
 
DEVELOPMENT OF GAS DENSITY MEASUREMENT MODEL (TANK) 

BASED ON PRINCIPLE COMPONENT ANALYSIS (PCA) TECHNIQUE 

 

 

 

 

 

 

 

 

 

 

 

WAN MOHD HIDAYAT BIN WAN ABDULLAH 

 

 

 

 

 

 

 

 

 

 

 

 

KOLEJ UNIVERSITI KEJURUTERAAN DAN TEKNOLOGI MALAYSIA 



KOLEJ UNIVERSITI KEJURUTERAAN DAN 
TEKNOLOGI MALAYSIA 

 
BORANG PENGESAHAN STATUS TESIS 

 
JUDUL : DEVELOPMENT OF GAS DENSITY MEASUREMENT MODEL (TANK)   

               BASED ON PRINCIPAL COMPONENT ANALYSIS (PCA) TECHNIQUE

 
 
 

SESI PENGAJIAN: 2005/2006
 
Saya  WAN MOHD HIDAYAT BIN WAN ABDULLAH___ 

(HURUF BESAR) 
 
mengaku  membenarkan tesis (PSM/Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan Kolej 
Universiti Kejuruteraan dan Teknologi Malaysia dengan syarat-syarat kegunaan seperti berikut: 
 

1. Tesis adalah hakmilik Kolej Universiti Kejuruteraan dan Teknologi Malaysia. 
2. Perpustakaan Kolej Universiti Kejuruteraan dan Teknologi Malaysia dibenarkan 

membuat salinan untuk tujuan pengajian sahaja. 
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara 

institusi pengajian tinggi. 
4. **Sila tandakan ( ) 

 
 

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau 
kepentingan Malaysia seperti yang termaktub di dalam AKTA 
RAHSIA RASMI 1972) 

 
TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh 

organisasi/badan di mana penyelidikan dijalankan) 
 

TIDAK TERHAD 
 
       Disahkan oleh 
 
 
__________________________              ____________________________ 
(TANDATANGAN PENULIS)              (TANDATANGAN PENYELIA) 
 
Alamat Tetap: FPSB, LEPAR UTARA 07         MOHD YUSRI B. MOHD YUNUS
 27000 JERANTUT                       (Nama Penyelia)  
 PAHANG DARUL MAKMUR 
 
Tarikh:_20 November 2006___________  Tarikh:_20 November 2006_____
  
CATATAN: *      Potong yang tidak berkenaan. 
  **   Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak   
         berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini  
         perlu dikelaskan sebagai  SULIT atau TERHAD. 

 Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara 
penyelidikan, atau disertai  bagi  pengajian secara kerja kursus dan penyelidikan, atau 
Laporan Projek Sarjans Muda (PSM). 



 

 

 

 

 

 

 

 

 

 

 

“I hereby acknowledge that I had read this technical writing and in my opinion this 

technical writing is sufficient in terms of scope and quality for the purpose of the 

granting of Bachelor of Chemical Engineering.” 

 

 

 

Signature     : ………………………………………… 

Name of Supervisor    : Tuan Haji Mohd Yusri bin Mohd Yunus 

Date      : 22nd November 2006 

 

 



 

DEVELOPMENT OF GAS DENSITY MEASUREMENT MODEL (TANK) BASED 

ON PRINCIPAL COMPONENT ANALYSIS (PCA) TECHNIQUE 

 

 

 

 
 
 

WAN MOHD HIDAYAT BIN WAN ABDULLAH 
 

 

 

 

 

A thesis submitted in fulfillment 

of the requirements for the award of the degree of 

Bachelor of Chemical Engineering 

 

 

 

 

Faculty of Chemical & Natural Resources Engineering 

University College of Engineering & Technology Malaysia 

 

 

 

 

November 2006 

 



 ii

 
 
 
 
 

DECLARATION 

 

 

 

 

 

 

 

 

I declare that this thesis entitled “Development Gas Density Measurement Model (Tank) 

Based on Principal Component Analysis (PCA) Techniques” is the result of my own 

research except as cited in the references. The thesis has not been accepted for any degree 

and is not concurrently submitted in candidature of any other degree. 

 

 
 
 

Signature  : ………………………......................... 

Name   : WAN MOHD HIDAYAT BIN WAN ABDULLAH  

Date    : 22nd NOVEMBER 2006 



 iii

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my beloved mother and father… 
Thank you for bringing me onto this beautiful world 

My love...you are always in my mind 



 iv

 

 

 

ACKNOWLEDGEMENT 

 

 

As a vicegerent who is being created, I put myself down to express my highest 

thankful to Allah S.W.T for giving me strength and spirit to complete this final project 

with full of pride and dignity. 

 

I would like to express my deepest gratitude to the following persons for their 

unlimited and kindness help as well as guidance enabled me to complete this research 

project in time as a partial fulfillment of the requirement of the degree of Bachelor 

Engineering (Chemical). 

 

To Tuan Hj. Mohd Yusri B. Mohd Yunus, my lovely supervisor, thanks a lot for 

helping me during the progress of the research project, either in a way of searching the 

required information as well as guiding me to be a good person. Without his generosity 

in sparing his precious time to guide me and answer my doubts, the aim of project may 

not be fulfilled. 

 

My highest appreciation to my much closed friends Mimiey, Faiss, Deqwan, 

Rufizal, and Anuar who inspired me a lot and in addition I am very grateful to my 

family members, no amount of gratitude could repay their kindness of being there as 

well as the patience to put up with my whim.  

 

I also would like to thank my fellow course mates and friends for their 

assistances, advices and ideas in producing a resourceful, fruitful and practicable 

research. May God bless all of you. 



 v

 

 

 

ABSTRACT 

 

 

 

 

The real importance of controlling gas density is based on the fact that it 

contributes significantly to the composition of the gas being controlled. Even with small 

variations can cause significant process upsets if not adequately controlled due to 

changing in composition. This research purposely to develop a model of gas density 

measurement as the process instrument nowadays hardly to correlate simultaneously the 

input variables to the output variables. In this respect, density is known as output 

whereby it depends on other variables (input) which are pressure and temperature of the 

given process. In other words, all variables which can be directly measured and 

contribute to the primary variables are known as 'secondary variables'. Thus, the 

Principal Component Analysis (PCA) approach is used plus the MATLAB programming 

to ensure the gas density measurement model is valid as the real process. At the end of 

this research, the developed model can be used to identify the best configurations of 

inputs variables in producing the specified output that intended. The best outcome is the 

effect of temperature and pressure to the density is very significant as the relationships 

between those variables are proportional to each other.  
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ABSTRAK 

 

 

 

 

Kepentingan utama dalam pengawalan ketumpatan gas adalah menymbang 

secara signifikan komposisi gas yang dikawal. Walau dengan perbezaan yang kecil, 

ianya boleh menyebabkan proses tidak menepati seperti yang dikawal melihat kepada 

perubahan komposisi. Kajian ini bertujuan membentuk sebuah model pengiraan 

ketumpatan gas seperti kerana seperi yang kita ketahui, proses instrumen hari ini sukar 

untuk menghubungjalinkan secara serentak pembolehubah masuk terhadap 

pembolehubah keluar dalam satu sesi proses yang sama. Dalam kaian ini, ketumpatan 

adalah pembolehubah keluar manakala suhu dan tekanan adalah pembolehubah masuk. 

Dalam erti kata yang lain,pembolehubah yang boleh dikira secara langsung merupakan 

pembolehubah sekunder. Oleh itu, pendekatan Analisis Prinsip Komponen (PCA) 

bersama simulasi MATLAB digunapakai untuk mempastikan model pengiraan 

ketumpatan gas boleh memberikan bacaan seperti proses sebenar. Kepelbagaian model 

yang sudah dimajukan atau diperkembangkan pada akhir projek ini boleh digunakan 

untuk mengenalpasti konfigurasi pembolehubah keluar seperti yang dikehendaki. 

Keputusan menunjukkan, pembolehubah keluar bergantung secara langsung dengan 

pembolehubah masuk kerana hubungan di antara pembolehubah masuk dan 

pembolehubah keluar adalah berkadaran secara langsung. 
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CHAPTER I 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 Overview and Fundamental of Ideal Gas Law 

 

An ideal gas is defined as one in which all collisions between atoms or 

molecules are perfectly elastic and in which there are no intermolecular attractive 

forces. One can visualize it as a collection of perfectly hard spheres which collide but 

which otherwise do not interact with each other. In such a gas, all the internal energy 

is in the form of kinetic energy and any change in internal energy is accompanied by 

a change in temperature. 

 

An ideal gas can be characterized by three state variables: absolute pressure 

(P), volume (V), and absolute temperature (T). The relationship between them may 

be deduced from kinetic theory and is called the Ideal Gas Law 

PV = nRT = NKT        (1.1) 

Where,  

n = number of moles  

R = universal gas constant = 8.3145 J/mol K  

N = number of molecules  

k = Boltzmann constant = 1.38066 x 10-23 J/K = 8.617385 x 10-5 eV/K  

k = R/NA  

NA = Avogadro's number = 6.0221 x 1023 /mol  

The ideal gas law can be viewed as arising from the kinetic pressure of gas 

molecules colliding with the walls of a container in accordance with Newton's laws. 

http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/inteng.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html#c1
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But there is also a statistical element in the determination of the average kinetic 

energy of those molecules. The temperature is taken to be proportional to this 

average kinetic energy; this invokes the idea of kinetic temperature. One mole of an 

ideal gas at STP occupies 22.4 liters.  

 

 

1.0.1 Ideal Gas Law With Constraints 

 

For the purpose of calculations, it is convenient to place the ideal gas law in 

the form: 

 

i i f f

i f

P V P V=
T T

        (1.2) 

 

where the subscripts i and f refer to the initial and final states of some process. If the 

temperature is constrained to be constant, this becomes: 

 

i i f fP V =P V         (1.3) 

 

which is referred to as Boyle's Law. If the pressure is constant, then the ideal gas law 

takes the form: 

 

i f
f

i f

V V T=   or  V
T T T

f

i

       (1.4) 

 

which has been historically called Charles' Law. It is appropriate for experiments 

performed in the presence of a constant atmospheric pressure.  

 

All the possible states of an ideal gas can be represented by a PvT surface as 

illustrated Figure 1.1. The behavior when any one of the three state variables is held 

constant is also shown. 
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Figure 1.1  PvT Surface 
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1.1 Problem Statement 

    

  The real importance of controlling gas density is based on the fact that it 

contributes significantly to the composition of the gas being controlled. Even with 

small variations can cause significant process upsets if not adequately controlled due 

to changing in composition. As for example, the variations in gas composition 

experienced resulted in the production engineers using a higher oxygen level than 

was actually needed to allow safety margin. As a result, this will lead to lower 

process efficiency and higher production cost [1]. 

 

However, density cannot be measured directly from the process due to 

several reasons as the followings [2]. 

 

    a) Lack of appropriate on-line instrumentation. 

 i) Process operation has to depend on laboratory analysis. 

ii) The cost of installing a sensor may not be justified. 

 

b) Reliability of on-line instruments. 

i) Slow feedback. 

 ii) Lack of measurement in a timely manner. 

 

In this respect, density is known as 'primary variables' whereby it depends on 

other variables (secondary variables) which are pressure and temperature of the given 

process. In other words, all variables which can be directly measured and contribute 

to the primary variables are known as 'secondary variables'. As a result, the quality of 

the product cannot be measured and analyzed in on-line or real time manner and this 

could lead to off-specification products. 

 

Besides that, those primary variables are also not being monitored and 

controlled thoroughly as well as simultaneously with all the main secondary 

variables that available in the plant. Eventually, the analysis being carried out is 

lacking of reliability aspect, in the sense that it does not incorporate all secondary 

variables that potentially affect upon the primary variables when changes occur. 
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1.2 Objectives 

 

i. The aims of this study is to model the relationships between quality 

output (density) and secondary outputs (temperature and pressure) 

using Principle Component Analysis (PCA). 

ii. To develop a program to measure the density from AFPT 921 plant. 

 

 

1.3 Scopes of Study 

 

There are five major scopes that have been identified in order to achieve the 

objectives of this research: 

i) Data gathering from Air-Flow-Pressure-Temperature (AFPT) Plant to 

obtain a set of secondary outputs data. 

ii) Calculate the primary output by using Microsoft Excel. 

iii) To develop variable profile 

iv) Modeling the gas density measurement by using PCA. 

v) Comparing performance result of the gas density measurement 

modeled with the conventional measurement available. 

 

 

1.4 Research Contribution 

 

The main outputs of this research are: 

i) A new gas density measurement model is proposed and developed by 

using PCA. 

 ii) A new programming on gas density measurement is developed. 
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1.5 Summary of Report 

 

This thesis contains five chapters. The first chapter comprises of the 

introduction of the research, fundamental of Ideal Gas Law, objectives of the 

research, scope of the research and contributions of this research. Chapter two 

reviews the fundamental theory of gas density measurement and Principal 

Component Analysis (PCA). 

 

Chapter three consists of the literature review which is reveals of the previous 

research and study about gas density measurement and the Principal Component 

Analysis (PCA) 

 

Chapter four expresses of the research methodology which is in this chapter, 

the case study on AFPT 921 plant has been made while method algorithm is 

developed as a guidance to complete the research. 

 

Chapter five presents the result and discussion of the research. The results are 

systematically presented into the tables and graph togetherness with the discussion 

and justification. 
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CHAPTER II 

 

 

 

FUNDAMENTAL THEORY 

 

 

 

 

2.0 Introduction 

 

Model AFPT 921 is a process control training system that uses only air to 

simulate gas, vapor or steam. Air is readily available from a compressor. It provides the 

simple gas physical processes where the measurement and control of their important 

variables of flow, temperature and pressure can be studied. 

 

In general, density is one of gas physical properties in which it is very much 

dependant on the pressure and temperature of the given process under consideration. 

This is very true as illustrated in the Perfect Gas Law as follows: 

 

m P M Pd= = . = x constant
V T R T

       (2.1) 

 

Whereby,   

 

P = Pressure 

V = Volume 

m =Mass 
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M = Molecular weight  

R = 8.314 J/mol.K 

T = Temperature 

 

Therefore, m P M Pd= = . = x constant
V T R T

      (2.2) 

 

for any given gas. For instance, the following shows the real issue in measuring gas 

density. 

 

Assume the total quantity of gas trough a pipeline is held constant at 50 kg/hr but 

the flowing pressure and temperature can be varying. Initially, the flow rate is at the 

Normal Condition (NTP) of 0°C temperature and 1 atm pressure, and increase gradually 

to 120°C and 1.485 atm respectively. As a result, the actual volume of the gas has 

expanded as well as contracted due to temperature and pressure changes at the same 

time. 

 

Whilst the initial gas density is 1.293 kg/Nm3, the new calculated density could 

be calculated approximately as follows: 

 

Initial density   = 1.293 kglNm3 at 0ºC (273°K) and 1 atm (NTP) . 

. 

 

Therefore, new density  = 1.293 x 273K x 1.485 atm 

                                                                 393K      1.0 atm 

 

                                                 = 1.334 kg/ m3 at 120oC, 1,485 atm  
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2.1 Gas Density Measurement 

 

The gas density can be measured by many ways. Nowadays there are a lot of 

equipment were invented for the purpose mean. But when it comes to the basic element 

which is reached to the assuming of ideal gas, it is definitely has to reveal the 

characteristics of the ideal gas. 

 

The ideal gas law can be manipulated to find the density of a substance, the 

manipulation of the ideal gas law as shown below: 

 

m mPV=nRT              n=  ,   ρ=
mw V

Rearrange the equation,

mPV= RT
mw

m mw P=
V R T

Pconstant 
T

ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

      (2.3) 

 

In several cases, the P and T is to be manipulated as the density very dependant 

of changing the pressure and temperature. 
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2.1.1 Composition of Air 

 

Air is a mixture of gases with overall physical and chemical properties consistent 

with its composition. The "real" air that we encounter on a day-to-day basis, and use for 

breathing, burning fuels for heating, transportation, power generation and many other 

purposes, can be thought of as a mixture of three types of components:  

 

i) Standard dry air, which is mainly composed of three gases. They are 

nitrogen (about 78%), oxygen (about 21%), and argon (a bit less than 

1%).  All three of these gases can be economically recovered as industrial 

gas products.  Standard dry air also contains a small amount of carbon 

dioxide, and very small amounts of neon, helium, krypton, hydrogen and 

xenon 

  

Table 2.1 The composition of dry air is relatively uniform around the world. 

Standard Dry Air Composition (Detailed Analysis): 

Gas % by Volume % by Weight 
Parts per 
Million (V) 

Chemical 
Symbol 

Molecular 
Weight 

Nitrogen 78.08 75.47 780805 N2 28.01 
Oxygen 20.95 23.20 209450 O2 32.00 
Argon 0.93 1.28 9340 Ar 39.95 

Carbon 

Dioxide  
0.038 0.0590 380 CO2 44.01 

Neon 0.0018 0.0012 18.21 Ne 20.18 
Helium 0.0005 0.00007 5.24 He 4.00 
Krypton 0.0001 0.0003 1.14 Kr 83.80 

Hydrogen 0.00005  Negligible 0.50 H2 2.02 
Xenon 8.7 x 10-6 0.00004 0.087 Xe 131.30 
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2.2 Principal Component Analysis 

 

Principal Components Analysis (Jackson, 1980; Geladi and Kowalski, 1986; 

Wold et al., 1987; Jackson, 1991; Johnson and Wichern 1992) can be described via using 

mathematical representation and graphical representation. From the mathematical point 

of view, Principal Components Analysis is a multivariate technique, which can 

transform a set of original variables x1, x2, ...xm to a set of new variables P1,P2,…Pm. 

Actually, the newly formed variables are called Principal Components (PC), which are 

the linear combinations of the original variables. The mathematical representations that 

describe the transformation are shown as follow:  

 

P1 = v1,1 x1 + v1,2 x2 + ….. + v1,m xm 

 

P2 = v2,1 x1 + v2,2 x2 + ….. + v2,m xm

.           

. 

Pm = vm,1 x1 + vm,2x2 + ….. + vm,m xm      (2.4) 

 

Pmxn = Vmxm XT
mxn        (2.5) 

 

 

The original matrix, X has m variables with each variable has n measurements.  

The data are arranged in the form of n x m, where the measurements of a variable are 

organized in the form of column vector. A row vector, which contains the measurement 

of all variables is denoted as xi = [ xi,1 xi,2 … xi,m ], while [ xi,1 xi,2 …xi,m ]T is the 

transpose of the raw vector. V is known as the eigenvector matrix. V is the weighting 

matrix in forming the linear combinations of the original variables. The eigenvectors 

matrix, V, contains eigenvectors or loading vectors v1, v2, … , vm. Each eigenvector Vj 

is a row vector which contains the arrangement of elements as Vj = [ vj,1 vj,2 … vj,m ] The 

eigenvectors matrix can be shown in the following matrix:  
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1,1 1,2 1,1

2,1 2,2 2,2

m ,1 ,2

      ...  v
     ...   v

. .        .       ...      .
Eigenvectors matrix, V

. .        .       ...      .

. .        .       ...      .
v     ...     

m

m

m m

v v v
v v v

v v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ , m mv

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎦⎣

    (2.6) 

 

 

P is the principal components scores matrix. A particular principal component 

score, Pi,j, where j < m, is obtained via the product of a row vector variable measurement  

[xi,l xi,2 ... xi,m] to the particular eigenvector Vj, which is shown in the following 

equation:  

 

 

         (2.7) 

 

 

       (2.8) ]

⎥
⎥
⎥
⎥
⎥

⎢

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎢
⎢
⎢
⎢

⎣

⎡

mi

i

i

x

x
x

,

2,

1,

.

.

.

 

 

 

 

 

P j(1xn) = v j(1xm) XT
(mxn)       (2.9) 

 

pj is the score vector for the Principal Component j, while vj is the eigenvector j 

in order to form Principal Component. Equation 2.8 is used to determine the principal 

component score matrix P, which contains n scores for each principal component:  

 

        (2.10) 
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On the other hand, the original variables can also be represented in term of newly 

formed variables as follow and as shown in Figure 2.1:  

   

 X(nxm) = PP

T 
1(nxl)v  + PT

1(lxm) P  2(nxl)v 2(lx8) + ... + PP

T v                          (2.11)                      

  
m(nxl) m(lxm)

 

( ) ( ) ( )X P VT
nxm nxm mxm=         (2.12) 

 

 

 

1 1 1m m mT T T
n n 1 1 1 n 2 1 2 n m 1 m

m mT
n m

X = p  v + p  v +...+ p  v

         = p  v

m

 

 

Figure 2.1  PCA graphical matrix representation 

 

 

 Where X                          : original data matrix                       dimension: n x m  

V1, V2, ... , V m  : eigenvectors  dimension: 1 x m  
V  : eigenvector matrix  dimension: m x m  

Va  : matrix that contains a eigenvectors  dimension: a x m  

Pj  : Principal Component j score vector  dimension: 1 x n  

P  : Principal Component score matrix  dimension: m x n  

Pa  : Principal Component score matrix  dimension: a x n  

      for PC I till PC a   
 

From Equation 2.1, the number of original variables, xm  equals to the number of 

the newly formed variables, Pm.  If all Principal Components are used to represent the 

original variables, the original raw data matrix is reproduced as shown in Equation 2.9. 

If this is the condition, the purpose for using Principal Components Analysis as 

dimension reduction technique will be lost. In order to maintain the uniqueness of this 
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technique, only several Principal Components will be used to represent most of the 

original data variation. If a Principal Components are decided to retained with a < m, 

then Equation 2.9 can be written as follow:  

 

 

                                                                                     (2.13) 

 

                                                                                                (2.14) 

 

 

The retained principal components [PI, P2, ... , Pa], which form the P;Va term,  

are associated with systematic variation in data while the residual principal components  

 [Pa+1, Pa+2 ,… Pm], which form the residual matrix E are considered of containing 

measurement errors (Seborg et at., 1996). Therefore, PCA is a multivariate analysis 

technique that could use less number of newly formed variables to represent the original 

data variations without losing significant information. Information here is referred to 

data variation.  

 

 

For the graphical representation of PCA, the linear combinations of the original 

variables in forming the new variables are actually representing selection of a new 

coordinate system with [P1, P2, …., Pm] as the new axes obtained by rotating the original 

system with x1, x2, …, xn as the coordinate axes. The new axes represent the direction 

with maximum variability and provide a simpler and more parsimonious description of 

the variance-covariance matrix or correlation matrix (Johnson and Wichern, 1992). 

Figure 2.2 and 2.3 are prepared to give graphical representations of PCA.  
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                   Figure 2.2 System for two variables distribution 

 

 

 

 

 
 

Figure 2.3 graphical representations for PCA 
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For example, Figure 2.2 shows a system has two variables x1 and x2. In order to 

have a better representation of the system variability in term of linear combinations of x1 

and x2, the original axes are rotated to θ degree so that the newly formed Principal 

Component 1 will represent the maximum variation of the system. Maximum variation 

is achieved if the perpendicular distance of all the points to the line is minimum. The 

Principal Component 2 will represent the maximum variation of the remaining variation. 

The process of forming new variables is repeated until all the Principal Components are 

determined for the system, which has more than two variables. The representation of 

axes rotation to form Principal Components is presented in Figure 2.3. Jackson (1980) 

described that the principal axes (PI and P2) are the rotation of the covariance matrix or 

correlation matrix, and the eigenvectors (coefficients of principal components) are the 

direction cosines of the new axes related to the old. The graphical representation for 

more than three axes is impossible.  

 

 

 

2.2.1 Original Data Matrix, Variance-Covariance Matrix and Correlation Matrix  

 

The initial step of Principal Components Analysis is to have a set of data and 

arrange in the original matrix X, which has n measurements for m variables. Actually, 

PCA enable the variance-covariance structure or correlation structure of the original data 

to be explained by forming the several linear combinations of original variables because 

the eigenvectors that used to form the new variables are determined from the variance-

covariance matrix or correlation matrix of original variables (Johnson and Wichern, 

1992). Variance is a measure of a variable's dispersion or variation while covariance is a 

measure of co-variation between two variables. The variance and covariance of each 

variable are determined respectively from Equation 2.12 and 2.13. The correlation rj,k is 

a measure of linear association between two variables like variable j and variable k. The 

correlation between variables and correlation matrix are determined from Equation 2.15 

and 2.16 accordingly.  
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Correlation matrix, R=
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                                            (2.19) 

 

 

Where:    i : i-th measurement  kx jx  : mean value for variable jx  

   

  2
,j js  : variance of variable jx       : covariance of variable ,j ks jx  and kx   

 

The selection whether the variance-covariance matrix S or correlation matrix R 

to be used for the Principal Components Analysis is mainly based on the nature of the 

data. If the involved data are all in the same unit, same digit, and same magnitude order 

or the data are in percentage, and then the analysis can be carried out on variance-

covariance matrix. If the data or measurements are in different unit like pressure, 

temperature, flow rate, energy and so on, or the data are in different magnitude order, 

then the Principal Components Analysis shall be performed on the correlation matrix 

(Marriott, 1974).  
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2.2.2  Determine the Eigenvalues and Eigenvector of the Matrix  

 

The PCA is performed either on variance-covariance matrix or correlation 

matrix. Let A represents either variance-covariance matrix S or correlation matrix R. In 

order to determine eigenvalues and eigenvectors of A, the characteristic equation is form 

based on the Equation 2.17. Equation 2.17 has to follow the criteria as shown in 

Equation 2.18. However, the function equation can be expressed in the polynomial form 

as shown in Equation 2.19 and is called the characteristic equation of matrix A:  

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

           ...       
         -     ...         

( ) A I
     ...         ...        ...        ...
                 ...    

n

n

n n n n

a a a
a a a

f

a a a

λ

λ
λ λ

λ

−

= =−

−

                                (2.20) 

 

 

( ) 0A If λ λ= − =                               (2.21) 

 

 
1

0 1 1... 0n n
n nc c c cλ λ λ−
−+ + + + =                 (2.22) 

 

The order of the characteristic equation equals to the number of variables 

involved in the Principal Components Analysis. The solutions of the characteristic 

equation produces characteristic root, latent root, or eigenvalues, λ1, λ2, …, λm. The 

characteristic vectors, or eigenvectors can be obtained from the following equations:  

 

 

A I w iλ− = 0          (2.23) 

 

i
i

i i

wv =
w 'w

         (2.24) 
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Vectors w1, w2,….,wn are the un-normalized eigenvectors. v1, v2, …, vm are 

normalized eigenvectors. V is the eigenvectors matrix of variance-covariance matrix or 

correlation matrix. Matrix V is ortho-norma1 that is: vi
Tvi = 1 and vi

Tvk = 0. This 

means that the newly formed variables or Principal Components are independent with 

each other or in another word, orthogonal.  

 

 

 

2.2.3 Number of Principal Components Required  

 

Eigenvalue is a measure of the variation explained by an eigenvector. Each 

eigenvector, vi associates with its eigenvalue, λi. The first Principal Component explains 

the largest variation of the original data. The mth-Principal Component explains the 

smallest variation. If the variance-covariance matrix is used for Principal Components 

Analysis, the total eigenvalues equals to the total variance of the original data matrix. If 

the correlation matrix is used, the total eigenvalues equals to the number of the variables 

involved because the variance for each variable equals to one after standardization. The 

percentage of the variation to be explained by a particular eigenvector is determined via 

Equation 2.22 while the accumulated variation to be explained until jth Principal 

Component is calculated via Equation 2.23:  
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Percentage of original variation explained by principal component i  

 

1 2

= x100%
...

i

m

λ
λ λ λ+ + +

                 (2.25) 

 

 

Percentage of original variation explained by first j principal components  

 

 

1 2

1 2

...
=

... ...
j

j m

λ λ λ
λ λ λ λ

+ + +

+ + + + +
                 (2.26) 

 

 

When PCA is applied to reduce the original variables' dimensions, the percentage of 

the variation to be explained by the Principal Components can be fixed by the user. 

However, there are several suggestions on determining the number of Principal 

Components to be retained (Sharma, 1996):   

 

i) In the case of standardized data, retain only those components whose 

eigenvalues    are greater than one. This is referred to as the 

eigenvalues-greater-than-one rule.  

 

ii) Plot the percent of the variance accounted by each principal 

component and look for an elbow. The plot is referred to scree plot, 

which is shown in Figure 2.4.  

 

iii) Retain components that are statistically significant 
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. 

Figure 2.4 Scree Plot 

 

If more than half numbers of total Principal Components are required to account 

for a reasonable variation, then the data cannot be summarized very well with a few 

components and shall stick to the original data itself (Cliff, 1987). The summary 

procedures of Principal Components Analysis are presented in Figure 2.5.  
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Principal Components Analysis Procedure 
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Figure 2.5 Principal Component Analysis Procedures 
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CHAPTER III 

 

 

 

LITERATURE REVIEW 

 

 

 

 

3.1 Gas Density Measurement 

 

E. Sanwani presents and interprets results of experimental measurements of 

the spatial gas hold-up distribution in a 3 m3 glass rectangular flotation cell at the 

JKMRC using two different techniques. The gas hold-up device with the capturing 

technique was developed at the JKMRC and has been used widely in the P9 project1 

while the one with conductivity technique was developed at the CSIRO Thermal and 

Fluids Engineering laboratory at Highett, Victoria, Australia. Measurements were 

conducted at more than 64 locations in the cell to determine the local gas hold-up 

distribution in the cell. Since the measurements using the two techniques were 

conducted at the same locations, the results may be compared with each other. The 

results indicate that the gas hold-up varies widely inside the flotation cell. The gas 

hold-up distributions measured by the two techniques are relatively similar except in 

some locations which can be reasonably explained. [3]. 

 

On the base of modern probability approached by the Derevich I.V.,the 

theoretical model of turbulent relative motion of particles in the turbulent flow is 

developed. Closed equation for probability density function of coordinates and 

velocities of two particles in turbulent flow is obtained. The system of equations for 

balance of mass, averaged velocities and intensities of turbulent chaotic motion of 

particles with account of correlated motion of particles are deduced. The closed 

expressions for intensity of relative chaotic motion between particles are obtained on 
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the base of probability density function of particles displacement with correlation 

effects. The correlation functions, intensity of relative turbulent motion and relative 

diffusion coefficients of particles are numerically investigated. The calculation 

results are compared with data of large eddy simulations. The results of calculation 

intensity of droplets relative motion in atmospheric conditions are presented [4]. 

Masahiro proposed that the airflow standard system in Japan for the middle 

range (5–1000 m3/h) has been renewed since 2002. The constant volume tank to 

realize the standard was replaced to have better performance at higher pressure, 

although its principle is exactly the same as its predecessor. Otherwise, most 

hardware for the system is unchanged, however the software for controling the 

measurements is improved to give the capability for tele-calibration on a unique 

basis. The facility also has a unique time measurement system based on analog-to-

digital (A/D) conversion to analyze instantaneous behaviors of flowmeters. This 

paper describes the outline of the renewed standard system together with some 

results from inter-laboratory comparison tests, in which very good consistency of the 

renewed system with other facilities, including its own predecessor, are shown [5]. 

Designing natural gas pipelines to safely and efficiently handle unsteady 

flows, requires knowledge of pressure drop, flowrate and temperature distribution 

throughout the system. E. Tentis were covered the accurate prediction of these 

parameters is essential in order to achieve optimum cumulative deliverability, and 

safe and reliable operation. An Adaptive Method of Lines algorithm is formulated for 

the solution of Euler system of equations, which fully simulates slow and fast 

transients. Two test cases present the improvement of the numerical solution from 

grid adaptation. Good results are obtained both for slow and fast transients 

simulations proving that the suggested numerical procedure is appropriate for such 

predictions [6]. 

 
A generalized fluidized bed reactor model which covers the three fluidization 

flow regimes most commonly encountered in industry (bubbling, turbulent and fast 

fluidization) is proposed. In this paper, I. A. Abba extend the model to cases where 

the volumetric gas flow changes appreciably due to variations in molar flow, 

pressure and temperature. For the air-based oxy-chlorination process as a case study, 

it is shown that the volume change affects both the hydrodynamics and the reactor 
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performance. Because the reactions are rapid, almost complete conversion of 

ethylene is attained immediately above the distributor resulting in 25% reduction in 

volumetric flowrate. Using the probabilistic averaging technique, the model tracks 

the probability of being in the bubbling, turbulent and fast fluidization regimes along 

the reactor height. The impacts of temperature and pressure variations are also 

examined. The variable density model gives predictions which compare well with 

commercial data; ignoring density variations leads to significant under prediction [7]. 

 

Oystein L. B. proposed that Multiphase meters (MPMs) are used by the 

petroleum industry for measurement of individual flowrates of water, gas and oil 

flowing through a pipeline. Different meters are available on the market, most of 

them detect water by a measurement of the dielectric properties of the fluid mixture. 

To be able to deduce water content from a measurement of the mixture permittivity, 

the dielectric properties of each of the constituents must be known in advance. While 

the oil and gas permittivity is known from information about their respective density, 

water permittivity depends on the salt content. If water is the continuous phase in a 

multiphase flow, it is crucial to know the water salinity for a good performance of 

MPMs. A dedicated water salinity sensor has been developed, the purpose being to 

detect water conductivity and salinity in a water continuous water/oil/gas/ mixture. 

The sensor is based on microwave spectroscopy and measures differential 

attenuation and phase-shift of electromagnetic radiation propagating through the 

mixture. This paper presents the basic principles, physical models and main design of 

the salinity sensor as well as experimental results obtained from flow loop test [8]. 

 

Ultrasonic gas flowmeters typically use narrowband piezoelectric transducer 

arrangements for interrogating the flow of gas in a pipe. I. J. O'Sullivan and W. M. 

D. Wright proposed, the suitability of broadband electrostatic transducers operating 

at frequencies of up to 1 MHz for ultrasonic measurement of gas flow has been 

investigated. The transit time method of ultrasonic gas flow measurement was 

adopted and experiments were carried out using a laboratory test rig capable of 

producing a range of gas flowrates up to 17.5 m/s. The test rig also allowed easy 

interchange of different prototype flowmetering sections. Times of flight of 

ultrasonic waves interrogating the gas flow were measured using separate 

send/receive electrostatic transducer arrangements. Two flowmeter configurations 
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were considered. The first interrogated the flow at 45° in contra-propagating 

upstream and downstream directions. The second consisted of an upstream 

interrogation at 45° to the gas flow and an interrogation made normal to the flow 

direction. k factors correlating the fluid velocity along the ultrasonic path with the 

mean fluid velocity in the pipe were calculated using experimental ultrasonic data 

and anemometer measurements. All transducer configurations were numerically 

modelled using the computational fluid dynamics software package FLOTRAN© 

(ANSYS Inc.). Theoretical gas flow velocities for both transducer arrangements were 

subsequently compared with experimental values and found to be in excellent 

agreement. A flow-dependent frequency shift of the received ultrasonic signals was 

also observed simultaneously with the transit time measurement [9]. 

 

R. B. Thorpe, G. M. Evans, K. Zhang and P. M. Machniewski were proposed 

the dispersion of bubbles into down-flowing liquids is often encountered in a number 

of industrial applications involving pipe flow, bubble columns and loop reactors. 

Usually a gas horizontal sparging device is used to generate bubbles that are carried 

downward with the bulk liquid flow. At low gas flowrates discrete bubbles are 

formed. However, at higher gas flowrates a ventilated cavity attached to the sparger 

is formed. For downward pipe flow the liquid forms an annular jet, which entrains 

gas into the recirculation region immediately beneath the ventilated cavity. The rate 

of gas entrainment and the size of the bubbles produced is determined by the pipe 

diameter, liquid and gas volumetric flowrates and the strength of the recirculation 

region below the base of the ventilated cavity. In this study a model was developed 

to predict the liquid velocity field and bubble breakup in the recirculation region. The 

velocity profile was modeled using the potential flow solution of the Hill's vortex, 

where the strength of the vortex was assumed to be directly proportional to the 

velocity of the annular wall jet. The proportionality constant was found to be 0.38, 

based on predictions obtained using the commercial code CFX. The CFX velocity 

profile predictions for the central part of the recirculation region were very similar to 

the Hill's vortex velocity profile. Bubble breakup was modeled using a critical Weber 

number concept, based on the predicted velocity profile within the recirculation 

region. It was found that the prediction of bubble size was in general agreement with 

experimental observations when a critical Weber number of 4.7 was assumed. A 

digital high-speed video was used to observe the liquid and bubble motion at the base 
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of the ventilated cavity. The video was used to obtain estimates of the recirculating 

liquid flow velocity, which compared reasonably well with predictions based on the 

Hill's vortex model. The video evidence also highlighted the unsteady nature of the 

flow, particularly the actual gas entrainment process, and possible reasons for this 

behavior are presented [10]. 

The effect of gas entrainment in oil on the performance of a range of single-

phase flowmeters has been investigated experimentally using the National Standard 

Multiphase Flow facilities at NEL by A. F. Skea and A. R. W. Hall.  The flowmeters 

tested were 4-inch and 2-inch positive displacement, venturi, helicoidal and flat-

bladed turbine meters and 2-inch U-tube and 1.5-inch straight tube Coriolis meters. 

The flowmeters were tested in oil flow with gas fractions up to 15% by volume. The 

aim of the project was to quantify the effect of second-phase fluid components on the 

basic uncertainty of a range of single-phase flowmeters and, as a consequence, 

identify which generic types of single-phase flowmeter were most suitable in 

applications where such components may be present. These tests have provided 

evidence of the suitability of particular flowmeters for two-component flow 

applications. Comparisons have been made between generic type and size of 

flowmeter. At low gas fractions, the positive displacement and venturi flowmeters 

were more accurate than the other meters and estimated the total flowrate to within 

±2%. Over 9% gas fraction, there was an improvement to the response from some of 

the flowmeters with increasing gas fractions. This was considered to be indicative of 

improved mixing in the flow [11]. 

The paper reports from Bodo M. et. al.,is research project initiated in the PTB 

for systematic investigations of installation effects and for finding efficient ways to 

minimise these effects. The project covers the design of an automated test facility 

using a laser Doppler anemometer, the measurement of velocity profiles downstream 

of several pipe configurations and flow conditioners as well as the measurement of 

the error shift of a turbine meter due to the disturbed velocity profiles. In this paper 

the test facility for investigations of installation effects will be described and the 

relation between pipe configuration and disturbed flow profile will be shown for a 

wide variety of pipe configurations and flow conditioners. More than 150 velocity 

distributions have been determined for different pipe configurations at several 
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flowrates, and data have been collected to describe the corresponding flowmeter's 

behaviour. Some typical velocity profiles for the most common pipe elements and 

flow conditioners are shown [12]. 

 

3.2 Principal Component Analysis 

 

Dorsey, A.W. and Lee, J.H. , propose batch-to-batch prediction models based 

on principal component analysis. The modeling purposely to capture correlations 

among the variables within each individual batch as well as those of successive 

batches, and uses these models to predict the future behavior of the relevant 

variables. The main strength of this project is it allows for direct use of previous 

batch information together with current batch information for predicting the 

performance of key batch variables under consideration [13]. 

 

Principal Components Analysis (Jackson, 1980; Geladi and Kowalski, 

1986;Wold et al., 1987; Jackson, 1991; Johnson and Wichern 1992) can be described 

via using mathematical representation and graphical representation. From the 

mathematical point of view, Principal Components Analysis is a multivariate 

technique, which can transform a set of original variables x1, x2, ...xm to a set of new 

variables P1,P2,…Pm. Actually, the newly formed variables are called Principal 

Components (PC), which are the linear combinations of the original variables [14]. 

 

Besides, Sasongko, S.B. (2000), also proposes an integral MSPC which 

consist of fault detection, fault isolation and fault diagnosis. The fault detection and 

the isolation utilise the multivariate analysis and the control chart methods. Three 

types of multivariate analysis are investigated: (i) the series multi block Principal 

Component Analysis (SBPCA), (ii) the parallel multi block PCA (PB-PCA) and  the 

parallel multi block PCA T2 Hotelling (PB-PCAT). The results of this study 

demonstrated the potentials of multivariate statistical process control in solving fault 

detection and diagnosis problems for multivariable and multi equipment system [15]. 
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Recently, Wang, S.W.(2004) developed a statistic method based on PCA 

(Principal Component Analysis) to detect the sensor fault occurred in AHU. And he 

used the contribution plots combined with some rules to isolate the fault source. To 

further develop this method, this paper presents an FTC method for outdoor air and 

AHU supply air temperature control of VAV systems to satisfy ASHRAE Standard 

62-2001. PCA method, joint angle method and compensatory reconstruction are used 

to detect, isolate, and reconstruct the fault, respectively. Compared with conventional 

FDD methods, the FTC method presented in this paper has its unique advantages. 

First of all, it fits complicated systems especially the HVAC systems with many 

sensors and control variables. In addition, no need to build an accurate mathematic 

model, which after all is still difficult to set up in HVAC systems. Last but not least, 

the method has the achievement of fast, accurate detection and isolation. They are 

tested and evaluated under various conditions online on a centralized VAV air-

conditioning system simulated using detailed HVAC dynamic models [16] 

 

Other classical techniques from Yeung, K. Y. (2001), such as principal 

component analysis (PCA), have also been applied to analyze gene expression data. 

Using different data analysis techniques and different clustering algorithms to 

analyze the same data set can lead to very different conclusions. Their goal is to 

study the effectiveness of principal components (PC’s) in capturing cluster structure. 

In other words, they empirically compared the quality of clusters obtained from the 

original data set to the quality of clusters obtained from clustering the PC’s using 

both real and synthetic gene expression data sets. From empirical study showed that 

clustering with the PC’s instead of the original variables does not necessarily 

improve, and often degrade, cluster quality. In particular, the first few PC’s (which 

contain most of the variation in the data) do not necessarily capture most of the 

cluster structure. It is also showed that clustering with PC’s has different impact on 

different algorithms and different similarity metrics. Overall, they would not 

recommend PCA before clustering except in special circumstances. 

 

In addition, Ramalingam, S. (2005) proposed data envelopment analysis 

(DEA), a popular linear programming technique is useful to rate comparatively 

operational efficiency of decision making units (DMU) based on their deterministic 

(not necessarily stochastic) input–output data. Only when the input–output data are 
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stochastic (preferably distributed as a multivariate Gaussian), a statistical technique 

called principal component analysis (PCA) could alternatively be used for the same 

purpose of rating DMU. Because of these choices, research interest has been growing 

among statisticians and mathematical programmers to explore benefits versus 

disadvantages of using one technique over the other. Yet, the duality between DEA 

and PCA has not been fully understood. This article is devoted to investigate their 

complementarities. With an expectation that an integration of both techniques would 

offer the best of DEA and PCA, several integration methods have been suggested in 

the literature. In these methods, ratio of two Gaussian random variables is involved 

and this creates a flaw. The ratio is Cauchy distributed and not Gaussian distributed. 

Neither mean nor dispersion exists in Cauchy distribution. To overcome this flaw of 

trapping into a Cauchy distribution, a novel method of integrating DEA and PCA, as 

it is proposed and demonstrated in this article, would enrich the validity of the 

integration. A medical example is considered for illustration. In the medical example, 

45 countries are rated with respect to their survival rate from melanoma cancer 

among men and among women as output data variable and data on location latitude, 

ozone thickness, ultraviolet rays of type A and type B as input data variables. Firstly, 

DEA, secondly PCA are separately applied and then thirdly integrated approach of 

this article is tried on data. The results are compared and commented with a few 

concluding thoughts [17]. 

 

Principal Component Principles (PCA) based algorithm to extract cracks in 

concrete bridge decks for the purpose of automating inspection is presented by Ikhlas 

A.Q et al.,(2006). PCA will be used to identify clusters using a database of bridge 

images. Results from three different PCA approaches are presented in this work. The 

first approach employs PCA by itself on raw data. In the second approach, a linear 

structure modeling is implemented prior to PCA processing in an effort to enhance 

the results since cracks can be detected as linear structures. Several convolution-

processes with masks designed to identify linear structure in the data are used. In 

both cases, attempts to detect cracks in a global framework were used. The third 

approach, on the other hand, used local information (neighborhoods) instead of 

global. That is, each image is segmented into small blocks where each block is 

processed as an individual entity. Experimental results show enhancement in the 

local detection with linear modeling over the globa [18]. 
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Carlos G. et al., (2006) proposed to analyse the magnetoencephalogram 

(MEG) background activity in patients with Alzheimer's disease (AD) using the 

Lempel–Ziv (LZ) complexity. This non-linear method measures the complexity of 

finite sequences and is related to the number of distinct substrings and the rate of 

their occurrence along the sequence. The MEGs were recorded with a 148-channel 

whole-head magnetometer (MAGNES 2500 WH, 4D Neuroimaging) in 21 patients 

with AD and in 21 age-matched control subjects. Artefact-free epochs were selected 

for complexity analysis. Results showed that MEG signals from AD patients had 

lower complexity than control subjects’ MEGs and the differences were statistically 

significant (p < 0.01). In order to reduce the dimension of the LZ complexity results, 

a Principal Components Analysis (PCA) was applied, and only the first principal 

component was retained. The first component score from PCA was graphically 

analysed using a box plot and a receiver-operating characteristic (ROC) curve. A 

specificity of 85.71%, a sensitivity of 80.95% and an area under the ROC curve of 

0.9002 were obtained. These preliminary results suggest that cognitive dysfunction 

in AD is associated with a decreased LZ complexity in the MEG signals [19]. 

  

Producing the grain with equilibrium moisture content is an important 

process control objective. Xueqiang et. al, (2005) achieving this objective and it can 

be very difficult in grain drying process because of its multi-variables, nonlinearity 

and long delay. In this paper, a control approach based on principal component 

analysis (PCA) is presented to achieve this objective. A PCA model which 

incorporates time lagged variables is used, and the control objective is expressed in 

the score space of this PCA model. A controller is designed in the model predictive 

control framework, and it is used to control the equivalent score space representation 

of the process. The score predictive model for the model predictive control algorithm 

is built using neural network partial least squares (NNPLS). The process control 

system with NNPLS was tested on a commercial mixed-flow dryer and showed 

excellent accuracy and stability [20]. 

 

A straight line detection algorithm is presented by Yun-Seok L. et.al, 

(2006).The algorithm separates row and column edges from edge image using their 

primitive shapes. The edges are labeled, and the principal component analysis (PCA) 
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is performed for each labeled edges. With the principal components, the algorithm 

detects straight lines and their orientations, which is useful for various intensive 

applications. Our algorithm overcomes the disadvantages of Hough transform (HT) 

and other algorithms, i.e. unknown grouping of collinear lines, complexity and local 

ambiguities. The experimental results show the efficiency of our algorithm [21]. 

 

On the other hand, in this study Kemal P. et al, (2006), have detected on lung 

cancer using principles component analysis (PCA), fuzzy weighting pre-processing 

and artificial immune recognition system (AIRS). lung cancers are cancers that begin 

in the lungs. Other types of cancers may spread to the lungs from other organs. 

However, these are not lung cancers because they did not start in the lungs. It is 

evident that usage of machine learning methods in disease diagnosis has been 

increasing gradually. In this study, diagnosis of lung cancer, which is a very common 

and important disease, was conducted with such a machine learning system. The 

approach system has three stages. First, dimension of lung cancer dataset that has 57 

features is reduced to four features using principles component analysis. Second, a 

new weighting scheme based on fuzzy weighting pre-processing was utilized as a 

pre-processing step before the main classifier. Third, artificial immune recognition 

system was our used classifier. They took the lung cancer dataset used in our study 

from the UCI machine learning database. The obtained classification accuracy of our 

system was 100% and it was very promising with regard to the other classification 

applications in literature for this problem [22]. 

 Weixiang S. et. al, (2006) proposed analyzing the flaws of conventional fault 

diagnosis methods, data mining technology is introduced to fault diagnosis field, and 

a new method based on C4.5 decision tree and Principal Component Analysis (PCA) 

is proposed. In this method, PCA is used to reduce features after data collection, 

preprocessing and feature extraction. Then, C4.5 is trained by using the samples to 

generate a decision tree model with diagnosis knowledge. At last the tree model is 

used to make diagnosis analysis. To validate the method proposed, six kinds of 

running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, 

shaft crack and a simultaneous state of unbalance and radial rub), are simulated on 

Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation 
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neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis 

method has higher accuracy and needs less training time than BPNN [23]. 
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CHAPTER IV 

 

 

 

METHODOLOGY 

 

 

 

 

4.0 Introduction 

 

To ensure the research could be done in time as intended, the methodology is 

divided into two parts which are case study and method algorithm. During the case 

study, the AFPT 921 Plant (Air Flow Pressure Temperature is used to gather the inputs 

data. Then the inputs data are manipulated to make the output one. In method algorithm, 

there will be operational framework of the research. 

 

 

 

4.1 Case Study of AFPT 921 

 

AFPT 921 Plant is a process control training system which is related to the study 

of air (gas), flow rate, pressure and temperature in the pipeline and the tank as well. The 

process measurement and control system as follows: 

a) Temperature Measurement & Control 

i) PID Temperature Control, Single loop 

  ii) ON/OFF Temperature Control 

  iii) PID Temperature Auto-Selector Control 
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b) Flowrate Measurement & Control 

i)  Air Flow Measurement in a Pipeline-Volumetric and Mass  

             Flowrate 

  ii) Uncompensated gas flow measurement, Fv = K1.√h  

iii) Compensated gas flow measurement  

 

  
(hp)

Mass Flowrate, Fm = km.
T

 

 

  
(hp)

Volumetric Flowrate, STP or NTP based, Fvb = kvb.
T

 

 

  
(hp)

Volumetric Flowrate, at flowing condition, Fv = kv.
P

 

 

    v) Absolute engineering unit of Pressure and Temperature  

vi) Variable area flow meter for gas 

vii) PID Flow Control 

viii) Low Flow Detection and Control 

 

c) Pressure Measurement & Control 

i) ON/OFF Air Pressure Control 

ii) PID Air Pressure Control, Single Loop, Single Capacity or    

Pipeline 

iii) PID Air Pressure Control, Single Loop, Multicapacities 

iv) PID Air Pressure Control, Cascade 
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4.2 Methodology Framework 

 

The Figure 3.1 below shows the steps to develop this project. Among that, the 

development of gas density measurement using Matlab is the crucial part. It involves 

understanding the concept of multivariate analysis and PCA technique plus writing 

source data. 

Density Calculation 

Plot Profile 

Data Gathering 

 
 

 

 

Development of Principal Component 
Analysis Model 

 

 

 

 Validation 

 

Figure 4.1  Flowcharts for Methodology 

 

 

 

 

 



 38

4.2.1 Data Gathering 

 

Data is gathered through the experiment of AFPT Plant in which two input 

variables were measured. The data is gathered in such a way is shows significant 

stability as the variables change with time from one setting value to another. 

 

 

 

4.2.2 Density Calculation 

 

As the density is to be determined, the input variables were transferred to the 

excel so that the density can be calculated. The calculation method is done by 

manipulating the ideal gas law while the input variables are used simultaneously to the 

equation. 

 

 

 

4.2.3 Plot Profile 

 

Variables profile is the graph illustration of correlation between density and both 

of input variables. The graph is purposely used to show the dynamic behavior between 

input variables and output variable. 

 

 

 

4.2.3 Model Development 

 

The PCA technique is used with MATLAB to develop the measurement model: 

i) Get some data 

ii) Subtract the mean 

iii) Calculate the covariance matrix 
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iv) Calculate the eigenvectors and eigenvalues of the covariance 

v) Choosing components and forming a feature vector 

vi) Deriving the new data set 

 

 

 

4.2.4 Validation 

 

The validation process is the process used to see the validity of the final equation 

respective to the theory one. The result from the real process will be compared to the 

result in MATLAB to validate the model. The percentage error is calculated by 

comparing the manual calculation (excel calculation) with the value of PCA technique. 
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CHAPTER V 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

 

5.0 Data Gathering 

 

Figure 5.1 and Figure 5.2 show the data that gathered from the experiment of 

AFPT 921 Plant.  

 

Table 5.1  Temperatures in Pipeline (Experiment Data) 

TIME (mint) SET POINT (ºC) 
PROCESS TEMPERATURE 

(ºC) 
PROCESS 

TEMPERATURE (K) 
Steady State 60 52.93584 326.08584 

2 60 54.99104 328.14104 
4 60 56.98901 330.13901 
6 60 58.90116 332.05116 
8 60 60.90143 334.05143 

10 70 62.98641 336.13641 
12 70 64.93421 338.08421 
14 70 66.94769 340.09769 
16 70 68.99101 342.14101 
18 70 70.92111 344.07111 
20 80 72.96864 346.11864 
22 80 74.99011 348.14011 
24 80 76.97012 350.12012 
26 80 98.9321 372.0821 
28 80 80.94112 354.09112 
30 90 82.9214 356.0714 
32 90 84.9711 358.1211 
34 90 86.95121 360.10121 
36 90 88.98143 362.13143 
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38 90 90.90091 364.05091 
40 100 92.97101 366.12101 
42 100 94.9344 368.0844 
44 100 96.98323 370.13323 
46 100 98.97447 372.12447 
48 100 100.91134 374.06134 
50 110 102.93411 376.08411 
52 110 104.90013 378.05013 
54 110 106.99932 380.14932 
56 110 108.97421 382.12421 
58 110 110.965 384.115 
60 120 112.9547 386.1047 
62 120 114.92101 388.07101 
64 120 116.93107 390.08107 
66 120 118.94441 392.09441 
68 120 120.97521 394.12521 
70 130 122.97012 396.12012 
72 130 124.98421 398.13421 
74 130 126.9321 400.0821 
76 130 128.92101 402.07101 
78 130 130.97667 404.12667 
80 140 132.91431 406.06431 
82 140 134.92121 408.07121 
84 140 136.956 410.106 
86 140 138.953 412.103 
88 140 140.9939 414.1439 
90 150 142.9985 416.1485 
92 150 144.9912 418.1412 
94 150 146.9701 420.1201 
96 150 148.9443 422.0943 
98 150 150.0172 423.1672 
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Table 5.2  Pressures in Pipeline (Experiment Data) 

TIME (mint) 
SET POINT 

(kg/Hr.) 
FLOW RATE IN PIPELINE 

(kg/Hr.) PRESSURE IN TANK (Pa) 
Steady state 19 19.91088 137280.018 

2 19 18.64366 128542.8861 
4 19 18.65439 128616.8665 
6 19 19.08296 131571.7383 
8 19 18.55604 127938.7704 
10 18 19.03587 131247.0657 
12 18 17.90515 123451.0637 
14 18 18.00588 124145.5692 
16 18 18.05774 124503.1296 
18 18 18.08874 124716.866 
20 17 17.67984 121897.6134 
22 17 16.61529 114557.8352 
24 17 16.8698 116312.6114 
26 17 17.02299 117368.8141 
28 17 17.05637 117598.96 
30 16 16.70052 115145.4725 
32 16 15.90121 109634.4509 
34 16 16.43775 113333.746 
36 16 16.05672 110706.6494 
38 16 15.94333 109924.8566 
40 15 16.94721 116846.332 
42 15 15.23561 105045.3227 
44 15 15.30749 105540.9155 
46 15 16.4309 113286.5171 
48 15 16.73473 115381.341 
50 14 13.68091 94326.09564 
52 14 13.98668 96434.29533 
54 14 13.92588 96015.09612 
56 14 13.9986 96516.48044 
58 14 13.91098 95912.36474 
60 13 13.94734 96163.0569 
62 13 12.85835 88654.77164 
64 13 12.98352 89517.78421 
66 13 12.99604 89604.10616 
68 13 13.0318 89850.66148 
70 12 13.02942 89834.25204 
72 12 11.87724 81890.28918 
74 12 12.03996 83012.19864 
76 12 12.03222 82958.83347 
78 12 12.00897 82798.53115 
80 11 12.01076 82810.8727 
82 11 10.80553 74501.14475 
84 11 10.93845 75417.59143 
86 11 10.98077 75709.37615 
88 11 10.99329 75795.69809 
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90 10 11.01952 75976.54669 
92 10 10.44492 72014.8384 
94 10 10.34419 71320.33288 
96 10 10.33226 71238.07882 
98 10 10.31617 71127.14271 

 

The temperature and pressure were manipulated by time to evaluate the dynamic 

performance. The temperature and pressure value are obtained from the pipeline setting 

only. The data is redundant when the process has reached the steady state.  

 

 

 

5.1 Gas Density Measurement 

 

The density is measured by manipulating the ideal gas law which the gas 

condition is assumed as ideal gas. Then the constant value is developed and 

simultaneously the pressure and the temperature were used to calculate the density. The 

constant value is developed as shown below: 
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We know that,

m      ρ
v

Perfect Gas Law :  PV nRT

m mwn    ,    constant, K
mw R

Rearrange the Perfect Gas Law

m mw P
V R T

R=8.314 J/mol.K  and mw = 28.98 kg/mol

Pρ  K    ,   K 3.4845
T

pρ 3.4845
T

=

=

= =

=

= =

=

           (5.1) 
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Table 5.3 Results of Density Calculation 

TIME (mint) 
PROCESS 

TEMPERATURE (K) 
PRESSURE IN 

TANK (Pa) 
DENSITY IN TANK ( 

ρ ) 
Steady State 326.08584 137280.018 1466.951839 

2 328.14104 128542.8861 1364.985272 
4 330.13901 128616.8665 1357.505347 
6 332.05116 131571.7383 1380.696041 
8 334.05143 127938.7704 1334.532965 

10 336.13641 131247.0657 1360.550023 
12 338.08421 123451.0637 1272.361201 
14 340.09769 124145.5692 1271.944058 
16 342.14101 124503.1296 1267.989345 
18 344.07111 124716.866 1263.041002 
20 346.11864 121897.6134 1227.186822 
22 348.14011 114557.8352 1146.598066 
24 350.12012 116312.6114 1157.577846 
26 372.0821 117368.8141 1099.14353 
28 354.09112 117598.96 1157.254596 
30 356.0714 115145.4725 1126.808834 
32 358.1211 109634.4509 1066.737604 
34 360.10121 113333.746 1096.6679 
36 362.13143 110706.6494 1065.241202 
38 364.05091 109924.8566 1052.141754 
40 366.12101 116846.332 1112.066865 
42 368.0844 105045.3227 994.4198313 
44 370.13323 105540.9155 993.5809332 
46 372.12447 113286.5171 1060.792559 
48 374.06134 115381.341 1074.81378 
50 376.08411 94326.09564 873.9515218 
52 378.05013 96434.29533 888.8379488 
54 380.14932 96015.09612 880.0873363 
56 382.12421 96516.48044 880.1108836 
58 384.115 95912.36474 870.0692109 
60 386.1047 96163.0569 867.8479484 
62 388.07101 88654.77164 796.0335707 
64 390.08107 89517.78421 799.6407492 
66 392.09441 89604.10616 796.3018598 
68 394.12521 89850.66148 794.3785934 
70 396.12012 89834.25204 790.2336575 
72 398.13421 81890.28918 716.7098568 
74 400.0821 83012.19864 722.9916214 
76 402.07101 82958.83347 718.9527423 
78 404.12667 82798.53115 713.913491 
80 406.06431 82810.8727 710.6127744 
82 408.07121 74501.14475 636.1616123 
84 410.106 75417.59143 640.7918863 
86 412.103 75709.37615 640.1538479 
88 414.1439 75795.69809 637.7254621 



 46

90 416.1485 75976.54669 636.1678029 
92 418.1412 72014.8384 600.1219311 
94 420.1201 71320.33288 591.5348966 
96 422.0943 71238.07882 588.0891679 
98 423.1672 71127.14271 585.684639 

 

 

 

5.2 Plot Profile 

 

Figure 5.1 and Figure 5.2 show the dynamic performance profile of the density versus 

temperature and pressure accordingly. 
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Figure 5.1 Profile Density versus Temperature 
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Density VS Pressure
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Figure 5.2 Profile Density versus Pressure 

 

As illustrated in the first profile the density is inverse proportional as the 

temperature increases. It is because the increase of temperature affected the kinetic 

energy of the air. On the other hand, the second profile shows that the density is 

proportional to the pressure. It is because as the pressure increases the air molecules are 

getting closer to each other because of the increasing forces. 

 

 

 

5.3 Development of Principal Component Analysis Model 

 

The modeling was started by categorization in the M-file in which the input variables 

were named as follows: 

 x = temperature 

 y = pressure 
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Figure 5.3  The Programming Data Set in M-file 

 

 

 

 
Figure 5.4 The Programming Data Set in M-file (contd) 
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Figure 5.3 and Figure 5.4 show the programming data set in the M-file. The data 

set is coded whereby the programming codes were installed starting from naming the 

input variables until to correlation coefficient. The 50 of data was exported to the M-file 

and the reduction of the data dimension occurred once the data is being placed in the 

command window. 

 

 

 

5.4 The PCA Codes  

The PCA codes is the coding that being used in the modeling session which is the 

coding term begun with the introduction of syntax. Here is the coding for the 

development gas density measurement model: 

 

i) M = mean (A) 

M = mean (A) returns the mean values of the elements along different 

dimensions of array. If A is a vector, mean (A) returns the mean value of A. If A 

is a matrix, mean (A) treats the columns of A as vectors, returning a row vector 

of mean values. If A is multidimensional array, mean (A) treats the value along 

the first non-singleton dimension as vectors, returning an array of mean values. 

M = mean (A, dim) returns the mean value for elements along the dimension of 

A specified by scalar dim. 

 

ii) C = cov (x) 

C = cov (x.y) 

C = cov(x) where x is a vector returns the variance of the vector elements. For 

matrices where each row is an observation and each column a variable, cov(x) is 

the covariance matrix. Diag(cov(x)) is a vector of variances for each column, and 

sqrt(diag(cov))) is a vector of standard deviations. C = cov(x,y), where x and y 

are column vector of equal length, is equivalent to cov([x y]) 
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iii) z =cov(x,y) 

eig(z) 

[x,y]=eig (z) 

 

Eigenvector and eigenvalues for the involved matrix 

 

iv) PC = princomp(X) 

[PC,SCORE,latent,tsquare] = princomp(X) 

 

[PC,SCORE,latent,tsquare] = princomp (X) takes a data matrix and 

returns the principal components in PC, the so-called Z-scores in 

SCORES, the eigenvalues of the covariance matrix of X in latent, and 

Hotelling’s T2 statistic for each data point in tquare. The Z-scores are the 

data formed by transforming the original data into the space of the 

principal components. The values of the vector, latent, are the variance of 

the columns of SCORE. Hotelling’s T2 is a measure of the multivariate 

distance of each observation from the center of data set. 

 

v) S = corrcoef(x) 

S = corrcoef(x,y) 

 

S = corrcoef(X) returns a matrix of correlation coefficient calculated from 

an input matrix whose rows are observations and whoe column are 

variables. The matrix S = corrcoef(X) is related to the covarianve matrix 

C = cov (X). 
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5.5 Validation 

 

From the programming, the result that obtained from Matlab shows the value of 

the gas density measurement. The variables that are used in this research by using 

Principal Component Analysis are temperature, pressure, and density. All the results are 

based on the experiment of AFPT 921 Plant. Table 5.4 shows the results for gas density 

based on Matlab M-file programming. 

 

 

Table 5.4 Results of Gas Density from Programming 

PROCESS TEMPERATURE (K) 
PRESSURE IN TANK 

(Pa) DENSITY (programming) 
326.08584 137280.018 1447.800867 
328.14104 128542.8861 1378.464962 
330.13901 128616.8665 1381.067426 
332.05116 131571.7383 1407.123834 
334.05143 127938.7704 1379.439123 
336.13641 131247.0657 1408.556184 
338.08421 123451.0637 1346.802851 
340.09769 124145.5692 1354.491136 
342.14101 124503.1296 1359.456082 
344.07111 124716.866 1363.132622 
346.11864 121897.6134 1342.144039 
348.14011 114557.8352 1284.192181 
350.12012 116312.6114 1300.510468 
372.0821 117368.8141 1331.10268 
354.09112 117598.96 1314.992222 
356.0714 115145.4725 1296.925056 
358.1211 109634.4509 1253.944198 
360.10121 113333.746 1286.151249 
362.13143 110706.6494 1266.715462 
364.05091 109924.8566 1262.246913 
366.12101 116846.332 1320.872389 
368.0844 105045.3227 1226.409732 
370.13323 105540.9155 1232.508051 
372.12447 113286.5171 1297.788601 
374.06134 115381.341 1316.842277 
376.08411 94326.09564 1146.822637 
378.05013 96434.29533 1166.014757 
380.14932 96015.09612 1164.68867 
382.12421 96516.48044 1170.760372 

384.115 95912.36474 1167.814932 
386.1047 96163.0569 1171.853038 
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388.07101 88654.77164 1112.469149 
390.08107 89517.78421 1121.530885 
392.09441 89604.10616 1124.249561 
394.12521 89850.66148 1128.294965 
396.12012 89834.25204 1130.155793 
398.13421 81890.28918 1067.259763 
400.0821 83012.19864 1078.374775 
402.07101 82958.83347 1079.927638 
404.12667 82798.53115 1080.673468 
406.06431 82810.8727 1082.711951 
408.07121 74501.14475 1016.820064 

410.106 75417.59143 1026.34314 
412.103 75709.37615 1030.724313 

414.1439 75795.69809 1033.470549 
416.1485 75976.54669 1036.952863 
418.1412 72014.8384 1006.574445 
420.1201 71320.33288 1002.87854 
422.0943 71238.07882 1004.180642 
423.1672 71127.14271 1004.347083 

 

Table 5.4 represents the density measurement from the PCA technique in which the 

developed model is shown as follows: 

 

ρ = k1(T) + k2(P)        (5.2) 

 

whereby from the programming, k1 and k2 are the correlation coefficient between two 

input variables 

 

 k1 = 1.0000 

 k2 = 0.8171 

 

Therefore the Gas Density Measurement model is 

 

 ρ = 1.0000 (T) + 0.8171(P)       (5.3) 
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Table 5.5 Comparison between Manual and Simulation 

DENSITY (Ideal Gas Law) DENSITY (programming) Percentage of error (%) 
1466.951839 1447.800867 1.305494256 
1364.985272 1378.464962 -0.987533732 
1357.505347 1381.067426 -1.735689591 
1380.696041 1407.123834 -1.914092039 
1334.532965 1379.439123 -3.364934339 
1360.550023 1408.556184 -3.528437778 
1272.361201 1346.802851 -5.850669601 
1271.944058 1354.491136 -6.489835577 
1267.989345 1359.456082 -7.213525678 
1263.041002 1363.132622 -7.924653265 
1227.186822 1342.144039 -9.367540047 
1146.598066 1284.192181 -12.0002047 
1157.577846 1300.510468 -12.34756025 
1099.14353 1331.10268 -21.10362693 
1157.254596 1314.992222 -13.63033049 
1126.808834 1296.925056 -15.09716794 
1066.737604 1253.944198 -17.54945108 
1096.6679 1286.151249 -17.2780975 

1065.241202 1266.715462 -18.91348735 
1052.141754 1262.246913 -19.96928249 
1112.066865 1320.872389 -18.77634615 
994.4198313 1226.409732 -23.32917078 
993.5809332 1232.508051 -24.04707154 
1060.792559 1297.788601 -22.34141256 
1074.81378 1316.842277 -22.51817957 
873.9515218 1146.822637 -31.22268323 
888.8379488 1166.014757 -31.18417801 
880.0873363 1164.68867 -32.33785125 
880.1108836 1170.760372 -33.02418977 
870.0692109 1167.814932 -34.22092373 
867.8479484 1171.853038 -35.02976416 
796.0335707 1112.469149 -39.75153686 
799.6407492 1121.530885 -40.25434373 
796.3018598 1124.249561 -41.18384218 
794.3785934 1128.294965 -42.03491564 
790.2336575 1130.155793 -43.0153958 
716.7098568 1067.259763 -48.91099276 
722.9916214 1078.374775 -49.15453279 
718.9527423 1079.927638 -50.20843158 
713.913491 1080.673468 -51.37316799 
710.6127744 1082.711951 -52.36314207 
636.1616123 1016.820064 -59.83675285 
640.7918863 1026.34314 -60.16793626 
640.1538479 1030.724313 -61.01196867 
637.7254621 1033.470549 -62.05571369 
636.1678029 1036.952863 -62.99989693 
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600.1219311 1006.574445 -67.728322 
591.5348966 1002.87854 -69.53835619 
588.0891679 1004.180642 -70.7531267 
585.684639 1004.347083 -71.48257204 

 

The value of gas density is quite higher because the PCA technique that used in 

Matlab purposely to reduce the dimension of many variables. Since this research only 

involved two variables, the correlation coefficient obtained from PCA cannot 

implements all steps that stipulate in the PCA technique itself. 

 

Both of the results for the gas density from experiment (manual) data and the 

simulation data were compared to see the differences between both of them. The error 

between the manual data and the experiment data are calculated based on the following 

equation: 

 

 

manual-programmingError = x 100%
manual

      (5.3) 

 

 

 

5.6 Analysis and Discussion 

 

M-file in Matlab provides and advantages to illustrate the principal component analysis. 

Since it is not easy task and calculating manually will become tedious when there is 

more variables involved, M-file helps a lot to illustrate the principal component. 

 

After gaining data from the Microsoft Excel and from the developed model, both results 

were compared to validate the model. From Table 5.5, it shows that an error occurred 

when both results were compared. From this comparison, it was found that the best 

configuration is when the both of inputs are at early stage of the process. 
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CHAPTER VI 

 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

 

 

6.0 Conclusions 

 

At the end of this project, it was covered the objectives that have been stated at 

the early stage of this research which are to model the relationship between primary 

output (density) and inputs (temperature and pressure) using Principal Component 

Analysis and also to develop a program to measure the density from AFPT 921 Plant. 

 

 

 

6.2 Recommendation 

 

This research hopefully relies to the gas density measurement on any real plant 

as a tremendous solution to correlates the involved process variables. Optimistically, this 

research also hopefully can be expanded by the future students in order to emphasize our 

knowledgeable sources. 
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CASE STUDY OF AFPT 921 PLANT 

(PROCESS CONTROL TRAINING SYSTEM) 
 

 
 

Process Instrumentation Design I 
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Process Instrumentation Design II 
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PIC92 Pressure vs Time 
 
 
 

 
 

TIC92 Temperature vs Time 
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APPENDIX II 

 

CODING FOR GAS DENSITY MEASUREMENT MODEL USING PCA 

TECHNIQUE IN MATLAB 
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CODING FOR PCA TECHNIQUE USING MATLAB 

 

>>  

x = temperature 

 

  Columns 1 through 13  

 

  326.0858  328.1410  330.1390  332.0512  334.0514  336.1364  338.0842  340.0977  

342.1410  344.0711  346.1186  348.1401  350.1201 

 

 

 

 

  Columns 14 through 26  

 

  372.0821  354.0911  356.0714  358.1211  360.1012  362.1314  364.0509  366.1210  

368.0844  370.1332  372.1245  374.0613  376.0841 

 

  Columns 27 through 39  

 

  378.0501  380.1493  382.1242  384.1150  386.1047  388.0710  390.0811  392.0944  

394.1252  396.1201  398.1342  400.0821  402.0710 

 

  Columns 40 through 50  

 

  404.1267  406.0643  408.0712  410.1060  412.1030  414.1439  416.1485  418.1412  

420.1201  422.0943  423.1672 

 

y = pressure 

 

  1.0e+005 * 
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  Columns 1 through 13  

 

    1.3728    1.2854    1.2862    1.3157    1.2794    1.3125    1.2345    1.2415    1.2450    

1.2472    1.2190    1.1456    1.1631 

 

  Columns 14 through 26  

 

    1.1737    1.1760    1.1515    1.0963    1.1333    1.1071    1.0992    1.1685    1.0505    

1.0554    1.1329    1.1538    0.9433 

 

 

 

  Columns 27 through 39  

 

    0.9643    0.9602    0.9652    0.9591    0.9616    0.8865    0.8952    0.8960    0.8985    

0.8983    0.8189    0.8301    0.8296 

 

  Columns 40 through 50  

 

    0.8280    0.8281    0.7450    0.7542    0.7571    0.7580    0.7598    0.7201    0.7132    

0.7124    0.7113 

 

 

M = x 

  375.4849 

 

M = y 

  1.0168e+005 
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z = covariance matrix 

  1.0e+008 * 

 

    0.0000   -0.0056 

   -0.0056    3.9684 

 

ans = 

 

  1.0e+008 * 

 

    0.0000 

    3.968 

 

x = 

 

   -1.0000   -0.0014 

   -0.0014    1.0000 

 

 

y = 

 

  1.0e+008 * 

 

    0.0000         0 

         0    3.9684 

 

 

PC = principal component 

 

    0.7061   -0.7081 

    0.7081    0.7061 
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PC = principal component 

 

    0.7061   -0.7081 

    0.7081    0.7061 

 

 

SCORE = 

 

   -0.7071         0 

    0.7071         0 

 

latent = 

 

    1.0000 

         0 

 

 

tsquare = 

 

    1.0000 

 

 

PC = principal component 

 

   -0.0000    1.0000 

    1.0000    0.0000 

 

 

PC = principal component 
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   -0.0000    1.0000 

    1.0000    0.0000 

 

 

SCORE = 

 

  1.0e+008 * 

 

   -1.9842         0 

    1.9842         0 

 

 

latent = 

 

  1.0e+016 * 

 

    7.8742 

         0 

 

 

tsquare = 

 

    1.0000 

 

 

pc = principal component 

 

     1     0 

     0     1 
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pc = principal component 

 

     1     0 

     0     1 

 

 

latent = 

 

     1 

     1 

 

 

explained = 

 

    50 

    50 

 

pc = 

 

     0     1 

     1     0 

 

 

pc = 

 

     0     1 

     1     0 

 

 

latent = 
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  1.0e+008 * 

 

    3.9684 

    0.0000 

 

 

explained = 

  100.0000 

    0.0000 

 

 

 

C = correlation coefficient 

 

    1.0000   -0.9788 

   -0.9788    1.0000 

 

k1 =     1 

k2 =   0.8171 

 

P = 1.0e+005 * 

 

  Columns 1 through 13  

 

   -1.3404   -1.2549   -1.2556   -1.2845   -1.2489   -1.2813   -1.2050   -1.2117   -1.2152   -

1.2173   -1.1897   -1.1178   -1.1350 

 

  Columns 14 through 26  
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   -1.1451   -1.1475   -1.1235   -1.0695   -1.1057   -1.0800   -1.0723   -1.1400   -1.0245   -

1.0293   -1.1051   -1.1256   -0.9195 

 

  Columns 27 through 39  

 

   -0.9401   -0.9360   -0.9409   -0.9349   -0.9374   -0.8639   -0.8723   -0.8731   -0.8755   -

0.8753   -0.7976   -0.8085   -0.8080 

 

  Columns 40 through 50  

 

   -0.8064   -0.8065   -0.7251   -0.7341   -0.7369   -0.7377   -0.7395   -0.7007   -0.6939   -

0.6931   -0.6920 
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