturbances

are present. Among the estimation approaches, ANN model show its potential to deal

with nonlinear process problems. Thus, this work proposed an estimator employing

ANN model to be used for this research work.

2.3.1 Inferential Estimation

An inferential control model employs measurements of secondary variables

to infer the effect of un-measurable disturbances on primary process outputs such as

product quality. Due to the nature of chemical and process engineering systems, the

states of many variables reflect the states of other variables. By exploiting these

relationships, a particular variable of interest can be represented by others in a form

of correlations or models. The variable of interest termed as the primary variable

which is difficult to measure can therefore be estimated using values of easy to

measure secondary variables. If the model is accurate, the estimation can then serve

as the replacement to actual measurement for control purposes (Doyle, 1998; Parrish

and Brosilow, 1988).

Inferential estimation in chemical processes has been studied extensively

since mid-1970s (Jo and Bankoff, 1976; Joseph and Brosilow, 1978). It was found

that this technique is very useful and important as it can be applied to process

control, process monitoring, plant fault detection and data reconciliation (Soroush

1998). Joseph (1999) investigated the application inferential estimation in a

distillation column and the use of intermediate tray temperature as secondary
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variables in a Shell challenge case study problem. Willis et al. (1991) had discussed

an estimation procedure for feedback control of product composition from an

industrial distillation column using overhead temperature. Amirthalingam et al.

(2000) used several tray temperatures when applying their two step identification

approach to a distillation column to estimate composition in distillate.

Apart from using temperature as secondary measurement, some researchers

also used flow measurements together with temperature measurement to act as inputs

to estimation model. Joseph and Brosilow (1978) concluded that temperature and

flow measurement can adequately estimate the compostion of debutanizer column.

Similiary, Tham et al. (1991) used “fast” measurement of column overhead vapour

temperature together with reflux flow rate to provide estimations of product

concentration from a high purity distillation column.

To enhance the performance in process estimation, what is the most concern

is how to design a good inferential control system. This classical problem can be

divided into two categories, the selection of inferential model and the selection of a

control configuration. Many types of modelling techniques have been proposed in

the literature such as first principle model (FPM), partial least squares (PLS),

Kalman filter, ANN and hybrid model which refers to combination of more

modelling techniques. Even though these modelling techniques offered adequately

good estimation in inferential control task, they still lack of adaptability to cope with

dynamic environment. For this reason, ANN model has been selected as modelling

technique in this work.



CHAPTER 3

RESEARCH METHODOLOGY

3.1 Stages in Methodology

The objective of this work was to develop inferential measurement system for

air density using NN. To achieve this target, the research methodologies were

divided into several main phases. Those were data preparation, ANN model

development, and finally process estimation. The steps of these phases are

summarized in the flowchart as shown in Figure 3.1.

DATA PREPARATION

ANN MODEL DEVELOPMENT

PROCESS ESTIMATION

Figure 3.1: Methodology flowchart
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3.2 Research Tools

Several tools have been used throughout this work. Among them, the most

important software was Neural Network which is incorporated with Matlab and

Model AFPT921 Gas Flow Pressure Temperature Control Training System. The

training system provided the platform for all kinds of data analysis while MATLAB

was used for the ANN model development. Both tools were incorporated to perform

inferential measurement for air density.

3.2.1 Matlab

MATLAB is a mathematic analysis package produced by Mathworks. This

program enables immediate access to high numerical computing and extended with

interactive graphical capability. The entire modelling task was performed using

MATLAB Version R2007A. This software provides Neural Network Toolbox for

ANN model development with different types of network such as feedforward,

Elman, Hopfield, Radial Basis as well as others.

3.3 Case Study – AFPT Plant

The research is carried out in local training plant, Model AFPT921 Gas Flow

Pressure Temperature Control Training System which is situated in the chemical lab

of Universiti Malaysia Pahang, Kuantan. The Model AFPT921 plant is a scale-down

of real industrial process plant built on 5 ft x 10 ft steel platform, complete with its

own dedicated control panel. The process equipment and process instrumentation are
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real industrial process type. The plant is constructed in accordance to industrial

process plant standard and practices with fail-safe system. For example, the air heater

cannot be turned on unless there is enough air flow in the pipeline. The process

flowrates are at commercial production flowrates, using pipeline and not tubings.

3.3.1 Data Preparation

The research work began with the Model AFPT921 Gas Flow Pressure

Temperature Control Training System for data collection. Before running the plant,

the typical procedures involved were to manipulate the variables such as temperature

and pressure, to define the control system and finally to start integration. Data may

easily be obtained from the plant DCS (Distributed Control System) database. Data

in DCS is recorded for every second as it shows the dynamic response for variables

involved. The step test experiments were conducted by randomly changing selected

inputs according to step size. Here three selected input variables (TIC91A, PIC91A,

FIC91A) were integrated to generate sequences of random value of air density with

varying temperatures and different pressure. During this process, data for all

variables involved is recorded through DCS. In this work, the variables were chosen

and corresponding dynamic responses in Model AFPT921 were studied. These

variables are tabulated in Table 3.1.
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Meanwhile the data collected is arranged and tabulated as in the format

shown in table 3.2. The step change that should be manipulated is also stated in the

appendix.

Table 3.1: Variables in Model AFPT921

Variables

DT Density Transmitter

PT Pressure Transmitter

FT Flowrate Transmitter

TIC91A Temperature PID Controller

TIC92A Temperature PID Controller

TIC911A Temperature PID Controller

FI91A Flowrate Indicator

FIC91A Flowrate PID Controller

PI911A Pressure Indicator

PIC91A Pressure PID Controller

PIC92A Pressure PID Controller

Table 3.2 : Tabulating the Data

Settings Time (min) DT PT FT Others Variables

Pressure = 15 psig 1
Flowrate = 20% 2
Temperature = 40oC ..

Pressure = 15 psig 1
Flowrate = 20% 2
Temperature = 60oC ..
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3.3.2 Data Conditioning

Since the performances of the resulting inferential measurement models are

influenced significantly by the quality of the data used to generate them, the data

collected from the process undergoes data conditioning. As the Figure 3.2 shows, the

first and most important thing to do is to get rid of spurious points or outliers in the

data. These can have significant impact on the model structure selection and

estimator testing stages of the development cycle. Next, noise in the data should be

attenuated as much as possible. On very noisy systems, this loss of predictive

capabilities can be very pronounced.

DATA COLLECTION

VARIABLE SELECTION

SUSPICIOUS POINTS?

DATA NOISY?

CHECK & REMOVE
OUTLIERS

SMOOTH DATA

Figure 3.2 : Data Conditioning Flowchart

YES

YES
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3.3.3 Secondary Variable Selection

It is important that we choose the appropriate secondary outputs and inputs to

use in developing the inferential measurement model. The number of these

'explanatory' variables employed will influence the size and complexity of the final

model. This impact on the size of the data set that has to be used in model

development.

The objective here, and indeed for all process modelling activity is to make

use of the least number of variables to develop a model of sufficient accuracy. In

many situations, there will be a number of variables that will show relationships with

the primary output. The task then is to choose those with the strongest relationships

and to weed out those that are redundant. Here, knowledge of the process is a distinct

advantage. Once a set of potential secondary variables is selected, the inferential

model can be developed and tested. For this case study, four main variables have

been chosen. Those are TIC91A, FIC91A and PIC91A which are chosen as input

variables. Meanwhile DT is chosen as output variable.
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3.4 Development of Artificial Neural Network

Process development of estimator model is the most crucial part in this work.

A better understanding of the model development procedure can help in handling the

research easily and faster. In this section, estimator models involved and model

development procedure was discussed. The basic steps of developing ANN model

are summarized in the flowchart as shown in Figure 3.3.

Basically, the development of successful ANN model involved several phases

in a cyclic procedure. The development process started with data preparation. This

included input variables selection and data generation as discussed in the previous

section. Data generated from the training plant is not normally used directly in

process modelling of ANN. This is due to the difference in magnitude of the process

variables. The data was scaled to a fixed range to prevent unnecessary domination of

certain variables. The choice of range depends largely on transfer function of the

output nodes in ANN. Typically, [0,1] for sigmoidal function and [-1,1] for

hyperbolic tangent function. Before the data can be fed to ANN model, the proper

network design must be set up and the modeller must decide the type of network and

method of training. In this study feedforward (FF) network were considered. The

network trainings were accomplished using the Levenberg-Marquardt (LM)

algorithm. This was followed by the optimal parameter selection phase. There were

SIMULATION

NETWORK TRAINING

NETWORK STRUCTURE CREATION

Figure 3.3 : Steps of Developing ANN
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several parameters to be selected including number of hidden neuron, number of

hidden layer, learning rates and acceptable error. However, this phase was carried out

simultaneously with the network training phase. This was due to the fact that the

parameters were selected based on the performance during training and validation.

In the training phase, connection weights were always updated until they

reached the defined iteration number or acceptable error. Although the generalization

ability of NN model had been tested in network validation, it was recommended that

the network underwent model verification phase. This was done using different set of

unseen data. Hence, the capability of ANN model to respond accurately was assured.

If the model failed to perform the defined accuracy as expected, the development

process was brought back to its starting phase.

The system implementation phase was a final test where the model developed

was applied to real world problems. Here, ANN model was evaluated using real plant

data.
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3.5 Performance Evaluation

3.5.1 Error Criterion

There are several ways to evaluate the performance of estimator developed.

The most important and easiest way perhaps is by measuring the estimation

accuracy. The estimation accuracy can be defined as the difference between the

actual and estimated values. The ultimate objective is to provide accurate and

repeatable estimations. There are a number of approaches presenting the accuracy

measures in the literature such as SSE (sum square error), RMSE (root mean square

error), MAPE (mean absolute percentage error) and others. As mentioned by Zhang

et. al. (1998) in their work, the most frequently used is the MSE (mean square error),

defined as follow:

2
(3.1)

where y is actual target value, y îs its estimated target value, and N is the total

number of data.

3.5.2 Performance Test for Process Estimator

In this study, the performances evaluation of estimator developed was carried

out in several stages. Firstly, ANN model developed were tested on their

performance in network training and validation. These were done based on the

systematically designed data which cover a wide range of process operation.

Theoretically, a well-trained network could capture the relationship within range of
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training data due to its experience. However, ANN model may be poor in

extrapolation of unseen data. Thus, the next stage of the performance evaluation

would be estimation using several sets of data. These data sets were designed to be

varied in the degree of fluctuation, thus covering different range of operating space.



CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Data for Modelling

A total of 454 set of data were generated using Model AFPT921 Gas Flow

Pressure Temperature Control Training System for modeling purposes. Data for all

variables are recorded and tabulated in MS Excel 2007. As a summary, a total of 11

variables were involved in this case study. It consists of six input variables and five

output variables. These variables were tabulated in Table 4.1. In this work, three

input variables were chosen and responses in air density were studied.

Input Variables

TIC91A

TIC92A

TIC911A

FIC91A

PIC91A

PIC92A

Output Variables

DT

PT

FT

FI91A

PI911A

Table 4.1 : Input and output variables
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4.2 Training and Validation Results

Data generated were used as model inputs for modelling purposes. These data

were equally divided into training and validation set. The network was obtained after

undergoing a series of training using Levenberg-Marquardt (LM) algorithms. In

order to improve network generalization ability, early stopping technique was

applied to LM training. In this technique, validation error was monitored during the

training process. When the validation error increases for a specified number of

iterations, the training was stopped to prevent overfitting. The performance of these

estimators in tracking the actual process data during the training and validation

testing stages are illustrated in Figure 4.1 and Figure 4.2.

This training stopped after 17 iterations because at that point the validation

error increased. Training is accompanied by a plot of the training, validation, and test

errors, shown in the following figure. For this system, the mean square error of the

ANN model was found to be 0.00549171. The result here is reasonable, because the

Figure 4.1: Performance of Estimator
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final mean square error is small, the test set error and the validation set error has

similar characteristics, and it doesn't appear that any significant overfitting has

occurred.

The next step was to perform some analysis of the network response. The

entire data sets are put through the network (training, validation, and test sets) and a

simulation between the network inputs and output is performed. The capability of

neural networks in providing inferential measurement of the air density in the Model

AFPT921 Gas Flow Pressure Temperature Control Training System is illustrated in

the Figure 4.2. The red line denotes the actual value of the air density while blue line

indicates the prediction value of air density.

To judge our network performance we can also use regression analysis. After

post-processing the predicted values, a linear regression is performed between the

Figure 4.2 : Comparison between actual targets and predictions

Comparison between actual targets and predictions

O
ut

pu
t

Data

Actual
Prediction



33

network outputs, after they have been mapped back to the original target range, and

the corresponding targets. The output tracks the targets very well, and the R-value is

0.98903 which is over 0.9. The linear regression is shown in Figure 4.3.

If even more accurate results were required, these steps could be done:-

i. Reset the initial network weights and biases to new values with init

and train again

ii. Increase the number of hidden neurons

iii. Increase the number of training vectors

iv. Increase the number of input values, if more relevant information is

available

v. Try a different training algorithm

Figure 4.3: Linear Regression
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Figure 4.4: Comparison between actual targets and estimations
for Testing Results

4.3 Estimator Testing Results

A total of 150 random data sets were taken from Model AFPT921 Gas Flow

Pressure Temperature Control Training System for testing the network created using

Matlab. These data is stimulated through the network which was developed to

estimate the density of air in the training plant. The testing results were shown in

appendix.

The testing results are then evaluated through comparison and regression

analysis in Figure 4.4 and Figure 4.5 respectively. As clearly displayed, the ANN

model is capable of estimating the air density accurately and a satisfactory

performance was obtained.

Actual
Prediction
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Figure 4.5: Linear Regression for Testing Results

The use of inferential estimators constructed using ANN has provided

efficient estimation of the air density. In overall, estimator models display good

performance in the validation set indicating that the models developed are able to

represent the behaviour of the process in different operating condition.

4.4 Issues on Neural Network

Throughout the research, there were a number of issues encountered which if

the project were to be repeated it would have made the development of ANN model

significantly easier. The main issues that were encountered are described as below.



36

4.4.1 Data Issues

The availability of sufficient good quality data was a major recurring issue

throughout the initiative. The problem was so acute that the success of the some

ANN applications was limited as a result. Overall, the research has served to

illustrate that how at least half of the effort expended in the development of ANN

applications can and probably should, be spent on the data pre-processing stage.

Some of the major data issues encountered are summarised below:

i. Data collection from the plant should be carefully planned to collect

the required data with the minimum amount of process interruption

ii. Data sets should outlier and error free and should span the required

operating space of the ANN model

iii. All variables that influence the process should be measured and

provided explicitly as inputs to the ANN model

Process knowledge has been seen to be invaluable in the data pre-processing

stage. This is particularly important for identifying the pertinent process variables

and their inter-relationships, suggesting appropriate transformations or combinations

of process variables and identifying anomalies in the data set.

4.4.2 Neural Network Issues

There were a number of important lessons learned regarding the

configurations of ANN models. It was seen that the precise network topology was

rarely critical and that, in general, time was better spent in improving data pre-

processing than finely tuning the network topology.
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Although the major thrust of this research is to develop ANN model,

comparisons were made with more traditional linear techniques. In general, it was

found that although ANN often provides more accurate models, the improvement in

accuracy was of the order of 10-20%. ANN model however has a quite number of

disadvantages, the model itself is not particularly transparent, stability are still the

subject of much research and it is unreliable when extrapolating. However the overall

suitability of using ANN must be considered on a problem specific basis through cost

benefit studies.

A further issue encountered through this research related to people’s

perception of ANN. At the onset of the research, ANN was seen by many as suitable

solutions for any difficult process engineering problem. The ANN application

demonstrated however that it can be only used to model systems where correct input

and output variables are available.



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

ANN has been well recognized for its approximation capability provided the

input-output data are available. Nevertheless, the conventional training algorithm

utilized in the model development is always encounter difficulties to converge at

global solution. The research objective was to establish inferential measurement

system for air density using ANN. Hence, an inferential estimator was developed to

provide the estimated value for air density using others secondary measurements.

The task was completed using MATLAB as modelling tool. The modelling task was

started with data preparation. In this study, network named feedforward was trained

using training algorithms which is LM.

Nevertheless, when the models were applied beyond the range of training

data during on- line estimation, some discrepancies were observed. This was due to

the inherent nature of ANN models where they were unable to perform desirable

extrapolations. Using retraining strategy, FF-LM displayed significant improvement

in data set deviated from training data domain. Encouraging result was obtained

proved that the ANN model can be successfully implemented in process estimation.
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Based on the results obtained in this study, the main conclusions of this

project are as follows:

i. ANN is an efficient and effective empirical modelling tool for

estimating the chemical process variable by using other easily

available process measurements.

ii. The conventional LM method is widely used in ANN model training

due to its fast convergence. Although it is a second order gradient

method, it is still susceptible to suboptimal convergence.

iii. The estimation and control performance of ANN model within its

training data range was excellent. The dependence of estimators to

training data has posed limitation when the operating range falls

beyond the training data domain. Some discrepancies were observed

indicated that ANN is poor in extrapolation.

iv. Promising results was achieved using inferential measurement system

developed for air density in Model AFPT921 Gas Flow Pressure

Temperature Control Training.
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5.2 Recommendations for Future Work

Despite the encouraging finding was obtained, there are still several further

works to be considered in order to implement ANN model in process estimation in a

real plant. These include:

i. Evolution of network architecture

The inclusion of using different algorithms feature to improve model

robustness can be extended to evolution of network architecture,

which is typically number of hidden nodes. The evolution of network

architecture requires new set of connection weights. Thus, the

evolution of both aspects shall be carried outsimultaneously.

ii. Evaluation on real plant data

The application of inferential control scheme using evolving ANN

model can further evaluated on real plant data. Real plant data with

process noise will provide a more practical environment for

investigation. However, some form of appropriate filters may be

needed to remove or to smooth out process signals before they can be

used.
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A1 Step Change in MODEL AFPT921

Step change is conducted on Model AFPT921 by randomly changing the

selected input variables. The three inputs are TIC91A, PIC91A and FIC91A. These

variables can be manipulated randomly by based on these step sizes.

For example, the PIC91A is set at 14 psig, TIC91A is set at 40oC while the

FIC91A is set at 20%. Data is recorded until the production value of the variables

reach the set point. Next, change the set point of TIC91A to 60oC while the PIC91A

and FIC91A is maintained at 14 psig and 20% respectively. Then, the plant is run

with TIC91A of 80oC, 100oC, 120oC and 150oC. After that, the system is run again

with TIC91A set at 40oC and PIC91A set at 14 psig but this time FIC91A is changed

to 40%. The experiment is conducted till the last set of variable (TIC91A ; 150oC,

PIC91A ; 18 psig, FIC91A ; 80%)

Figure A-1: Step Sizes for Model AFPT921



48

A2 Data from Model AFPT921 with Selected Variables

TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

1 4.557841 26.26173 40 42.82637 20 14.9666 15

2 4.561074 29.75223 40 42.27448 20 14.96779 15

3 4.528002 35.68895 40 41.68998 20 14.97315 15

4 4.509188 38.72644 40 41.29437 20 14.94633 15

5 4.467297 40.01869 40 41.23318 20 14.98448 15

6 4.463916 40.02346 40 41.31736 20 14.98508 15

7 4.459066 39.95193 40 41.17505 20 14.9815 15

8 4.454949 40.02346 40 41.25842 20 15.00177 15

9 4.463475 40.02346 40 41.32299 20 14.97435 15

10 4.461418 40.01869 40 41.12239 20 15.00296 15

1 4.434225 43.62364 60 40.70663 20 14.9505 15

2 4.345738 63.43176 60 39.70616 20 14.97375 15

3 4.26857 66.84596 60 39.69863 20 14.96064 15

4 4.254312 65.01488 60 39.85825 20 14.96362 15

5 4.236526 61.90585 60 39.96618 20 15.00057 15

6 4.249314 59.95079 60 40.30182 20 14.98925 15

7 4.257252 59.77436 60 40.33342 20 14.98746 15

8 4.24123 59.90788 60 40.18422 20 15.00773 15

9 4.245934 59.84588 60 40.24723 20 15.01011 15

10 4.250344 59.98894 60 40.03474 20 15.01726 15

11 4.231823 60.13676 60 40.00959 20 14.96779 15

12 4.238731 59.98894 60 39.99775 20 14.97196 15

13 4.23682 59.91742 60 40.1182 20 14.98925 15

14 4.217712 59.99371 60 40.01411 20 15.00892 15

15 4.234616 59.99371 60 40.13596 20 14.97613 15

1 4.207717 69.68318 80 39.41638 20 15.01667 15

2 4.123641 85.57641 80 38.39364 20 15.02024 15

3 4.071754 85.66224 80 38.75593 20 14.97494 15

4 4.074841 81.95239 80 39.10547 20 14.99521 15

5 4.063082 80.04978 80 38.94501 20 15.01845 15

6 4.0622 79.83521 80 38.99221 20 14.99998 15

7 4.062494 79.89243 80 38.90104 20 15.02024 15

8 4.05485 79.88766 80 38.92731 20 15.00296 15

1 4.040004 79.89243 100 39.07108 20 14.9958 15

2 3.983268 92.48589 100 38.24168 20 14.96004 15

3 3.923297 105.8518 100 37.8336 20 14.98686 15

4 3.901983 104.3355 100 37.98298 20 14.99521 15

5 3.892576 101.4076 100 38.1926 20 14.9815 15

6 3.885374 100.082 100 38.22112 20 15.02442 15

7 3.884198 100.1154 100 38.25811 20 15.00594 15

8 3.870087 99.77683 100 38.26969 20 14.97673 15

9 3.870969 99.92943 100 38.21415 20 15.01249 15
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TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

10 3.86362 99.92943 100 38.07275 20 14.98865 15

11 3.873762 100.001 100 38.06724 20 14.98865 15

1 3.845393 108.0835 120 37.63457 20 14.97911 15

2 3.765873 124.5251 120 36.88191 20 14.99461 15

3 3.725452 124.9113 120 36.82758 20 15.00951 15

4 3.715604 122.0264 120 37.0878 20 14.97911 15

5 3.708989 120.4337 120 37.22604 20 14.98925 15

6 3.706343 120.0475 120 37.32799 20 14.96958 15

7 3.713693 119.7566 120 37.27714 20 15.00415 15

8 3.71384 120.0475 120 37.32091 20 14.98806 15

9 3.712076 119.9044 120 37.26528 20 14.97673 15

10 3.709724 120.0904 120 37.0978 20 15.0113 15

11 3.706931 119.8997 120 37.07619 20 15.00355 15

1 3.676652 127.2478 150 36.71611 20 14.9809 15

2 3.615946 145.0008 150 36.02091 20 14.96779 15

3 3.568175 153.3694 150 35.73657 20 14.97613 15

4 3.530841 155.4103 150 35.7318 20 14.98627 15

5 3.519964 152.4586 150 35.88574 20 15.01726 15

6 3.507616 150.5608 150 36.14609 20 14.98388 15

7 3.507028 150.0267 150 36.06292 20 15.00475 15

8 3.502178 149.9552 150 36.114 20 14.99044 15

9 3.501737 150.0267 150 36.19294 20 14.97435 15

10 3.502031 150.0267 150 36.11648 20 15.01011 15

11 3.500561 150.0267 150 36.13585 20 14.99938 15

12 3.501002 150.0267 150 36.07587 20 14.9654 15

13 3.499973 149.9504 150 36.01378 20 14.97673 15

14 3.500414 150.0267 150 35.8658 20 15.01369 15

15 3.493359 150.0982 150 35.77777 20 14.9815 15

16 3.491007 150.0172 150 35.78466 20 14.96779 15

17 3.48792 149.9456 150 35.75276 20 15.0119 15

18 3.487626 149.9552 150 35.81565 20 14.98806 15

19 3.488067 149.9409 150 35.76572 20 14.98329 15

1 3.488361 150.0935 40 35.72933 20 15.00177 15

2 3.50306 145.7685 40 35.88757 40 15.01249 15

3 3.519964 137.4571 40 36.23481 40 14.98806 15

4 3.565971 129.0455 40 36.59222 40 14.97494 15

5 3.614623 120.8534 40 36.85483 40 15.01845 15

6 3.663129 113.0522 40 37.07906 40 14.97375 15

7 3.712223 105.8328 40 37.19501 40 15.01726 15

8 3.75823 99.07587 40 37.40994 40 14.96123 15

9 3.807912 92.90074 40 37.45563 40 14.99998 15

10 3.849656 87.00217 40 37.48388 40 14.99759 15
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TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

11 3.896839 81.69012 40 37.61581 40 14.97554 15

12 3.939465 76.91215 40 37.69121 40 14.9654 15

13 3.981063 72.5061 40 37.77786 40 14.95408 15

14 4.023836 68.47677 40 37.94044 40 14.9809 15

15 4.062494 64.90997 40 37.98204 40 15.02382 15

16 4.10218 61.72465 40 38.14109 40 14.98984 15

17 4.142014 58.7253 40 38.09967 40 14.98627 15

18 4.183905 55.98821 40 38.11552 40 15.03455 15

19 4.207129 53.66599 40 38.24039 40 14.97136 15

20 4.242112 51.3962 40 38.25813 40 15.00773 15

21 4.260339 49.49359 40 38.2599 40 15.00594 15

22 4.292529 47.52422 40 38.21662 40 14.98806 15

23 4.315312 45.7742 40 38.29779 40 14.99759 15

24 4.347355 44.32936 40 38.19772 40 14.97971 15

25 4.372343 43.03712 40 38.22548 40 14.99938 15

26 4.387188 41.84501 40 38.14185 40 15.00236 15

27 4.403063 40.98192 40 38.14605 40 15.01011 15

28 4.400858 40.6672 40 38.09105 40 15.02084 15

29 4.42276 40.52892 40 38.06364 40 14.98627 15

30 4.43687 40.44785 40 38.02946 40 14.98984 15

31 4.434959 40.2285 40 38.02035 40 14.99223 15

32 4.433342 40.15221 40 38.06475 40 14.997 15

33 4.446424 40.07114 40 38.08293 40 15.00534 15

34 4.454068 40.15221 40 38.1192 40 15.00773 15

35 4.458478 40.07114 40 38.15316 40 15.01905 15

36 4.462006 39.99962 40 38.16864 40 15.0113 15

37 4.453333 39.99008 40 38.07191 40 14.99938 15

38 4.465386 39.99008 40 38.18517 40 14.98984 15

39 4.478615 39.99008 40 38.16307 40 14.98806 15

40 4.480967 40.07114 40 38.15345 40 14.9964 15

41 4.48082 40.033 40 38.13202 40 14.9964 15

42 4.471265 40.06638 40 38.06848 40 15.00653 15

43 4.487434 40.07114 40 38.1244 40 15.00653 15

44 4.489639 40.07114 40 38.07883 40 15.00296 15

45 4.485082 39.99008 40 38.15904 40 15.00236 15

46 4.491843 39.99485 40 38.23445 40 14.97375 15

1 4.501986 40.06638 60 38.14401 40 14.99759 15

2 4.447453 54.49092 60 37.3349 40 14.97196 15

3 4.359849 67.11299 60 36.68472 40 15.01786 15

4 4.317223 67.80442 60 36.83244 40 14.98627 15

5 4.309433 65.66815 60 37.06196 40 14.99223 15

6 4.306345 63.00736 60 37.30668 40 14.99879 15
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TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

7 4.305317 60.56115 60 37.39999 40 14.99521 15

8 4.305905 60.04139 60 37.3638 40 15.02203 15

9 4.295909 59.88881 60 37.29052 40 15.01011 15

10 4.297673 59.89834 60 37.28918 40 15.00832 15

11 4.306052 59.9651 60 37.29632 40 14.98984 15

12 4.29635 59.9651 60 37.27675 40 14.99163 15

13 4.285326 59.9651 60 37.29368 40 15.01428 15

14 4.297085 60.04139 60 37.342 40 15.00951 15

15 4.285914 59.9651 60 37.39308 40 14.96421 15

1 4.295615 60.35134 80 37.42495 40 14.97375 15

2 4.22271 77.64648 80 36.45797 40 14.97554 15

3 4.141426 87.31689 80 35.9968 40 14.98746 15

4 4.107619 86.01511 80 36.31818 40 14.98806 15

5 4.107766 82.29572 80 36.50821 40 15.02143 15

6 4.111881 79.49187 80 36.84586 40 14.97494 15

7 4.111587 79.5634 80 36.77208 40 15.01547 15

1 4.107619 79.86858 100 36.85294 40 14.98984 15

2 4.05632 95.9144 100 36.00977 40 14.98508 15

3 3.979299 106.6672 100 35.61497 40 15.00773 15

4 3.94799 104.8457 100 35.79155 40 14.99461 15

5 3.941964 100.9642 100 36.14637 40 14.99938 15

6 3.926677 99.79591 100 36.0526 40 15.03157 15

7 3.913449 99.82929 100 36.1824 40 14.98984 15

8 3.910215 99.97234 100 36.20383 40 14.98448 15

9 3.910068 99.91512 100 36.22026 40 15.00177 15

1 3.911979 100.0534 120 36.19021 40 15.03455 15

2 3.865678 113.92 120 35.60887 40 14.96958 15

3 3.815114 126.5517 120 35.06372 40 15.03514 15

4 3.789538 124.2056 120 35.34955 40 14.98806 15

5 3.782042 121.1633 120 35.52553 40 15.03455 15

6 3.768666 119.8711 120 35.64587 40 14.97435 15

7 3.763815 119.9855 120 35.61539 40 14.99461 15

1 3.753673 122.9896 150 35.59288 40 15.00594 15

2 3.687529 140.1274 150 34.61987 40 15.01607 15

3 3.624912 150.3128 150 34.38966 40 14.97911 15

4 3.578905 155.6105 150 34.29615 40 15.02203 15

5 3.554358 153.7175 150 34.50052 40 15.0119 15

6 3.542894 151.133 150 34.73412 40 14.997 15

7 3.537014 150.1459 150 34.86565 40 14.96719 15

8 3.532164 149.917 150 34.79782 40 15.02442 15

9 3.524668 149.9981 150 34.85744 60 14.99282 15

1 3.531135 147.4947 40 34.95697 60 15.00594 15
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TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

2 3.54451 140.0654 40 35.37075 60 14.97494 15

3 3.575966 131.7254 40 35.7203 60 14.99879 15

4 3.624324 123.5857 40 35.92454 60 15.01845 15

5 3.666657 115.8036 40 36.2067 60 15.00832 15

6 3.709136 108.5555 40 36.47701 60 15.00296 15

7 3.75529 101.7987 40 36.70041 60 14.98806 15

8 3.802767 95.49477 40 36.75672 60 14.99223 15

9 3.849215 89.72018 40 36.98685 60 14.99461 15

10 3.893311 84.22694 40 37.11204 60 14.98806 15

11 3.939612 79.40604 40 37.1152 60 14.98329 15

12 3.983708 74.85218 40 37.17973 60 15.02859 15

13 4.023836 70.82761 40 37.20872 60 15.00296 15

14 4.061318 67.02239 40 37.33559 60 15.00594 15

15 4.097771 63.75601 40 37.39289 60 14.9821 15

16 4.136135 60.64699 40 37.39954 60 15.02084 15

17 4.168912 57.76684 40 37.482 60 14.99223 15

18 4.200515 55.25387 40 37.57222 60 14.9958 15

19 4.223151 53.00317 40 37.54561 60 14.98925 15

20 4.25005 51.00042 40 37.66353 60 14.98806 15

21 4.27489 49.02151 40 37.69728 60 14.9964 15

22 4.298114 47.43362 40 37.76532 60 15.00892 15

23 4.306493 45.91249 40 37.75277 60 15.00713 15

24 4.342505 44.54871 40 37.86881 60 15.00355 15

25 4.363965 43.09911 40 37.8888 60 15.00832 15

26 4.383514 42.04051 40 37.92872 60 15.00355 15

27 4.399095 41.20604 40 37.94775 60 14.98925 15

28 4.407473 40.59568 40 37.88852 60 14.99104 15

29 4.41835 40.51938 40 37.93473 60 15.00534 15

30 4.437311 40.21897 40 37.93113 60 14.9958 15

31 4.442456 40.14744 40 37.77614 60 14.99998 15

32 4.441868 40.14744 40 37.8773 60 15.01249 15

1 4.457889 40.21897 60 38.01199 60 14.97375 15

2 4.404974 56.84176 60 36.97168 60 14.9809 15

3 4.333538 67.70905 60 36.37783 60 15.03157 15

4 4.281799 67.79012 60 36.5488 60 14.98388 15

5 4.269011 65.65385 60 36.77028 60 14.98686 15

6 4.280035 63.07412 60 37.00047 60 15.01726 15

7 4.282975 60.79481 60 37.21825 60 15.01726 15

8 4.285179 60.03662 60 37.32807 60 14.98329 15

9 4.283563 59.78866 60 37.34196 60 14.9809 15

1 4.272098 62.51144 80 37.09193 60 15.01965 15

2 4.204777 81.63767 80 36.04168 60 15.00534 15
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TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

3 4.153773 87.98447 80 35.92906 60 15.00832 15

4 4.125992 85.69562 80 36.05735 60 15.01011 15

5 4.106884 81.68059 80 36.21547 60 14.97554 15

6 4.105855 79.63016 80 36.44704 60 15.02561 15

7 4.10365 79.62539 80 36.46034 60 14.99402 15

8 4.107766 79.72076 80 36.47604 60 14.97733 15

9 4.104826 80.01163 80 36.3921 60 15.02203 15

10 4.10365 79.85905 80 36.42195 60 15.00713 15

11 4.098652 79.86382 80 36.39972 60 15.00415 15

12 4.091156 79.93057 80 36.41144 60 15.01786 15

1 4.094684 80.07839 100 36.48287 60 15.0274 15

2 4.030891 93.12486 100 35.75861 60 14.9809 15

3 3.957545 106.5814 100 35.17537 60 14.98567 15

4 3.929911 105.5991 100 35.33611 60 15.00832 15

5 3.929323 101.3361 100 35.70988 60 14.96898 15

6 3.928882 99.88651 100 35.8493 60 14.97435 15

7 3.921974 99.74345 100 35.93587 60 14.98567 15

8 3.925354 99.82452 100 35.97339 60 15.03097 15

1 3.909774 103.4914 120 35.75798 60 14.99819 15

2 3.845981 121.1633 120 34.98519 60 14.98806 15

3 3.794095 126.2274 120 34.87674 60 14.99461 15

4 3.780719 122.7417 120 35.15574 60 14.9964 15

5 3.772635 120.4719 120 35.22424 60 14.99461 15

6 3.762052 120.0141 120 35.42186 60 14.99282 15

7 3.757789 120.0141 120 35.38106 60 14.97554 15

8 3.753085 119.9331 120 35.44287 60 15.01607 15

9 3.753526 120.0094 120 35.43901 60 15.01845 15

10 3.74897 119.9331 120 35.45545 60 14.99998 15

1 3.74118 121.9358 150 35.35021 60 14.97792 15

2 3.692379 137.9864 150 34.65412 60 14.98567 15

3 3.629469 149.7406 150 34.32391 60 14.9815 15

4 3.585667 155.5152 150 34.04711 60 15.01905 15

5 3.554799 154.4661 150 34.26646 60 14.9815 15

6 3.548038 151.6527 150 34.40666 60 15.03097 15

7 3.539366 150.2127 150 34.61428 60 14.95885 15

8 3.538043 149.979 150 34.55899 60 15.01011 15

9 3.529959 149.979 150 34.67345 60 14.98269 15

10 3.525108 149.9027 150 34.67263 60 14.98984 15

11 3.529077 149.979 150 34.5441 60 15.01845 15

12 3.522021 149.979 150 34.69997 60 15.01428 15

1 3.517906 149.3019 40 34.76893 80 14.97375 15

2 3.538631 142.9551 40 34.95248 80 15.00177 15
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TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

3 3.570233 134.8917 40 35.29579 80 14.9815 15

4 3.600513 126.7567 40 35.64973 80 14.97852 15

5 3.649312 118.946 40 35.82772 80 15.04349 15

6 3.691351 111.5883 40 36.0589 80 15.01726 15

7 3.735741 104.7503 40 36.35839 80 14.97673 15

8 3.787627 98.26524 40 36.31868 80 15.04587 15

9 3.8329 92.38575 40 36.53451 80 15.03634 15

10 3.871263 86.90204 40 36.73775 80 14.98388 15

11 3.920357 81.82841 40 36.74152 80 15.00415 15

12 3.955487 77.27455 40 36.69385 80 15.03157 15

13 3.996937 72.94957 40 36.88812 80 15.00534 15

14 4.04118 69.22064 40 37.03918 80 15.00057 15

15 4.071166 65.73014 40 37.01921 80 14.99402 15

16 4.104385 62.5639 40 37.17851 80 14.98806 15

17 4.134518 59.73144 40 37.20105 80 15.01428 15

18 4.167443 57.15172 40 37.32401 80 15.00415 15

19 4.195811 54.79133 40 37.3257 80 14.9815 15

20 4.228736 52.59307 40 37.43103 80 14.99879 15

21 4.251666 50.60941 40 37.48639 80 14.99938 15

22 4.280329 48.81647 40 37.53207 80 14.997 15

23 4.289295 47.2858 40 37.50372 80 15.01667 15

24 4.325307 45.82666 40 37.54934 80 14.99163 15

25 4.346767 44.5201 40 37.60156 80 15.00236 15

26 4.358673 43.32322 40 37.60017 80 15.00594 15

27 4.382485 42.1931 40 37.76695 80 14.94693 15

28 4.404239 41.28233 40 37.72187 80 14.95229 15

29 4.420114 40.58614 40 37.69002 80 14.99223 15

30 4.425111 40.43832 40 37.54182 80 15.03216 15

31 4.438928 40.18082 40 37.78339 80 14.99521 15

32 4.455537 40.13314 40 37.64334 80 14.98567 15

33 4.461711 40.06638 40 37.69645 80 14.9958 15

34 4.466709 39.90425 40 37.54828 80 15.02442 15

35 4.463916 39.97578 40 37.62537 80 14.99104 15

36 4.480232 40.02346 40 37.71622 80 15.00475 15

37 4.471413 39.90902 40 37.53646 80 14.99342 15

1 4.470971 45.21153 60 37.18858 80 15.0119 15

2 4.388511 64.28531 60 36.22665 80 14.97435 15

3 4.330158 68.07622 60 36.0427 80 15.02084 15

4 4.281064 66.8698 60 36.126 80 14.97375 15

5 4.275478 64.51419 60 36.51228 80 15.00713 15

6 4.282681 61.85817 60 36.6834 80 14.99461 15

7 4.278712 60.18444 60 36.79218 80 15.01488 15
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TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

8 4.282975 60.02232 60 36.92344 80 15.0119 15

9 4.269598 60.02232 60 36.89387 80 15.00653 15

10 4.278565 59.95556 60 37.02429 80 14.98806 15

11 4.286502 60.10338 60 36.96793 80 14.9809 15

12 4.272979 59.92218 60 37.01108 80 14.9815 15

1 4.244023 70.14572 80 36.35206 80 15.02382 15

2 4.174057 86.44427 80 35.74993 80 14.98806 15

3 4.134518 87.05939 80 35.74455 80 15.03872 15

4 4.111146 83.86931 80 36.04215 80 14.98806 15

5 4.116291 80.22621 80 36.27409 80 14.98329 15

6 4.10218 79.32021 80 36.39109 80 14.99104 15

7 4.102768 79.62062 80 36.40298 80 15.01786 15

8 4.102915 79.9258 80 36.40908 80 14.97315 15

9 4.112617 79.85905 80 36.46274 80 15.02442 15

10 4.111734 80.00687 80 36.48248 80 15.00653 15

11 4.110411 80.06886 80 36.47638 80 14.98925 15

1 4.103503 81.28481 100 36.38754 80 14.99282 15

2 4.040004 99.34291 100 35.40578 80 15.00594 15

3 3.968716 106.4908 100 35.21115 80 14.99163 15

4 3.949313 103.8396 100 35.45558 80 14.99521 15

5 3.945492 100.5732 100 35.65449 80 14.98806 15

6 3.939318 99.88651 100 35.80092 80 14.99223 15

7 3.941229 99.88174 100 35.8044 80 15.00594 15

1 3.942552 100.0868 120 35.91895 80 15.02143 15

2 3.892429 114.7927 120 35.13832 80 15.0113 15

3 3.824227 126.1511 120 34.7074 80 14.99938 15

4 3.801885 124.3963 120 34.93649 80 14.98806 15

5 3.778514 120.9821 120 35.09294 80 14.99879 15

6 3.773811 120.0046 120 35.22161 80 15.00057 15

7 3.773517 119.9283 120 35.16574 80 15.00534 15

1 3.768225 120.696 150 35.10106 80 15.0119 15

2 3.716192 135.3971 150 34.51258 80 14.99342 15

3 3.651517 148.6868 150 33.97923 80 14.9964 15

4 3.602571 154.8285 150 33.6909 80 14.9815 15

5 3.574937 154.9048 150 33.90518 80 15.03395 15

6 3.556564 151.8769 150 34.18091 80 14.98806 15

7 3.552154 150.3557 150 34.22515 80 15.01369 15

8 3.543776 150.0553 150 34.3036 80 14.96958 15

9 3.540395 149.9409 150 34.30885 80 15.03693 15

10 3.534515 149.9027 150 34.36761 80 14.96838 15

11 3.532605 149.9742 150 34.34792 80 15.03932 15

1 3.534809 100.0296 100 44.70287 20 11.85102 14
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TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

2 3.636524 100.0248 100 42.99644 20 12.99067 14

3 3.675182 99.9485 100 42.11825 20 13.55156 14

4 3.695467 99.94373 100 41.59844 20 13.78164 14

5 3.702375 99.88174 100 41.30268 20 13.89906 14

6 3.706491 100.1011 100 41.14145 20 13.93363 14

1 3.881846 100.0248 100 37.338 20 15.59186 16

2 3.916241 100.1059 100 36.42312 20 15.79213 16

3 3.93873 100.1011 100 35.94786 20 15.88333 16

4 3.94461 99.87698 100 35.51168 20 15.94711 16

1 4.028099 100.02 100 31.65227 20 17.12193 18

2 4.223298 100.02 100 27.89626 20 17.37883 18

3 4.283268 100.0963 100 26.32494 20 17.55407 18

4 4.3281 100.1154 100 25.46798 20 17.70249 18

5 4.344562 100.1726 100 24.96816 20 17.80501 18

6 4.346914 100.1678 100 24.55476 20 17.88488 18

7 4.349266 100.0916 100 24.28591 20 17.91946 18

8 4.349266 100.0916 100 24.11549 20 17.94151 18

9 4.361907 100.0916 100 23.89116 20 17.95105 18

1 4.413352 99.93896 100 22.90834 20 18.78552 20

2 4.415116 100.0153 100 22.60483 20 18.94944 20

3 4.408061 100.0963 100 22.41566 20 19.0013 20

4 4.396154 100.0916 100 22.34834 20 19.02097 20

1 4.394391 99.93896 100 22.29628 40 19.02574 14

2 4.016781 100.0868 100 32.74966 40 15.25866 14

3 3.909921 99.71008 100 35.71129 40 14.60956 14

4 3.830842 99.71008 100 37.15902 40 14.31988 14

5 3.792037 99.87221 100 37.87525 40 14.17682 14

6 3.770871 100.0153 100 38.27485 40 14.10053 14

7 3.761464 99.86744 100 38.42475 40 14.0451 14

1 3.908892 99.9342 100 34.84948 40 15.69081 16

2 3.940347 100.0868 100 34.30047 40 15.87201 16

3 3.944463 99.86267 100 34.01239 40 15.94472 16

4 3.939024 100.0057 100 33.76212 40 15.98287 16

1 4.161563 99.9342 100 28.10538 40 17.23101 18

2 4.230794 100.2298 100 26.16019 40 17.46288 18

3 4.272538 100.0868 100 24.93119 40 17.65123 18

4 4.31002 99.9342 100 24.50903 40 17.78236 18

5 4.313842 100.082 100 24.18688 40 17.85687 18

6 4.318545 100.0582 100 24.01 40 17.87892 18

7 4.312519 99.8579 100 23.82787 40 17.89383 18

8 4.306787 100.0153 100 23.74111 40 17.898 18

9 4.32516 100.0772 100 23.5381 40 17.90217 18
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TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

10 4.330158 100.0057 100 23.72387 40 17.94091 18

1 4.352352 99.92943 100 22.94966 40 18.56916 20

2 4.361613 100.0772 100 22.48052 40 18.81652 20

3 4.355733 100.001 100 22.33714 40 18.8791 20

4 4.362347 100.001 100 22.14374 40 18.90295 20

5 4.377047 100.0057 100 22.36018 40 18.9101 20

1 4.06367 100.3109 100 30.64344 60 15.53404 14

2 3.90948 99.8579 100 34.51565 60 14.81341 14

3 3.826579 99.691 100 36.20335 60 14.40273 14

4 3.794095 99.92466 100 37.16447 60 14.18219 14

5 3.783218 100.001 100 37.62835 60 14.08801 14

6 3.767784 99.72438 100 38.02711 60 14.02304 14

1 3.895957 100.0772 100 34.2667 60 15.71107 16

2 3.911097 100.001 100 33.74556 60 15.84637 16

3 3.931381 100.144 100 33.40049 60 15.93459 16

4 3.928588 100.0534 100 33.19296 60 15.96737 16

1 4.078516 100.001 100 29.17171 60 17.04802 18

2 4.219476 99.84837 100 26.29054 60 17.35439 18

3 4.262984 100.1488 100 25.16122 60 17.57434 18

4 4.274008 100.1488 100 24.3631 60 17.73706 18

5 4.290177 100.2298 100 23.94466 60 17.80621 18

6 4.291059 100.0677 100 23.83885 60 17.81932 18

7 4.300319 100.0772 100 23.53416 60 17.83958 18

8 4.320015 100.0725 100 23.57438 60 17.91767 18

9 4.322661 100.1488 100 23.38374 60 17.98979 18

1 4.343239 99.99142 100 22.5344 60 18.67585 20

2 4.338977 100.0248 100 22.37252 60 18.77539 20

3 4.338536 100.0677 100 22.2551 60 18.81175 20

4 4.359849 100.0677 100 22.3668 60 18.82963 20

5 4.352646 99.91989 100 22.41033 60 18.835 20

1 4.04221 100.144 100 31.13534 80 15.3582 14

2 3.881258 99.7673 100 34.54959 80 14.72519 14

3 3.826138 99.7673 100 36.1146 80 14.36279 14

4 3.79527 99.7673 100 36.91279 80 14.18517 14

5 3.774546 99.89605 100 37.23613 80 14.08205 14

6 3.752057 99.91512 100 37.3476 80 14.05225 14

1 3.897427 99.99142 100 33.93483 80 15.71822 16

2 3.931087 100.0629 100 33.23935 80 15.84876 16

3 3.944316 99.99619 100 32.8878 80 15.92863 16

1 3.953723 100.0677 100 32.74282 80 16.2803 18

2 4.205659 99.91989 100 26.57323 80 17.2781 18

3 4.257252 100.1011 100 25.11447 80 17.52546 18
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TIME DENSITY TIC91A (oC) FIC91A (kg/m3) PIC91A (psig)

(min) kg/m3 OUTPUT SETPOINT OUTPUT SETPOINT OUTPUT SETPOINT

4 4.271069 100.0629 100 24.20161 80 17.70428 18

5 4.276801 100.1202 100 23.83711 80 17.76389 18

6 4.282827 99.99142 100 23.63689 80 17.77521 18

7 4.312372 99.91035 100 23.42425 80 17.89323 18

8 4.318692 99.99142 100 23.33513 80 17.94747 18

9 4.31884 99.99142 100 23.34258 80 17.95284 18

10 4.31884 99.98665 100 23.33111 80 17.9582 18

11 4.31884 99.99142 100 23.33231 80 17.96476 18

12 4.319133 100.0629 100 23.33276 80 17.97012 18

13 4.319869 100.0677 100 23.30964 80 17.97489 18

14 4.320603 100.0629 100 23.32457 80 17.98145 18

15 4.321191 99.99619 100 23.3107 80 17.988 18

16 4.321339 99.99142 100 23.27767 80 17.99456 18

17 4.321339 100.0582 100 23.24656 80 17.99813 18

18 4.321632 100.0629 100 23.22323 80 18.00231 18

19 4.321044 99.99142 100 23.18381 80 18.00588 18

20 4.320751 99.98665 100 23.15005 80 18.00886 18

21 4.320457 99.99142 100 23.11071 80 18.00886 18

22 4.318545 99.98665 100 23.07407 80 18.00529 18

23 4.317811 99.99142 100 23.04461 80 17.99992 18

24 4.317664 99.99142 100 23.02014 80 17.99217 18

25 4.316782 99.98665 100 23.00307 80 17.98323 18

26 4.31634 99.99142 100 23.01222 80 17.97429 18

27 4.31634 99.98665 100 22.99712 80 17.96595 18

28 4.312813 99.99142 100 22.99883 80 17.9582 18

29 4.311049 99.98665 100 23.0075 80 17.95045 18

30 4.310608 99.91989 100 23.05756 80 17.9427 18

31 4.310608 99.97711 100 23.09383 80 17.93495 18

32 4.310608 99.98665 100 23.13011 80 17.92899 18

33 4.310608 99.99142 100 23.15299 80 17.92184 18

34 4.310608 99.99142 100 23.17466 80 17.91826 18

35 4.310608 99.99142 100 23.20645 80 17.92005 18

36 4.308403 99.98665 100 23.22168 80 17.92542 18

37 4.306345 99.99142 100 23.22973 80 17.93495 18
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APPENDIX B

MATLAB SOURCE CODE OF ANN MODEL DEVELOPMENT
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B MATLAB source code of ANN model development

Data Scaling

>> [p2,ps] = mapminmax(p);

>> [t2,ts] = mapminmax(t);

Network Training

>> [trainV,val,test] = dividevec(p2,t2,0.20,0.20);

>> net = newff(minmax(p2),[20 1]);

>> net.trainParam.lr=0.3; (learning rate)

>> net.trainParam.mc=0.6; (momentum)

>> [net,tr]=train(net,trainV.P,trainV.T,[],[],val,test);

TRAINLM-calcjx, Epoch 0/100, MSE 0.982796/0, Gradient 2.31353/1e-010

TRAINLM-calcjx, Epoch 17/100, MSE 0.00549171/0, Gradient 0.00278861/1e-010

TRAINLM, Validation stop.

Data Descaling, Data Simulation & Plotting Graph

>> a2 = sim(net,p2);

>> a = mapminmax('reverse',a2,ts);

>> [m,b,r] = postreg(a,t);

>> plot(t,'r')

>> hold

Current plot held

>> plot(a)

>> title('Comparison between actual targets and predictions')
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Data Scaling and Simulation for Testing Inputs

>> pnewn = mapminmax('apply',pnew,ps);

>> anewn = sim(net,pnewn);

Data Descaling & Plotting Graph for Testing Results

>> anew = mapminmax('reverse',anewn,ts);

>> plot(tnew,'r')

>> hold

Current plot held

>> plot(anew)

>> [m,b,r] = postreg(anew,tnew);

>> plot(tnew,'r')

>> hold

Current plot held

>> plot(anew)

>> title('Comparison between actual targets and predictions using random data’)
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APPENDIX C

DATA GAINED FROM SIMULATION
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C Data gained from Simulation (Testing Result)

TIC91A FIC91A PIC91A DENSITY(kg/m3) ERROR(%)
(oC) kg/hr psi ACTUAL ESTIMATE

26.2617 42.8264 14.9666 4.5578 4.5357 0.484883058
29.7522 42.2745 14.9678 4.5611 4.5268 0.752011576
38.7264 41.2944 14.9463 4.5092 4.492 0.381442384
43.6236 40.7066 14.9505 4.4342 4.4583 0.543502774
61.9058 39.9662 15.0006 4.2365 4.2438 0.17231205
69.6832 39.4164 15.0167 4.2077 4.1503 1.364165696
79.8924 39.0711 14.9958 4.04 4.0853 1.121287129
92.4859 38.2417 14.96 3.9833 3.9425 1.024276354
105.8518 37.8336 14.9869 3.9233 3.8725 1.294828333
101.4076 38.1926 14.9815 3.8926 3.8964 0.097621127
108.0835 37.6346 14.9791 3.8454 3.8549 0.247048421
124.5251 36.8819 14.9946 3.7659 3.6444 3.226320401
145.0008 36.0209 14.9678 3.6159 3.5042 3.089134102
153.3694 35.7366 14.9761 3.5682 3.4996 1.922537974
155.4103 35.7318 14.9863 3.5308 3.4996 0.88365243
152.4586 35.8857 15.0173 3.52 3.4997 0.576704545
150.0935 35.7293 15.0018 3.4884 3.5023 0.398463479
145.7685 35.8876 15.0125 3.5031 3.5062 0.088493049
137.4571 36.2348 14.9881 3.52 3.5274 0.210227273
129.0455 36.5922 14.9749 3.566 3.5908 0.695457095
120.8534 36.8548 15.0184 3.6146 3.6722 1.593537321
113.0522 37.0791 14.9738 3.6631 3.7671 2.839125331
105.8328 37.195 15.0173 3.7122 3.8121 2.691126556
99.0759 37.4099 14.9612 3.7582 3.8157 1.52998776
92.9007 37.4556 15 3.8079 3.8419 0.89288059
87.0022 37.4839 14.9976 3.8497 3.8974 1.239057589
81.6901 37.6158 14.9755 3.8968 3.9396 1.098337097
76.9122 37.6912 14.9654 3.9395 3.9783 0.98489656
72.5061 37.7779 14.9541 3.9811 4.0265 1.140388335
68.4768 37.9404 14.9809 4.0238 4.06 0.8996471

64.91 37.982 15.0238 4.0625 4.0773 0.364307692
61.7246 38.1411 14.9898 4.1022 4.1381 0.875140169
58.7253 38.0997 14.9863 4.142 4.1765 0.832930951
51.3962 38.2581 15.0077 4.2421 4.2651 0.542184296
47.5242 38.2166 14.9881 4.2925 4.3306 0.887594642
45.7742 38.2978 14.9976 4.3153 4.3495 0.792528909
43.0371 38.2255 14.9994 4.3723 4.3854 0.299613476
41.845 38.1418 15.0024 4.3872 4.4015 0.325948213

54.4909 37.3349 14.972 4.4475 4.3146 2.988195616
67.113 36.6847 15.0179 4.3598 4.2502 2.513876783
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TIC91A FIC91A PIC91A DENSITY(kg/m3) ERROR(%)
(oC) kg/hr psi ACTUAL ESTIMATE

87.3169 35.9968 14.9875 4.1414 4.0929 1.17110156
82.2957 36.5082 15.0214 4.1078 4.0677 0.976191635
79.4919 36.8459 14.9749 4.1119 4.0316 1.952868504
95.9144 36.0098 14.9851 4.0563 3.949 2.645267855
106.6672 35.615 15.0077 3.9793 3.9038 1.897318624
104.8457 35.7916 14.9946 3.948 3.9054 1.079027356
100.0534 36.1902 15.0346 3.912 3.8849 0.692740286
113.92 35.6089 14.9696 3.8657 3.7935 1.867708306

126.5517 35.0637 15.0351 3.8151 3.7823 0.859741553
124.2056 35.3496 14.9881 3.7895 3.7421 1.250824647
121.1633 35.5255 15.0346 3.782 3.7375 1.176626124
119.8711 35.6459 14.9744 3.7687 3.7277 1.087908297
122.9896 35.5929 15.0059 3.7537 3.7137 1.06561526
140.1274 34.6199 15.0161 3.6875 3.633 1.477966102
150.3128 34.3897 14.9791 3.6249 3.5542 1.950398632
155.6105 34.2962 15.022 3.5789 3.5572 0.606331554
153.7175 34.5005 15.0119 3.5544 3.5425 0.334796309
151.133 34.7341 14.997 3.5429 3.5316 0.318947755
147.4947 34.957 15.0059 3.5311 3.5318 0.019823851
140.0654 35.3708 14.9749 3.5445 3.5455 0.028212724
131.7254 35.7203 14.9988 3.576 3.6032 0.760626398
123.5857 35.9245 15.0184 3.6243 3.67 1.260933146
115.8036 36.2067 15.0083 3.6667 3.7206 1.469986636
108.5555 36.477 15.003 3.7091 3.8078 2.66102289
101.7987 36.7004 14.9881 3.7553 3.8209 1.746864432
95.4948 36.7567 14.9922 3.8028 3.8418 1.025560114
89.7202 36.9868 14.9946 3.8492 3.8842 0.90927985
84.2269 37.112 14.9881 3.8933 3.9363 1.104461511
74.8522 37.1797 15.0286 3.9837 4.0233 0.994050757
70.8276 37.2087 15.003 4.0238 4.0786 1.361896715
67.0224 37.3356 15.0059 4.0613 4.1108 1.21882156
63.756 37.3929 14.9821 4.0978 4.1597 1.510566646
60.647 37.3995 15.0208 4.1361 4.1894 1.288653563

57.7668 37.482 14.9922 4.1689 4.2325 1.525582288
55.2539 37.5722 14.9958 4.2005 4.2563 1.328413284
53.0032 37.5456 14.9892 4.2232 4.2976 1.761697291
51.0004 37.6635 14.9881 4.25 4.3132 1.487058824
47.4336 37.7653 15.0089 4.2981 4.3461 1.116772527
45.9125 37.7528 15.0071 4.3065 4.37 1.474515268
43.0991 37.8888 15.0083 4.364 4.3963 0.740146654
63.0074 37.3067 14.9988 4.3063 4.1792 2.951489678
60.5612 37.4 14.9952 4.3053 4.2016 2.408659095
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TIC91A FIC91A PIC91A DENSITY(kg/m3) ERROR(%)
(oC) kg/hr psi ACTUAL ESTIMATE

77.6465 36.458 14.9755 4.2227 4.1468 1.797428186
56.8418 36.9717 14.9809 4.405 4.344 1.384790011
67.709 36.3778 15.0316 4.3335 4.3093 0.55844006

65.6538 36.7703 14.9869 4.269 4.2596 0.220192082
63.0741 37.0005 15.0173 4.28 4.2365 1.01635514
60.7948 37.2182 15.0173 4.283 4.2236 1.386878356
62.5114 37.0919 15.0196 4.2721 4.2236 1.135273051
81.6377 36.0417 15.0053 4.2048 4.1807 0.57315449
85.6956 36.0574 15.0101 4.126 4.1116 0.349006302
81.6806 36.2155 14.9755 4.1069 4.1399 0.803525774
79.6302 36.447 15.0256 4.1059 4.1201 0.345843786
93.1249 35.7586 14.9809 4.0309 4.0294 0.037212533
106.5814 35.1754 14.9857 3.9575 3.9379 0.49526216
105.5991 35.3361 15.0083 3.9299 3.9381 0.208656709
101.3361 35.7099 14.969 3.9293 3.9414 0.307942891
103.4914 35.758 14.9982 3.9098 3.9201 0.263440585
121.9358 35.3502 14.9779 3.7412 3.7581 0.451726719
137.9864 34.6541 14.9857 3.6924 3.6562 0.980392157
149.7406 34.3239 14.9815 3.6295 3.5623 1.851494696
155.5152 34.0471 15.019 3.5857 3.5783 0.206375324
151.6527 34.4067 15.031 3.548 3.5565 0.23957159
150.2127 34.6143 14.9588 3.5394 3.5366 0.079109454
149.979 34.6734 14.9827 3.53 3.5366 0.186968839
149.979 34.5441 15.0184 3.5291 3.55 0.592218979
149.979 34.7 15.0143 3.522 3.5388 0.477001704
149.3019 34.7689 14.9738 3.5179 3.5323 0.409335115
142.9551 34.9525 15.0018 3.5386 3.5581 0.551065393
126.7567 35.6497 14.9785 3.6005 3.6678 1.869184835
118.946 35.8277 15.0435 3.6493 3.7161 1.830488039
111.5883 36.0589 15.0173 3.6914 3.7925 2.738798288
104.7503 36.3584 14.9767 3.7357 3.8442 2.904408812
98.2652 36.3187 15.0459 3.7876 3.8764 2.344492555
92.3858 36.5345 15.0363 3.8329 3.9057 1.899345143
86.902 36.7378 14.9839 3.8713 3.9532 2.115568414

81.8284 36.7415 15.0042 3.9204 4.0222 2.596673809
77.2746 36.6938 15.0316 3.9555 4.0935 3.488813045
72.9496 36.8881 15.0053 3.9969 4.1134 2.914758938
69.2206 37.0392 15.0006 4.0412 4.1377 2.387904583
65.7301 37.0192 14.994 4.0712 4.1987 3.131754765
62.5639 37.1785 14.9881 4.1044 4.2154 2.704414774
59.7314 37.201 15.0143 4.1345 4.2447 2.665376708
57.1517 37.324 15.0042 4.1674 4.264 2.317992033
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TIC91A FIC91A PIC91A DENSITY(kg/m3) ERROR(%)
(oC) kg/hr psi ACTUAL ESTIMATE

54.7913 37.3257 14.9815 4.1958 4.3082 2.678869346
52.5931 37.431 14.9988 4.2287 4.3169 2.085747393
50.6094 37.4864 14.9994 4.2517 4.3377 2.022720324
48.8165 37.5321 14.997 4.2803 4.3583 1.822302175
41.206 37.9478 14.9892 4.3991 4.4234 0.552385715

40.5957 37.8885 14.991 4.4075 4.4335 0.589903573
40.5194 37.9347 15.0053 4.4184 4.4266 0.185587543
47.2858 37.5037 15.0167 4.2893 4.3763 2.028302987
45.8267 37.5493 14.9916 4.3253 4.399 1.703928051
44.5201 37.6016 15.0024 4.3468 4.4064 1.371123585
43.3232 37.6002 15.0059 4.3587 4.4203 1.413265423
41.2823 37.7219 14.9523 4.4042 4.449 1.017210844
45.2115 37.1886 15.0119 4.471 4.4437 0.610601655
64.2853 36.2266 14.9744 4.3885 4.3898 0.029622878
68.0762 36.0427 15.0208 4.3302 4.3694 0.905269964
64.5142 36.5123 15.0071 4.2755 4.3284 1.237282189
83.8693 36.0422 14.9881 4.1111 4.1434 0.785677799
106.4908 35.2112 14.9916 3.9687 3.9367 0.806309371
103.8396 35.4556 14.9952 3.9493 3.9461 0.081027017
100.5732 35.6545 14.9881 3.9455 3.9534 0.200228108
126.1511 34.7074 14.9994 3.8242 3.863 1.014591287
124.3963 34.9365 14.9881 3.8019 3.8246 0.597069886
120.9821 35.0929 14.9988 3.7785 3.8107 0.852190022
135.3971 34.5126 14.9934 3.7162 3.7381 0.589311662
151.8769 34.1809 14.9881 3.5566 3.5668 0.286790755
100.0296 44.7029 11.851 3.5348 3.5526 0.503564558
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APPENDIX D

PHOTOGRAPHIC VIEW OF MODEL AFPT921
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D Photographic View of Model AFPT921

Figure D-1: Photographic View Of Model


