
NETWORK INTRUSION PREVENTION SYSTEM (NIPS) BASED ON
NETWORK INTRUSION DETECTION SYSTEM (NIDS) AND

1D3 ALGORITHM DECISION TREE CLASSIFIER

SYURAIIBIL

Thesis submitted in fulfillment of the requirements
for the award of the degree of

Master of Science
(Computer)

Faculty of Computer Systems and Software Engineering
UNIVERSITI MALAYSIA PAHANG

MAY 2011

11

UNIVERSITI MALAYSIA PAHANG

CENTER FOR GRADUATE STUDIES

We certify that the thesis entitled Network Intrusion Prevention System (NIPS) Based

on Network Intrusion Detection System (NIDS) and 1D3 Algorithm Decision Tree

Classifier is written by Syurahbil. We have examined the final copy of this thesis and in

our opinion; it is fully adequate in terms of scope and quality for award of degree of

Master of Science (Computer). We herewith recommend that it be accepted in

fulfillment of the requirements for the degree of Master of Science (Computer).

External examiner

Prof Dr. Kasmiran Jurnari 	 Signature

Department of Electrical, Electronic and Systems Engineering Professor Dr. Ka mir	 an
professor Dalam Kejuniteraan Komputer

Faculty of Engineering	 Jabatan K$JWteraafl Elektrik, Elektronik & Si:
Fakuffi Kejuruteraan

Uni versiti Kebangsaan Malaysia 	 Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E.

Internal examiner:

Prof. Madya. Dr. Jasni binti Mohamad Zain

Faculty of Computer Systems and Software Engineering

Universiti Malaysia Pahang

nature
OR. .k*.$NI awn MOf4AW..D ZAIN

Con'upi*sr Systems & Software Englie(
LWI Nlsysa Pufl
UteSu 'IWi Rusk 2e100 Gambsqi, Ku.ntan44 3Pib'Zs6 F — 09449 2144

SUPERVISOR'S DECLARATION

We hereby declare that We have checked this thesis and in our opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Master of Science

(Computer).

Signature

Name of Supervisor 	 DR. NORAZIAH AHMAD

Position	 : SENIOR LECTURER FACULTY OF COMPUTER

SYSTEMS AND SOFTWARE ENGINEERING,

UNIVERSITI MALAYSIA PAHANG

Date	 a(a 1 S7 (aoil

Signature	 :

Name of Co-supervisor MR. MOHAMAD FADLI BIN ZOLKIPLI

Position	 : LECTURER FACULTY OF COMPUTER SYSTEMS AND

SOFTWARE ENGINEERING,

UNIVERSITI MALAYSIA PAHANG

Date	 . I /

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged. The thesis has not been accepted for

any degree and is not concurrently submitted for award of other degree.

Signature

Name	 SYTJRAHBIL

ID Number : MCC 08003

Date	 :

lv,

Dedicated to my parents, my grand parents, my beloved wife, my children

and my big family

vi

ACKNOWLEDGMENTS

I would like to express my most sincere gratitude to the supervisory Dr.
Noraziah Ahmad for his continuing support, professional guidance and for giving me an
opportunity to learn what research is all about. Special gratitude also to Prof. Abdullah
Embong, Mr. Mohamad Fadli Zolkipli and Mr. Mohamad Ramiza Ramli for their
contributions, guidance and time towards this research.

Sincerely thanks should be forwarded to Naib Chancellor Universiti Malaysia
Pahang (UMP) Yll. Prof. Dato' Dr. Daing Mohamed Nasir bin Daing Ibrahim; DIMP,
for the Grant Research Scheme. Not forget to Dean Faculty Computer Systems and
Software Engineering (FSKKP), Assoc. Prof. Dr. Jasni binti Mohamad Zain; staffs in
HR Departement and all friends in UMP.

Special gratitude also to my family, especially to my mother, Syamsiar; in
memory of my father, Abdul Hadi; my beloved wife, Neny Thirta Dewi; my child,
Zahra Zahirah Muhammad and Arifah Azzura Muhammad; my brother Suhaili,
Ramdhan and Muhammad Nasir; my sister Maharani; my mother in-law, Hj. Maharani
Rahman, and my father in-law, H. Warneny Robert, my brother in law, Roy Ferdinand
Chandra; my sister in-law, Renny Andhora and Gusti Wulandari; for their patience and
morale support. Not forget to big family of Syed Burhanuddin Zulkarnain and dr.
Tengku Noraida Adlan are always helpful and supportive to me.

Finally, I thank to all my friends especially to Furqan, Sajadin, Handrizal,
Rahmat, Triantoro, Fakhri, Triantoro and others who have contribute in this research.

ii

ABSTRACT

Network security has gained significant attention in research and industrial
communities. Due to the increasing threat of the network intrusion, firewalls have
become important elements of the security policy. Firewall performance highly
depends toward number of rules, because the large more rules the consequence makes
downhill performance progressively. Firewall can be allow or deny access network
packets incoming and outgoing into Local Area Network (LAN), but firewall can not
detect intrusion. To distinguishing an intrusion network packet or normal is very
difficult and takes a lot of time. An analyst must review all the network traffics
previously. In this study, a new way to make the rules that can determine network
packet is intrusion or normal automatically. These rules implemented into firewall as
prevention, which if there is a network packet that match these rules then network
packet will be dropped. This is called Network Intrusion Prevention System (NIPS).
These rules are generated based on Network Intrusion Detection System (NIDS) and
Iterative Dichotomiser 3 (ID3) Algorithm Decision Tree Classifier, which as data
training is intrusion network packet and normal network packets from previous network
traffics. The experiment is successful, which can generate the rules then implemented
into a firewall and drop the intrusion network packet automatically. Moreover, this way
can minimize number of rules in firewall.

iii

ABSTRAK

Keselamatan rangkaian telah mendapat perhatian penting dalam penyelidikan dan
masyarakat industri. Disebabkan peningkatan ancaman gangguan rangkaian, firewall
telah menjadi elemen penting bagi polisi keselamatan. Kejayaan firewall sangat
bergantung terhadap jumlah peraturan, kerana peraturan-peraturan yang lebih besar
mengakibatkan prestasi semakin menurun. Firewall boleh membenar atau menolak
paket akses rangkaian yang masuk dan keluar daripada Local Area Network (LAN),
tetapi firewall tidak dapat mengesan intrusi. Untuk membezakan pakej intrusi rangkaian
atau normal adalah sangat sukar dan memerlukan banyak masa. Seseorang penganalisis
perlu memeriksa semua rangkaian trafik pada masa sebelumnya. Dalam kajian ini, suatu
cara baru untuk membuat peraturan yang boleh menentukan pakej rangkaian intrusi atau
normal secara automatik. Peraturan-peraturan ini diimplementasikan ke dalam firewall
sebagai pencegahan, yang mana sekiranya ada pakej rangkaian yang sesuai dengan
peraturan-peraturan ini pakej rangkaian akan diabaikan. Ini disebut dengan Network
Intrusion Prevention System (NIPS). Peraturan-peraturan ini dijanakan berdasarkan
Network Intrusion Detection System (NIDS) dan Iteratif Dichotomiser 3 (ID3)
Algorithm Decision Tree Classifier, yang mana data latihan adalah intrusi pakej
rangkaian dan normal pakej rangkaian daripada lalu lintas rangkaian terdahulu.
Eksperimen ini telah berjaya, yang dapat menghasilkan peraturan-peraturan yang
diimplementasikan ke dalam firewall dan pakej intrusi rangkaian diabaikan secara
automatik. Selain itu, cara ini dapat meminimumkan jumlah peraturan dalam firewall.

iv

TABLE OF CONTENTS

 Page

ABSTRACT ii

ABSTRAK iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES ix

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION

1.1 Network Security and Intrusion Detection 2

1.2 Problem Statement 3

1.3 Objective of The Research 5

1.4 Overview of the Thesis 5

1.5 Organization of the Thesis 6

1.4 Conclusion 6

CHAPTER 2 LITERATURE REVIEW

2.1 Intruder 7

2.1.1 Denial-of-Service (DoS) 8
2.1.2 Probe 8
2.1.3 User-to Root (U2R) 9
2.1.3 Remote-to-Local (R2L) 9

2.2 Intrusion Detection System (IDS) 10

2.2.1 Network-based IDS (NIDS) 11
2.2.2 Host-based IDS (HIDS) 11
2.2.3 Misuse Detection 12
2.2.4 Anomaly Detection 12
2.2.5 IDS Products 12

2.3 Intrusion Prevention System (IPS) 15

2.4 Logs Files 15

iv

2.5 Firewall 16

2.5.1 Types of Firewalls 18
2.5.2 Linux Firewalls 22
2.5.3 Choosing a Default Packet-Filtering Policy 24

2.6 Data Mining 27

2.6.1 Knowledge Discovery in Database (KDD) and Data Mining 28
2.6.2 Data Mining Techniques 29

2.7 Decision Tree Classifier of Data Mining 34

2.7.1 Decision Tree Algorithm 36
2.7.2 Motivation of Decision Tree 38

2.8 Conclusion 38

CHAPTER 3 METHODOLOGY

3.1 Proposed Framework 40

3.2 Network Traffic Logs 41

3.3 Determine Intrusion or Normal Network Packet using Snort NIDS 42

3.4 Retrieving Data Set as Data Training 44

3.5 Extract Log Files 44

3.6 ID3 Algorithm 46

3.6.1 Entropy 47
3.6.2 Information Gain 48

3.7 Rule Extraction IF-THEN 48

3.8 Rules Implemented into Firewall Rules 51

3.9 Conclusion 51

CHAPTER 4 IMPLEMENTATION

4.1 NIPS Based on NIDS and ID3 Algorithm Decision Classifier
Environment 52

4.1.1 Setting Server 54
4.1.2 Setting Router and Firewall 56

4.2 Network Traffic Logs 61

4.3 Construct Decision Tree using ID3 Algorithm 65

4.4 Rule Extraction IF-THEN 79

iv

4.5 Classification Intrusion or Normal of The Network Packet 80

4.6 Implementation Rules of Intrusion Signatures into Firewall Rules 81

4.7 Decision Tree to Create Rules Minimize Firewall of Intrusion 84

4.8 Experimental and Result 88

4.9 Conclusion 93

CHAPTER 5 CONCLUSION AND RECOMENDATIONS

5.1 Conclusion 95

5.2 Recommendations 96

REFERENCES 97

APPENDICES 108

A Network Traffic Logs 102

B Manual and Listing Program 114

vii

LIST OF TABLES

Table No. Title Page

1.1 Network traffics illustration 3

2.1 Categories and examples of intruder 8

2.2 Comparison IDS products 14

2.3 Network traffics 32

2.4 Predictive modeling 33

3.1 Extract Log files into table form 45

4.1 Server components specification 54

4.2 IP address and hostname server 54

4.3 Application server 55

4.4 Router and firewall components specification 56

4.5 Software applications in computer as router and firewall 57

4.6 Local DNS 60

4.7 Data set of network traffics for data training 64

4.8 Source IP 67

4.9 Destination IP 68

4.10 Protocol and Destination Port 69

4.11 All data set using Protocol = ICMP 71

4.12 All data set using Protocol = TCP and Destination Port = 22 72

4.13 Source IP using Protocol = TCP and Destination Port = 22 73

4.14 Destination IP using Destination Port = 22 74

4.15 Protocol = TCP, Source IP = 192.168.2.25 and Destination Port = 22 75

4.16 The new network traffics 80

viii

4.17 To predict new network traffics 81

4.18 Some rules of all intrusion activities 86

ix

LIST OF FIGURES

Figure No. Title Page

1.1 Firewall rules drop the intrusion network packet 4

2.1 Snort log files 16

2.2 Syslog log files 16

2.3 Firewall in computer network 17

2.4 The OSI and TCP/IP models 18

2.5 Packet filtering firewall 19

2.6 Policy packet filtering firewall for 10.10.1.2 19

2.7 Application level gateway 20

2.8 Circuit level gateway 21

2.9 Stateful multilayer inspection firewall 22

2.10 Linux firewall syntax 23

2.11 Iptables firewall rules 23

2.12 The deny-everything-by-default policy 25

2.13 The accept-everything-by-default policy 26

2.14 Data mining as one part of the KDD 28

2.15 The KDD process 29

2.16 Clustering 31

2.17 Classification as the task of mapping an input attribute set x into its
class label y 32

2.18 General approach for building a classification model 34

2.25 Types of decision tree 35

3.1 Propose framework of NIPS based on NIDS and ID3 algorithm
decision tree classifier 41

x

3.2 Network traffic logs in computer network 42

3.3 Fragment of snort rules in a file dos.rules 43

3.4 Extract log files of network traffics 45

3.5 Construct decision tree 47

3.6 Decision tree of network traffics 49

3.7 Pruning decision tree network traffic for NIDS 49

3.8 The decision tree converted to classification IF-THEN rules 50

3.9 Rules to implemented into firewall rules 51

4.1 Network topology 53

4.2 Setting IP address and gateway 55

4.3 Setting IP address and router 56

4.4 Configuration of DHCP server 57

4.5 Configure DNS server zone at /etc/named.conf 58

4.6 Configure file /var/named/caching-examples/db.research.com 59

4.7 Configure file /var/named/caching-examples/db.10.10.1 59

4.8 Translate IP address to DNS and on the contrary 60

4.9 nmap software to scan port host 10.10.1.2 62

4.10 nikto software to get information web server at host 10.10.1.2 62

4.11 Try to connect host 10.10.1.2 using password root failed
through SSH 63

4.12 The description of the wrong rules in firewall 66

4.13 The set of 60 examples are 42 intrusion and 18 normal 66

4.14 Each Gain of attributes 70

4.15 Protocol and Destination Port as root node 70

4.16 The set of 4 examples Protocol=ICMP are 4 intrusion and 0 normal 71

xi

4.17 All of instance of ICMP Protocol is Intrusion = Yes 77

4.18 The set of 20 examples Dest Port=22 are 17 intrusion and 3 normal 72

4.19 Source IP decision node under Destination Port = 22 75

4.20 The set of 20 examples Source Port = 22 are 17 intrusion and 3 normal 75

4.21 Leaf node Protocol = TCP and Destination Port = 22 76

4.22 Complete decision tree network traffics 77

4.23 Pruning decision tree network traffics 78

4.24 Rules extraction IF-THEN 79

4.25 Rules of intrusion implemented into firewall rules 82

4.26 Default iptables firewall rules before enter rules 83

4.27 Command line to enter rules into iptables firewall rules 83

4.28 Iptables firewall rules after enter rules 84

4.29 All of intrusion activities implemented into firewall rules 85

4.30 Some rules from all of intrusion activities 87

4.31 R2 represent Ra6, Ra7, Ra8, Ra9, Ra10, Ra11, Ra12, Ra13, Ra14 87

4.32 Extract and compile software nips-nid2s3 88

4.33 All of data training in ‘data’ file 89

4.34 Execute and then to see into firewall rules 90

4.35 Ping using protocol ICMP from 192.168.2.21 to 10.10.1.2 is not reply 91

4.36 Request SSH from 192.168.0.25 to 10.10.1.2 is connection timed out 92

4.37 Request URL from 192.168.0.5 to 10.10.1.2 is taking
too long to respond 92

4.38 Request SSH from 192.168.0. 5 to 10.10.1.5 is connection timed out 93

xii

LIST OF SYMBOLS

E(S) Entropy of S

E(S,A) Entropy S of A

Gain(S,A) Gain S of A

p+ Categorized as positive

p- Categorized as negative

xiii

LIST OF ABBREVIATIONS

ACL Access Control List

BIND Berkeley Internet Name Domain

DARPA Defense Advanced Research Project Agency

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DoS Denial-of-Services

FTP File Transfer Protocol

GA Genetic Algorithm

HIDS Host Intrusion Detection System

ICMP Internet Control Message Protocol

ID3 Iterative Dichotomiser 3

IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

KDD Knowledge Discovery in Database

LAN Local Area Network

MAC Media Access Control

NAT Network Address Translation

NIPS Network Intrusion Prevention System

NIDS Network Intrusion Detection System

OS Operating System

OSI Open System Interconnection

R2L Remote-to-Local

xiv

SNMP Simple Network Management Protocol

SSH Secure Shell

SVM Support Vector Machine

SYN Synchronize

TCP/IP Transmission Control Protocol / Internet Protocol

U2R User-to-Root

UDP User Datagram Protocol

WAN Wide Area Network

1

CHAPTER 1

INTRODUCTION

Several research articles have been published regarding firewall as prevention.

Among them were those by Gollman D. (2006), Al-Shaer E.S. and Hamed H.H. (2004),

Golnabi K. et al. (2006), Terpstra J.H. et al. (2004), Joko Y. and Onno W.P. (2008),

Benelbahri M.A. and Bouhoula A. (2007), Tibbs R.W. and Oakes E.B. (2006), Winding

R. et al. (2006), Suehring S. and Ziegler R.L. (2006), Katić T. and Pale P. (2007),

Wenhui C. et al. (2006). Those articles revealed that updating firewall policy rules one

of the current issues that still unsolved problems, where one of the problem is how to

denied network packet intrusion (Gollman D., 2006; Al-Shaer E.S. and Hamed H.H.,

2004; Golnabi K. et al., 2006; Tibbs R.W. and Oakes E.B., 2006; Suehring S. and

Ziegler R.L., 2006 and Katić T. and Pale P., 2007). This is because several problems

hinder in finding and creating the effective firewall rules of intrusion. Therefore, the

study on this basis is initiated.

Development of the internet and the availability of tools for intrusion by hackers

become critical component of network administration. An intrusion can be defined as

actions that threaten the integrity, confidentiality or availability of a network resources

(SANS Institute, 2008), such as user account, file system, system kernels and so on

(Chandrasekar A. et al., 2009 and SANS Institute, 2008.)

Network security system is described by a firewall (Gollmann D., 2006; Al-

Shaer E.S. and Hamed H.H., 2004, 2004; Guan X. and Yun-jie L, 2010; Golnabi K. et

al., 2006; Tibbs R.W. and Oakes E.B., 2006; Suehring S. and Ziegler R.L., 2006; Katić

T. and Pale P., 2007). Firewalls can limit certain network packet, but firewall cannot

recognize that is network packet is an intrusion or attack. Conversely, there is no

2

Intrusion Detection System (IDS) software who can be immediately implemented into

the firewall policy rules. IDS software can only generate an alarm or log such as snort,

honeypot and portsentry.

1.1 NETWORK SECURITY AND INTRUSION DETECTION

Network Security arise from local computer network connected to wide-area

network such as internet. During local network computer not connected to wide-area

network, problem of network security is not be important. Network security explains the

possibilities to arise from connected local network computer to wide-area network (Joko

Y. and Onno W.P., 2008). The global internet connection, network security has gained

significant attention in research and industrial communities. Due to the increasing threat

of network attacks, firewalls have become important elements of the security policy is

generally (Al-Shaer E.S. and Hamed H.H., 2004; Benelbahri M.A. and Bouhoula A.,

2007 and Suehring S. and Ziegler R.L., 2006).

Firewall is network security and first line of defense against external network

attacks and threats. Firewall controls or governs network access by allowing, denying or

forward the incoming and outgoing network traffics (Guan X. and Yun-jie L., 2010;

Golnabi K. et al., 2006; PC Perspective, 2008; Tibbs R.W. and Oakes E.B., 2006;

Suehring S. and Ziegler R.L., 2006; Mitra S. and Acharya T., 2003; Katić T. and Pale

P., 2007 and Yan Y., 2010).

Firewalls can protect network systems and minimize the risk of attacks to the

network. Intrusion Detection System (IDS) is good for detecting the existence of

intrusion. The technology is joining ability of IDS and protection, so-called Intrusion

Prevention System (IPS) (Wiliam W.S.C., 2005). IPS can detect intrusion and then drop

of intrusion as prevention. Intrusion prevention is an evolution of intrusion detection.

3

1.2 PROBLEM STATEMENT

Behavior of intrusion conducts an attack is slowly, continuous and requires a

long time. They made preparations to find all information of the system, such as

machine and operating system (OS) used, ports, administrator, software application

used, network topology and so on. Intrusion learn from the system and perform an

attack that no longer generate an alarm (Gollmann D., 2006). All of activities can be

seen on network traffic logs. Log can provide a useful information and crucial to be able

to distinguish normal activities and intrusive activities (Terpstra J.H. et al., 2004).

Network traffics can be observed from log files (Golnabi K. et al., 2006) as

human pattern recognize (Winding R. et al., 2006). For illustration, in Table 1.1 there

are 15 records network traffic which consists 10 intrusion network pakckets and 5

normal network packet. All the network packet of intrusion should be dropped into

firewall rules for network security. In Figure 1.1 shows intrusion network packet in

Table 1.1 that was implemented into firewall rules.

Table 1.1 Network traffics illustration

No Source IP Dest IP Dest
Port

Protocol Intrusion

1 122.206.13.100 10.10.1.2 22 TCP Yes
2 122.306.13.100 10.10.1.2 22 TCP Yes
3 122.306.13.100 10.10.1.2 22 TCP Yes
4 122.306.13.100 10.10.1.5 22 TCP Yes
5 122.306.13.100 10.10.1.5 80 TCP Yes
6 122.306.13.100 10.10.1.3 80 TCP Yes
7 203.130.14.20 10.10.1.5 22 TCP No
8 203.130.14.20 10.10.1.5 22 TCP No
9 203.130.14.20 10.10.1.3 22 TCP No
10 203.130.14.20 10.10.1.3 80 TCP Yes
11 206.145.206.4 10.10.1.2 21 TCP Yes
12 206.145.206.4 10.10.1.2 80 TCP Yes
13 206.145.206.4 10.10.1.3 80 TCP No
14 206.145.206.4 10.10.1.5 80 TCP Yes
15 206.145.206.4 10.10.1.5 80 TCP No

4

R1 : -A FORWARD -p tcp -s 122.206.13.100 –sport 1360 -d 10.10.1.2 --dport 22 -j DROP

 R2 : -A FORWARD -p tcp -s 122.206.13.100 –sport 1425 -d 10.10.1.2 --dport 22 -j DROP

 R3 : -A FORWARD -p tcp -s 122.206.13.100 –sport 1488 -d 10.10.1.2 --dport 22 -j DROP

 R4 : -A FORWARD -p tcp -s 122.206.13.100 –sport 1559 -d 10.10.1.5 --dport 22 -j DROP

 R5 : -A FORWARD -p tcp -s 122.206.13.100 –sport 1620 -d 10.10.1.5 --dport 80 -j DROP

 R6 : -A FORWARD -p tcp -s 122.206.13.100 –sport 136 -d 10.10.1.3 --dport 22 -j DROP

 R7 : -A FORWARD -p tcp -s 203.130.14.20 –sport 4607-d 10.10.1.3 --dport 80 -j DROP

 R8 : -A FORWARD -p tcp -s 206.145.206.4 –sport 4690 -d 10.10.1.2 --dport 21 -j DROP

 R9 : -A FORWARD -p tcp -s 206.145.206.4 –sport 1552 -d 10.10.1.2 --dport 80 -j DROP

 R10 : -A FORWARD -p tcp -s 206.145.206.4 –sport 1330 -d 10.10.1.5 --dport 80 -j DROP

Figure 1.1 Firewall rules drop the intrusion network packet

Packet filtering firewall can limit the access to the connection base on

parameters including protocol, source IP, destination IP, source port, destination port

etc (Al-Shaer E.S. and Hamed H.H., 2004; Golnabi K. et al., 2006; Tibbs R.W. and

Oakes E.B., 2006; Suehring S. and Ziegler R.L., 2006 and Katić T. and Pale P. , 2007).

Packet filtering firewall has the character of the static thus function also static and has

limitation (Suehring S. and Ziegler R.L., 2006 and Wiliam W.S.C., 2005). For example,

access to the web server using port 80 allowed by the firewall policy rule, so from

anywhere activities pass port 80 is allowed although there is attempt penetration by

intruder. Therefore, these rules are in a constant need of updating by inserting,

modifying or removing, tuning and validating (Al-Shaer E.S. and Hamed H.H., 2004;

Golnabi K. et al., 2006; Suehring S. and Ziegler R.L., 2006 and Katić T. and Pale P. ,

2007).

If every intrusion will be implemented to firewall rules which not carefully

ordered and selective, this condition will makes the policy contains a large number of

firewall rules. The possibility of policy anomaly will be happened relatively high, such

as writing conflicting or redundant rules (Al-Shaer E.S. and Hamed H.H., 2004). This

condition causes the performance of firewall decreases (Gollmann D., 2006; Dunham

and Margareth H., 2002 and Benelbahri M.A. and Bouhoula A., 2007), because

incoming and outgoing every network packet must be checked against the rules until the

5

rules found matching (Gollmann D., 2006; Golnabi K. et al. 2006 and Khalil R.K. et

al., 2010).

The distinguishing an intrusion network packet manually through log files is

difficult, because requiring a lot of time and tedious (Al-Shaer E.S. and Hamed H.H.,

2004 and Golnabi K. et al., 2006). An analyst must review all of network traffic. For

example in Table 1.1, that describe line 11, 12, 13, 14 and 15 with same source IP

206.145.206.4 were have two categories: intrusion activities and normal activities. It is

required a method to create intrusion rules that be able to select a IP address which have

two categories. Therefore, the necessary means to selectively and automatically

determining a network packet is an intrusion that called NIDS and then to implemented

into firewall rules as prevention. Combination both of NIDS and firewall namely NIPS.

The task of manually-manage firewall policy rules becomes very difficult and

takes a lot of time, because the number of network traffics are increase and continuous.

This huge task which requires a way to automatically update the firewall rules (Golnabi

K. et al., 2006).

1.3 OBJECTIVES OF THE RESEARCH

The objectives of the research are as follows:

i. To propose a new framework of Network Intrusion Prevention System (NIPS)

based on Network Intrusion Detection System (NIDS) and ID3 Algorithm Decision

Tree Classifier.

ii. To implement and analyse the performance of the framework in the computer

network environment.

1.4 OVERVIEW OF THE THESIS

The distinguish network traffics is intrusion or normal is very difficult and takes

a lot of time. An analyst must review all the data of network traffics to find the

intrusion then implemented into firewall rules as prevention.

6

This research makes rules that can determine network packet is intrusion, then

rules are implemented into the firewall as NIPS. Rules resulting from the construct

decision tree using ID3 algorithm and network packets as data training. Network packet

obtained from the log files that record the activity of network traffics. Network packet

intrusion and normal as data training extracted into five attributes: source IP address,

destination IP address, source port, destination port and protocol. To determine the

packet is a network intrusion or a normal use the Snort NIDS software. Snort also

generate log files and parse log files that perform intrusion and normal.

1.4 ORGANIZATION OF THE THESIS

This thesis is organized as follows: Chapter 2 reviews the Intruder, Intrusion

Detection System (IDS), Intrusion Prevention System (IPS), Log Files, Firewall, Data

Mining and Decision Tree Classifier of Data Mining. Chapter 3, proposes NIPS based

on NIDS and ID3 algorithm decision tree classifier. Chapter 4, the implementation and

analysis the performance rules in computer network environment. Finally, the

Conclusion and Recommendations are presented in Chapter 5.

1.5 CONCLUSION

This chapter explains network security that gained significant attention in

computer network. To distinguish the intrusion activities from normal activities of the

network traffics is very difficult and require a lot of time. It is needed a method to

define intrusion from network traffics automatically that called NIDS. Firewall able to

protect network system and can minimization risk of intrusion. NIDS and firewall have

become important element of the network security. In addition NIDS can detect

existence network intrusion. Combination both of NIDS and firewall namely NIPS can

detect and deny existence of intrusion. Meanwhile, network security the highly

performance depends of the firewall policy rules (Tibbs R.W. and Oakes E.B., 2006 and

Suehring S. and Ziegler R.L., 2006). To generate and managing firewall policy rules

require a lot of time. An analyst must review all the data of network traffics previously.

Therefore it is needed a process of creating firewall rules that reflect the previous

network traffics.

7

CHAPTER 2

LITERATURE REVIEW

This chapter explains the basic concepts and related work that is part of the

methodology. The basic concept are Intruder, Intrusion Detection System (IDS),

Intrusion Prevention System (IPS), Log Files, Firewall and ID3 Algorithm Decision

Tree Classifier. All of the concept and related work are presented in this chapter.

2.1 INTRUDER

There are many alternatives to perform intrusion. The intruder will find all

information about the target computer system and take advantage of the weaknesses of

computer systems. Intrusion can be prevented by always update the system and issues of

computer network security (Rafiudin R., 2002).

There are four main categories of intrusion, which are denial-of-service (DoS),

probe, user-to-root (U2R) and remote-to-local (R2L) (Khoi-Nguyen T. and Huidong J.,

2010; Theodiridis S., 2006 and Ye Q. et al., 2010). Each of these categories represents

the generalization of specific attack types. These main categories represent the

classification of types of behaviors that can be grouped logically together. For each

category, there are multiple attack types and unique to a particular pattern. Table 2.1

shows categories and types of intruder.

8

Table 2.1 Categories and examples of intruder

CATEGORY EXAMPLES
DoS apache2, back, land, mailbomb, Neptune, pod, processtable,

smurf, teardrop, upstorm
probe portsweep, ipsweep, nmap, mscan, saint, satan
U2R buffer_overflow, httptunnel, loadmodule, perl, ps, rootkit,

sqlattack, xterm
R2L spy, ftp_write, guess_passwd, imap, multihop, named, phf,

sendmail, snmpgetattack, snmpguess, warezclient, warezmaster,
worm, xlock, xsnoop

2.1.1 Denial-of-Service (DoS)

Denial-of-Service (DoS) attacks is generally known by its attempts to interrupt a

service provided as a part of a network (Chandrasekar A. et al., 2009; Dong S.K. et al.,

2005; Firewall is it Needed, 2008; Guan X. and Yun-jie L., 2010 and Khoi-Nguyen T.

and Huidong J., 2010). An example of a DoS attack is when a service is flooded with

requests that it cannot respond effectively “denying” service to any request. The

Transport Control Protocol (TCP) with flag SYN (synchronize/start) flood attack is

type of attack, wherein SYN connection requests are made that never closed. DoS

attacks have crippled websites for extended periods of time. Some have even taken

down large portions of the internet, due to the traffic bottlenecks created.

2.1.2 Probe

Probe are the searches for network vulnerabilities to be used in other attacks

(Chandrasekar A. et al., 2009; Dong S.K. et al., 2005 and Guan X. and Yun-jie L.,

2010). Typically, a network scanned to find servers, and the servers are then scanned for

open ports or known vulnerabilities. The signatures of these attacks are usually easy to

identify, due to their searching nature. The danger which they impose is their ability to

find vulnerabilities that can be leveraged in another attack. The difficulty in network

security is the balance between usability and security. If all resources are tightly

restricted, then users are limited in the features or applications they can access. If the

9

security is loose then it become vulnerable toward attacked. Most networks tend to be

loose in their security practices. This is why probes are a successful form of intrusion

and pose a threat to security.

One example of a probe attack is a “port scan”. This attack uses the approach of

incrementally making request to service port on a system. It verifies whether a known

service is running on that port, and it learns the attributes of the service. With this

knowledge, a more threatening attack can be formed that advantage of vulnerabilities in

poorly secured services.

2.1.3 User-to-Root (U2R)

This attack where an intruder exploitation began in systems with normal user

account and attempts to abuse the vulnerability in the system to get super user

privileged. U2R attack can be the most damaging to system integrity. A U2R attack

consists of a user with normal access privileges counterfeiting root level access and full

control over the system. Most of these intrusions with buffer overflows in the operating

systems that allow a user to gain root access. With root access, the intruder has

complete access and control over the machine. Integrity of data and information can be

lost or damaged. If intruders gain access to the system as root, it has a greater ability to

hide from the intrusion detection.

2.1.4 Remote-to-Local (R2L)

A remote-to-local (R2L) attack allows a remote, non-authorized user to simulate

local user privileges on machine (Chandrasekar A. et al., 2009; Dong S.K. et al., 2005

and Guan X. and Yun-jie L., 2010). There are different approaches, including:

dictionary-based password and username guessing, attacking vulnerabilities or bugs,

and attacking poorly the configured services. Some of these attacks, such as dictionary

attacks, are more easily detected than others. As an authorized user on the machine, the

intruder can gain the access to private information, disrupt certain services, can corrupt

data, or install applications that allow him or her to gain the control of services that can

10

be used for other malicious behavior. This type of attack can lead to security breaches

that allow complete access and control of the machine (user-to-root).

2.2. INTRUSION DETECTION SYSTEM (IDS)

Intrusion detection is detecting actions that attempt to compromise the

confidentiality, integrity or availability of resources (Gollman D., 2006; Duanyang Z. et

al. 2010; SANS Institute, 2008; Shingo M. et al., 2010 and Weenke L., 2001). When

Intrusion detection takes a preventive measure without direct human intervention, then

it becomes an Intrusion Prevention System.

Intrusion detection can be performed manually or automatically. Manual

intrusion detection is examining log files and then determine network packet is intrusion

or not. A system that performs automated intrusion detection is called an Intrusion

Detection System (IDS) (Kenneth G.J., 2005; Rafiudin R., 2002 and Winding R., 2006).

Intrusion Detection System the operating systems that allow a user to gain root

access. With root access, the intruder has complete access and control over the machine,

system is very important in network security. Meanwhile, computer networks continue

to expand. IDS need to be able to deal with a large computer network. Therefore,

automatic procedures for detecting and responding to intrusion are becoming

increasingly essential (Mehmed M.K. and Jozef Z., 2005).

Misuse detection searches for patterns user behavior that match intrusion, which

are stored as signatures. These hand-coded of signature are laboriously provided by

human experts based on their knowledge of intrusion techniques. If a pattern match is

found, then the alarm will appear as a sign. Human security analysts evaluate the alarms

to decide what action to take, whether it is shutting down part of the system, alerting the

internet service provider about suspicious traffic. An intrusion detection system for a

large complex network may produce thousands or millions of alarms per day. Because

systems are not static, the signatures need to be updated whenever new software

versions arrive or changes in network configuration (Al-Shaer E.S. and Hamed H.H.,

11

2004). There are two main types of IDS pursuant where data analyzed, which describe

in sub chapter 2.2.1 and 2.2.2.

2.2.1 Network-based IDS

Network Intrusion Detection System (NIDS) is an attack of signatures in

network traffic. Typically, a network adapter running to monitors and analyzes all

network traffic in real time. NIDS is an independent platform that identifies intrusions

by examining network traffic and monitors multiple hosts. NIDS gains access to

network traffic by connecting to a hub or network switch. An example of a NIDS is

software namely snort (Gollman D., 2006; Flior E. et al., 2010 and SANS Institute,

2008).

2.2.2 Host-based IDS

Host Intrusion Detection System (HIDS) looks for attack signatures in log files

of hosts (Duanyang Z., 2010 and Gollman D., 2006). HIDS are attempts to identify

unauthorized and anomalous behavior on a specific device. HIDS generally involves an

agent installed on system, monitoring and alerting on local OS and application activity.

The installed agent uses a combination of signatures, rules, and heuristics to identify

unauthorized activity. The role of a host IDS is passive, only gathering, identifying,

logging and alerting of intrusion (SANS Institute, 2008).

There are other ways of finding intrusion attempts. One alternative method is to

load software to look for signs of intrusion on the system itself. If a machine has been

exploited, often certain system files will be altered. For examples, the password file may

be changed, users may be added, system configuration file may be modified, or file

permissions might be altered. By looking at changes in these files, there is an intrusion

or other unusual activity. There are two classification IDS pursuant how data analyzed,

which describe in sub chapter 2.2.3 and 2.2.4.

12

2.2.3 Misuse Detection

In misuse detection, the IDS analyzed the information it gathered and compare it

with large databases of attack signatures. Essentially, the IDS are looks for a specific

attack that has already been documented. Learning system from the existing pattern of

attack and recognized. This method unable to detect the new attack is which its pattern

not yet been known (Duanyang Z., 2010).

2.2.4 Anomaly Detection

In anomaly detection, the system administrator defines the baseline, or normal,

state of the network’s traffic load, breakdown, protocol, and typical packet size. The

anomaly detector monitors network packets to compare their state to the normal

baseline and looking for anomalies.

Statistical anomaly detection uses statistical techniques to detect potential

intrusions. During operation, a statistical analysis of the data monitored is performed

and the deviation from the baseline is measured. If a threshold is exceeded, an alarm is

issued. On the other hand, anomaly detection detects just anomalies. Suspicious

behavior does not necessarily constitute an intrusion (Gollman D., 2006).

2.2.5 IDS Products

Many IDS systems exist and a lot of confusion because there is little in the way

of standards with how they operate. It is difficult to provide a direct comparison

between products because terminology, features and functionality. This is because there

is no effective comparison can occur. Example of IDS product include Snort, Honeypot

and Portsentry.

a. Snort

13

Snort is open source NIDS (Yan Y., 2010). Snort capable of performing real-

time traffic analysis and packet logging on computer networks. It can perform protocol

analysis, searching/matching and can be used to detect a variety of attacks and probes,

such as buffer over-flows, stealth port scans, CGI attacks, SMB probes, OS

fingerprinting and much mores (Yan Y., 2010).

Snort uses a flexible rules language to describe traffic that it should collect or

pass, as well as a detection engine that utilizes a modular plugin architecture. Snort has

a real-time alerting capability as well, incorporating alerting mechanisms for syslog or a

specific file user. Snort has three primary uses (Yan Y., 2010):

• Sniffer mode – to see the packet through the network.

• Packet logger mode – for recording all the packet through the network to the

analysis at a later.

• NIDS mode – snort used to detect of attack carried out through computer networks.

This mode required NIDS setup of rules that distinguish between normal packets or

attack packets.

b. Honeypot

Honeypot only provide the security vulnerability of a system, thus providing

space for attacked. Honeypot is to trap intruder to penetrate computer system. When

there are attacks, honeypot will be recorded in the log files so the admin can do the next

action. Honeypot is passive in that they are waiting for someone to attack.

c. Portsentry

Portsentry is a software designed to detect port scanning and response actively if

any port scanning. The port scanning is a scanning process of services variety

applications running on computer servers. Port scanning is the first step before an attack

will be undertaken. If there is a machine scan port to servers will actively block the

attacker machine.

14

Portsentry will react in real time by blocking the IP address of the attacker. This

was done by using ipchains or ipfwadm and insert into the file /etc/host.deny

automatically by the TCP Wrapper. Portsentry reports through log files in

/etc/syslog. The report indicates the system name, time attack, the attacker IP

machine IP, protocol, and others. Snort and portsentry have different action where

prevent intrusion, whereas snort is only detects the intrusion.

IDS produce has a different way of working and has a different way of

prevention. Table 2.2 shows the comparison of work and prevention between Snort,

Honeypot and Portsentry.

Table 2.2 Comparison IDS products

IDS Product Work Prevention

Snort Intrusion network packet is known based
on the rules. When a network packet has a
similarity with a rule, then network packet
is the intrusion. New attack has a new
signature so that rules should always be
updated

✔ generate log
✔ passive

Honeypot Provide the security vulnerability of a
system. When there are attacks, honeypot
will be recorded in the log files.

✔ generate log
✔ passive

Portsentry Detect machine who is doing port scanning ✔ generate log
✔ active
✔ blocking IP address of

intrusion into file
/etc/host.deny

2.3 INTRUSION PREVENTION SYSTEM (IPS)

15

Intrusion Prevention System prevent from intrusion or attacks. IPS work with an

IDS, and vendors have combined the two technologies to make an IPS-capable IDS.

Two techniques are used to prevent an attack (Rafiudin R., 2002) :

• Sniping – Allow the IDS to terminate a suspected attack from through the use of a

TCP reset packet or ICMP unreachable message.

• Shunning – Allow the IDS to automatically configure router or firewall to deny

traffic based on what it has detected and therefore shunning the connection. As

IDS become more advanced, this shunning is evolving into a new term, blocking,

where an IDS contacts a router or firewall and creates an access control list (ACL)

to block the attacking IP.

The IDS can handle sniping. However, shunning requires the assistance of other

device. IDS sensors should report back to a central console that, in turn also generates

some responses if so configured. Following are some actions that an IDS generate in

repose to an attack (Rafiudin R., 2002):

• Reconfigure firewall/router – An IDS with a shun enable configure the firewall

to filter out the intruders IP address.

• Send an SNMP trap – Configure the IDS to send an SNMP trap datagram to a

management console.

• Generate log – An IDS can log to Windows event log, Syslog server, pager or

even send an e-mail.

2.4 LOG FILES

Log files are another critical facet in total security architecture. It is important to

create a policy and strategy for dealing system and application. Log files are useful for

three reasons (John H.T., et al., 2004):

1. Log files help with troubleshooting system problems and understanding what is

happening on the system.

2. Logs serve as an early warning for both system and security events.

3. Logs can be indispensable in reconstructing events, whether determine an intrusion

has occurred and are performing the follow-up forensic investigation.

16

Following some examples from Snort log files are shown Figure 2.1

[**] INFO - Possible Squid Scan [**]
04/20-14:06:49.953376 192.168.0.33:1040 -> 192.168.0.1:3128
TCP TTL:128 TOS:0x0 ID:393 IpLen:20 DgmLen:48 DF
******S* Seq: 0x60591B9 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

Figure 2.1 Snort log file

From Figure 2.1, there is effort for the scan of existence of Squid proxy server

IP address 192.168.0.1 and port 3128 from workstation IP address 192.168.0.33, port

1040 and protocol is TCP.

Feb 17 21:02:13 (none) sshd[14938]: Failed password for albi

from 172.18.64.26 port 3419 ssh2

Figure 2.2 Syslog log files

From Figure 2.2, someone tries to log in using the 'failed password' from IP

address 172.18.64.26 and port 3419 passing ssh service using TCP protocol.

2.5 FIREWALL

A firewall is placed between two or more networks, usually a private network

and public networks. Typical examples are the internet which is a zone with no trust and

an internal network which is a zone of higher trust must be protected. The term firewall

comes from the fact that by segmenting a network into different physical subnetworks,

they limited the damage that could spread from one subnet to another just like firedoors

or firewalls. Figure 2.3 shows firewall in computer network.

17

Figure 2.3 Firewall in computer network

Firewall checks every incoming and outgoing network packet to see if it meets

the criteria of rules. If it does, firewall will take action to accept, forward, drop or reject

the packet network depends the set of rules. Firewalls can filter packets based on source

IP address, destination IP address, source port, destination port, protocol and others.

Firewalls can filter specific types of network traffic.

The TCP/IP model is older than the Open System Interconnection (OSI) model

(Gollman D., 2006; Tibbs R.W. and Oakes E.B., 2006). There are 5 layers in the

TCP/IP model. TCP/IP and OSI model is shown in Figure 2.4.

18

Figure 2.4 The OSI and TCP/IP models (Gollman D., 2006)

The lowest layer in which the firewall can work is layer three. In the OSI model

this is the network layer. In TCP/IP it is the Internet Protocol layer. This layer is

concerned with routing packets to destination. At this layer a firewall can determine

whether a packet is from a trusted source, but cannot be concerned with what it contain

packets. Firewalls that operate at the transport layer know about a packet and able to

grant or deny access depending criteria set of rules. At the application level, firewall

know what is going on and can be very selective in granting access.

2.5.1 Types of Firewalls

Based on mechanism or way of firewalls work, there are four main type of firewall,

which are packet-filtering, application level gateway, circuit level gateway and stateful

multilayer inspection firewall.

a. Packet Filtering

Packet filtering firewalls work at the Network layer of the OSI model, or the IP

layer of TCP/IP. They are usually part of a routing. A router is a device that receives

packets from one network and forwards them to another network. Rules specifying

which packets are allowed through the firewall and which are dropped. In a firewall,

packet of filtering each network packet compared to a set of criteria before it forwarded.

Depending on the packet and the criteria of rules, the firewall can drop the packet,

19

forward it or send a message to the source network packet . Rules can include source

and destination IP address, source and destination port number and protocol (Gollman

D., 2006). Packet filtering firewall is shown in Figure 2.5.

Figure 2.5 Packet filtering firewalls (Gollman D., 2006)

For example, network packets using port 80 and destination port 23 to IP

address 10.10.1.2. Firewall permit and forward network packet to IP address 10.10.1.2

by using port 80 and reject or drop the network packet by using port 23. This is shown

in Figure 2.6.

80

23

80

Web Server Firewall

Figure 2.6 Policy packet filtering firewall for 10.10.1.2

b. Application Level Gateway

Application level gateways also called proxies, are similar to circuit-level

gateways except that they are application specific. They can filter packets at the

10.10.1.2

20

application layer of the OSI model. Incoming or outgoing packets cannot access

services for which there is no proxy. Application level gateway that is configured to be

a web proxy and can not allow FTP, telnet and others. Because they examine packets at

application layer, they can filter application specific commands such as http: POST and

GET, etc. This cannot be accomplished with packet filtering firewalls or circuit level

which do not know anything about the application level. Application level gateways can

also be used to log user activity and logins. They offer a high level of security, but have

a significant impact on network performance. This is because of context switches that

slow down network access dramatically (Mladenic D. et al., 2003). Application level

gateway is shown in Figure 2.7.

Figure 2.7 Application level gateway (Gollman D., 2006)

c. Circuit Level Gateway

Circuit level gateways work at the Session layer of the OSI model, or the TCP

layer of TCP/IP. This type of firewall is useful to hide information on a protected

network packet. Connection between the user and the network is hidden from the user.

Users will be confronted directly with the firewall on the connection. Firewall to

connect to the network resources are accessed by the user after changing the IP address

of the packet transmitted by the two sides. It is like a virtual circuit between users and

network resources are accessed. users from the external network can not see the internal

21

network IP addresses in the packets he receives, but the IP address of the firewall.

Circuit level gateway is shown in Figure 2.8.

Figure 2.8 Circuit level gateway

d. Stateful Multilayer Inspection Firewall

Stateful multilayer inspection firewalls combine the aspects of the other three

types of firewalls. Packet filtering at the Network layer, determine whether Session

packets are legitimate and evaluate contents of packets at the application layer. Stateful

multilayer inspection firewalls offer a high level of security, good performance and

transparency to end users. They are expensive like Cisco PIX. State multilayer

inspection firewall is shown in Figure 2.9.

22

Figure 2.9 Stateful multilayer inspection firewall (Gollman D., 2006)

2.5.2 Linux Firewalls

In general distribution of the Linux Operating System, there is simple software

firewall called the netfilter or iptables is available. Iptables has been part of the Linux

kernel since version 2.4 (Joko Y and Onno W.P., 2008). There is difference between

iptables and netfilter. Netfilter is the Linux kernel space program code to implement a

firewall, either compiled directly into the kernel or included as a set of modules.

Iptables is the program used for administration of the netfilter firewall. Netfilter firewall

are built through the iptables administration command. The iptables command

implements the firewall policies. Netfilter firewalls have three individual tables, which

are filter, NAT and magle (Flior E. et al., 2010 and Suehring S. and Ziegler R.L., 2006).

The basic syntax for an iptables command begins with the iptables command

itself, followed by one or more options, a chain, a set of match criteria and a target or

disposition. The layout of the command largely depends on the action to performed.

iptables syntax is shown in Figure 2.10.

23

iptables <option> <chain> <matching criteria> <target>

Figure 2.10 Linux firewall syntax (Golnabi K. et al., 2006)

There are 3 predefined tables in use by iptables to which can add rules for processing IP

packets passing through those tables. These tables are (Al-Shaer E.S. and Hamed H.H.,

2004; Jiawei H. and Kamber M., 2006; Joko Y and Onno W.P., 2008 and Suehring S.

and Ziegler R.L., 2006):

• INPUT - All network packets to Local Area Network (LAN).

• OUTPUT - All network packets from LAN.

• FORWARD - All network packets incoming to LAN or outgoing from LAN. This

machine is called the router.

Iptables check network packet traffic relevant to those tables and a decision is made

about what to do with each packet : accept or drop the packets. These actions are

referred to as targets. Two most common predefined targets are DROP to drop a packet

or ACCEPT to accept a packet.

Firewall can check the packet filtering of pursuant to parameter of IP addresses,

protocols (TCP, UDP, ICMP), ports, MAC Address and others (Golnabi K., 2006 and

Suehring S. and Ziegler R.L., 2006), so that facilitate the sysadmin for the customize.

Following is example of iptables firewall rules is shown in Figure 2.11.

-A INPUT –s 203.130.206.5 –p tcp –d 10.10.15.7 --dport 80 –j DROP

Figure 2.11 Iptables firewall rules

Firewall rule is show in Figure 2.11 explaining to enhance the order by the end

of chain (A) for the traffic of incoming to firewall (INPUT) by source IP address (-s)

24

203.130.206.5 with the type protocol (-p) tcp to destination IP address (-d) 10.10.15.7

and destination port (--dport) 80 hence done by action (- j) dropped (DROP). Policy

Firewall rules in Figure 2.11 will do the drop if there is traffic incoming to the firewall

by IP address source is 203.230.206.5 type of protocol TCP to destination IP address is

10.10.15.7 and destination port is 80.

A packet was checked each rule in turn, starting at the top, and if it matches that

rule, then an action is taken such as accepting (ACCEPT) or dropping (DROP) the

packet. If a network packet matches a rule then a network packet is not processed by

next rules in the tables. If a network packet is not match any rule, then the default action

is taken. This is referred to as the default policy and may be is ACCEPT or DROP the

packet (Golnabi K., 2006 and Suehring S. and Ziegler R.L., 2006).

2.5.3 Choosing a Default Packet-Filtering Policy

There are two basic approaches to a default firewall policy (Tibbs R.W. and Oakes E.B.,

2006 and Suehring S. and Ziegler R.L., 2006):

• Deny everything by default and explicitly allow selected packets through.

• Accept everything by default and explicitly deny selected packets from passing

through.

The deny-everything policy is the recommended approach. This approach makes

it easier to set up a secure firewall, but each service and related protocol transaction that

must be enabled explicitly. This means that it must understand the communication

protocol each service to be enabled. The deny-everything requires more work up to

enable Internet access. Some commercial firewall product support only the deny-

everything policy. The deny-everything policy is show in Figure 2.12.

25

Figure 2.12 The deny-everything-by-default policy (Tibbs R.W. and Oakes E.B., 2006)

The accept-everything policy makes it much easier to get up and running right

away, but it anticipate some network packet type to be disabled. The danger is that

network packets type is too late to be disabled. Developing a secure accept-everything

firewall is much more work and much more difficult. The accept-everything policy is

shown in Figure 2.13.

IP Packet

Firewall Chain

Match Rule 1 ?

No

Yes

Accept

Match Rule 2 ?

Yes

Accept

Match Rule 3 ?

Yes

Accept

Policy : DENY

No

No

26

Figure 2.13 The accept-everything-by-default policy (Tibbs R.W.and Oakes E.B.,2006)

Firewall rules are explicitly written and managed to filter out any unwanted

traffic coming into or going from the secure network. However, the management of

firewall rules has been proven to be complex, error-prone, costly and inefficient for

many large-networked organizations (Guan X. and Yun-jie L., 2010; Mehmed M.K. and

Jozef Z., 2005; Benelbahri M.A. and Bouhoula A., 2007 and Tibbs R.W. and Oakes

E.B., 2006).

The firewall rules are often custom-designed and hand-written by and for

human. Firewall tailored to accommodate ever-changing business and market demands

of the global internet. Therefore, these rules are in a constant need of updating, tuning

IP Packet

Firewall Chain

Match Rule 1 ?

No

Yes

Deny

Match Rule 2 ?

Yes

Deny

Match Rule 3 ?

Yes

Deny

Policy : ACCEPT

No

No

27

and validating to optimize firewall security (Guan X. and Yun-jie L., 2010, Mehmed

M.K. and Jozef Z., 2005 and Benelbahri M.A. and Bouhoula A., 2007).

2.6 DATA MINING

Data Mining refers to extracting or “mining” knowledge from large amounts of

data. Data mining is the process of employing one or more computer learning

techniques to automatically analyze and extract knowledge from data contained within a

database. The purpose of a data mining session is to identify trends and pattern data

(Dunham and Margareth H., 2002; Duanyang Z. et al., 2010 and Hao-Ran D. and Yun-

Hong W., 2007).

The knowledge gained from a data mining session is given a model or

generalization of data. However, all data mining methods use induction-based learning.

Induction-based learning is the process of forming general concept definition by

observing specific examples of concepts to learned.

There are some congeniality of related to data mining (Jiawei H. and Kamber M.,

2006):

1. Data mining is to match the data in a model to find information hidden in

databases

2. Data mining is the application of algorithms to dig up useful information from the

databases

3. Data Mining is process find the pattern in data, where the invention process

conducted automatically or semi automatically and pattern found have to be useful

4. Data Mining is process of find information, which is good for depository of big

data automatically.

5. Data Mining or Knowledge Discovery in Database (KDD) is information take

which hidden, where the information previously the unknown to and have useful

potency. This process covers a number of different technical to approach, like

clustering, data summarization, learning classification rules.

28

2.6.1 Knowledge Discovery in Database and Data Mining

Knowledge Discovery in Database (KDD) is a term frequently used

interchangeably with data mining. Technically, KDD is the application of the scientific

method to data mining (Jiawei H. and Kamber M., 2006). KDD is defined as the non-

trivial process of identifying valid, novel, potentially useful and ultimately

understandable pattern in data (Duanyang Z., 2010). In addition to performing data

mining, a typical KDD process model includes a methodology for extracting and

preparing data as well as making decision about actions to be taken once data mining

has taken place. When a particular application involves the analysis of large volume of

data stored in several locations, data extraction and preparation become the most time-

consuming parts of the discovery process. As data mining has become popular name for

the broader term like KDD (Dunham and Margareth H., 2002).

Figure 2.14 Data mining as one part of the KDD (Jiawei H. and Kamber M., 2006)

Today, data are no longer restricted to tuples of numeric or character

representation only. The advanced database management technology of today is enable

to integrated different types of data, such as image, video text and other numeric as well

as non-numeric data, in a probably single database for facilitate processing (Jiawei H.

and Kamber M., 2006).

29

Figure 2.15 The KDD process (Jiawei H. and Kamber M., 2006)

KDD process consists of the steps below (Dunham and Margareth H., 2002) :

1. Selection of Data (data selection), selection of relevant data obtained from the

database

2. Data cleaning, the process of removing noise and inconsistent data or data not

relevant.

3. Data integration, combining data from various databases into a new database.

4. Data transformation, data modified or merged into a format suitable for processing

in data mining

4. Data Mining, a process in which the method is applied to discover knowledge and

hidden data

5. Pattern evaluation, identify interesting patterns to be represented into the

knowledge-based

6. Knowledge presentation, visualization and presentation of knowledge about the

techniques used to obtain the knowledge gained users.

2.6.2 Data Mining Techniques

Data Mining refers to process to dig the added of value from a data aggregate in

the form of knowledge which during the time unknown in manual (Al-Shaer E.S. and

Hamed H.H., 2004). Word mining it is mean the effort to get a few data worth from a

large amount of basic data. In consequence of data mining in fact have the long root

from science like artificial intelligent, machine learning, statistical and database. There

are some techniques in literature of data mining examples association rule, clustering,

Data
Warehouse

Raw

Data

Selection
Processing

Transformed
Data

Mining

Patterns
Evaluation

Interpretation
Selection
Process

30

classification, neural network, genetic algorithm and others (Al-Shaer E.S. and Hamed

H.H., 2004 and Berry M.W. And Browne M., 2006).

a. Association Rules

As the name implies, association rule mining techniques are used to discover

interesting associations between attributes contained in a database. Examples of

associative rule is the purchase of analysis in a supermarket. How is possibility a

customer buys bread with milk. Knowledge is the owner of the supermarket stuff can

arrange a placement or design marketing strategies by using discount coupons for the

combination (Duanyang Z., 2010). For another example such as attached mailing in

direct marketing, fraud detection for medical insurance and credit cards, department

store floor or shelf planning (Jiawei H. and Kamber M., 2006). For this is reason a

limited number of attributes are able to generate hundreds of association rules.

Important or not a association rules can be determined by two parameters. Support the

combined percentage of these attributes in the database and confidence

the strength of the relationship between attributes in an association rules.

b. Clustering

Clustering, defined broadly, is the grouping of similar object. Clustering is the

unsupervised classification of patterns into groups based upon similarity (Berry M.W.

And Browne M., 2006). Clustering to group the data without a specific data class.

Clustering can be used to provide the class labels of unknown data. Therefore,

clustering is called unsupervised learning methods.

The principle of clustering is to maximize the similarity among members of a

class and minimize the similarity between clusters. Clustering can be performed on the

data which has several attributes that are mapped as a multidimensional space.

31

Figure 2.16 Clustering (Jiawei H. and Kamber M., 2006)

Illustrate Clustering is shown in Figure 2.16. The area is two dimension,

customer of shop can be grouped to become some cluster with the center cluster shown

by positive sign (+). Many algorithms Clustering need the function of distance to

measure similarity between data, needed also method for the normalization attributes

that have kinds of data.

c. Classification

The input data for a classification is a collection of records. Each record, also

knows as instance, characterized by a tuple (x,y), where x is the attribute set and y is a

special attribute as the class label (Berry M.W. and Browne M., 2006) or also called

category or attribute of target. An attribute is a property or characteristic of an object

that may vary [Dunham and Margareth H., 2002 and Berry M.W. and Browne M.,

2006). For example, eye color varies from person to person, temperature of an object

varies over time. Eye is a symbolic attribute with a small number of possible values

{brown, black, blue, green, hazel, etc}, while temperature is a numerical attribute with a

potentially unlimited number of values.

32

 Figure 2.17 Classification as the task of mapping an input attribute set x

into its class label y (Jiawei H. and Kamber M., 2006)

Classification is the task of learning a target function f that maps each attribute

set x to one of the predefined class label y, illustration is shown in Figure 2.17. Class

label attribute must be discrete (Dunham and Margareth H., 2002; Mladenic D. et al.,

2003; Jiawei H. and Kamber M., 2006; Berry M.W. and Browne M, 2006 and Roiger

R.J. and Geatz M.W., 2003). This is a key characteristic that distinguishes classification

from regression, a predictive modeling is a continuous attribute (Roiger R.J. and Geatz

M.W., 2003). The target function is also known as a classification model. A

classification model is useful for one predictive modeling (Roiger R.J. and Geatz M.W.,

2003) :

✔ Descriptive Modeling. Classification model can serve as a clear tool to distinguish

between objects of different classes.

Table 2.3 Network Traffics

No Source IP Dest IP Source
Port

Dest
Port

Protocol Intrusion

1 122.206.13.100 10.10.1.2 1360 22 TCP Yes
2 122.306.13.100 10.10.1.2 1425 22 TCP Yes
3 122.306.13.100 10.10.1.2 1488 22 TCP Yes
4 122.306.13.100 10.10.1.5 1559 22 TCP Yes
5 122.306.13.100 10.10.1.5 1620 80 TCP Yes
6 122.306.13.100 10.10.1.3 2156 80 TCP Yes
7 203.130.14.20 10.10.1.5 2158 22 TCP No
8 203.130.14.20 10.10.1.5 1624 22 TCP No
9 203.130.14.20 10.10.1.3 4207 22 TCP No
10 203.130.14.20 10.10.1.3 4607 80 TCP Yes

Input

Attribute (x)

Output

Class Label (y)

Classification
Models

33

For example, useful to summarize the data in Table 2.3 and explain the features of a

packet is defined as an intrusion or normal.

✔ Predictive Modeling. A classification model can also been used to predict the class

label unknown record. As shown in Table 2.3, a classification model can

automatically determine the class label when presented with a new dataset where the

class labels of unknown. Suppose given some new network packet shown in Table

2.4.

Table 2.4 Predictive modeling

No Source IP Dest IP Source
Port

Dest
Port

Protocol Intrusion

1 122.206.13.100 10.10.1.5 1775 80 TCP ?
2 122.206.13.100 10.10.1.3 1775 22 TCP ?

A classification technique is a systematic approach to building classification

models from an input data set a such decision tree classifier, rule-based classifier, neural

networks, support vector machines and naïve Bayes classifiers. Each technique employs

a learning algorithm to identify a model that best fits between relationship and the

attribute set and also class label of the input data.

The model generated by a learning algorithm should both fit the input data well

and correctly predict the class labels of records that has never seen before. Therefore, a

key objective of the learning algorithm is to build models with good generalization

capability and models that accurately predict the class labels that previously unknown

record [29].

34

Figure 2.18 General approach for building a classification model (Roiger R.J. and

Geatz M.W., 2003)

Figure 2.18 shows a general approach for solving classification problems with

predict class that has possibility of two categories that are 'Yes' or 'No'. First, a training

data set consisting of records whose class labels are known must be provided. The

training set is used to build a classification model, which is subsequently applied to the

test set that consists of records with unknown class labels.

2.7 DECISION TREE CLASSIFIER OF DATA MINING

Decision tree classification is one of the fundamental techniques used in data

mining (Berry M.W. and Browne M., 2006). A decision tree classifier is one of the most

widely need supervised learning methods used for data exploration. It is easy to

interpret and can be re-represented as if-then-else rules (Mladenic D., 2003; Fayyad U.,

1996; Jiawei H. and Kamber M., 2006; Roiger R.J. and Geatz M.W., 2003 and Tan P.N.

et al., 2006). If conditions then class, with a conjunction of features (attribute values)

in the rule condition and a class label in the rule consequent (Mladenic D., 2003). In

Learn
Model

Learning
Algorithm

Apply
Model

Deduction

Induction

Model

Attrib1 Attrib2 Attrib3 Class
1 Yes Large 125K No
2 No Medium 100K No
3 No Small 70K No
4 Yes Medium 120K No
5 No Large 95K Yes
6 No Medium 60K No
7 Yes Large 220K No
8 No Small 85K Yes
9 No Medium 75K No

Tid

Attrib1 Attrib2 Attrib3 Class
11 No Small 55K ?
12 Yes Medium 80K ?
13 Yes Large 110K ?
14 No Small 95K ?
15 No Large 67K ?

Tid

35

approximates a function of constant does not require any prior knowledge of data

distribution (Berry M.W. and Browne M., 2006).

A decision tree is a tree-like structure used for classification, decision theory,

clustering and prediction functions. It describes rule for dividing training data into

groups based on the regularities in the data. A decision tree can used for categorical and

continuous response variables. When the response variables are continuous, the decision

tree often referred to as a regression tree. If the response variables are categorical, it is

called a classification tree. However, the same concepts apply to both types of trees.

Decision trees are widely used in computer science for data structures, in medical

sciences for diagnosis, in botany for classification, in psychology for decision theory, in

economy analysis for evaluating investment alternative and anomaly detection. The

trees may differ in how the are created. For example, in some cases the trees are created

top to bottom, while in other cases the are created form left to right. Decision tree have

been described as universal approximates, because they are map linear and nonlinear

relationships. However, they do not require as much training data as other universal

approximates, such as neural networks.

2.25 (a) Binary Tree 2.25 (b) Nonbinary Tree

Figure 2.25 Types of decision tree (Jiawei H. and Kamber M., 2006)

The tree has three type of nodes as shown in Figure 2.25:

• A root node that has no incoming edges and zero or more outgoing edges.

Root

Terminal
Node

Internal
Node

Terminal
Node

Terminal
Node

Root

Terminal
Node

Terminal
Node

Terminal
Node

36

• Internal nodes, each of which has exactly one incoming edge and two or more

outgoing edges.

• Leaf or terminal nodes, each of which has exactly one incoming edge and no

outgoing edges.

A decision tree consists of a root and internal nodes. The root and the internal

nodes labeled with questions in order to find a solution to the problem under

consideration. The root node is the first state of a decision tree. This node is assigned to

all of examples from the training data. A decision tree is binary if each node is split into

two parts. Nonbinary (multi-branch) if each node is split into three or more parts (Jiawei

H. and Kamber M., 2006) as shown in Figure 2.25(b).

In decision tree, each leaf node is assigned a class label. The non-terminal nodes,

which include the root and other internal nodes, contain attribute test conditions to

separate records that have different characteristics (Tan P.N., 2006).

If an internal node can not be split further, it becomes a terminal node. The paths

to each internal or terminal node are mutually exclusive, that is no more than one group

can possibly be chosen. The process is repeated for each of internal nodes until a

completely discriminating tree is obtain or the terminal node is reached.

2.7.1 Decision Tree Algorithm

A decision tree model consists of two parts: creating the tree and applying the

tree to database. Decision trees use several different algorithms. The most widely-used

algorithms by computer scientists are ID3, C4.5 and C5.0 (Berry M.W. and Browne M.,

2006 and Tan P.N., 2006). This algorithm helps decision trees gain credibility and

acceptance in the statistics community. Each algorithm employs different mathematical

process to determine how to group and rank variables.

37

The original idea of constructing a decision tree of branch by Hoveland and

Hunt. The skeleton of Hunt’s methods for constructing a decision tree from a set T of

training cases is as follows (Berry M.W. and Browne M., 2006):

Let the classes {C1, C2, …,Cn}. There are three possibilities :

(i) T contains one or more cases, but all belonging to a single class Cj. The decision

tree for T is a leaf identifying class Cj.

(ii) T contains no cases. The decision tree is a leaf in this case, but class to be

associated with the leaf must be determined from sources other than T.

(iii) T contains cases that belong to a mixture of classes. T is partitioned into subsets

T1, T2, …, Tk, where Ti contains all cases in T that have outcome Oi of the

chosen test. The decision tree for T consists of a decision node identifying the

test, and one branch for each possible outcome. This process is applied

recursively to each subset of training cases, that the i-th branch leads to the

decision tree constructed from the subset Ti of the training cases.

Generally, a decision tree algorithm is most appropriate for the third case. In this

case, the decision tree algorithm can be stated as follows (Berry M.W. and Browne M.,

2006 and Tan P.N. et al., 2006):

 From the training data set, identify a target variable and a set of input variables.

 Examine each input variable one at a time:

• To create two or more groupings of the values of the input variables, and

measure how similar items are within each group and how different items are

between groups.

• Select the grouping that maximizes similarity within groupings and differences

between groupings.

 Once the groupings have been calculated for each input variable, select the single

input variable that maximizes similarity within groupings and differences between

groupings.

38

This process is repeated in each group that contains a percentage of information

in the original data. The process is not terminated until all divisible groups have been

divided (Berry M.W. and Browne M., 2006).

2.7.2 Motivation of Decision Tree

Decision tree are one of fundamental techniques used in data mining (Berry

M.W. and Browne M., 2006). Decision tree is tree-like structures used for classification.

Decision trees are easily interpretable and intuitive for humans. They well suited for

high-dimensional applications. Decision trees are fast and usually produce high-quality

solutions. Decision tree objectives are consistent with the goals of data mining and

knowledge discovery.

Decision trees are popular for partitioning data and identifying local structures in

small and large databases, which are mostly concern with the discovery of classificatory

properties of data tables. Decision tree models have two objectives: producing an

accurate classifier, and understanding the predictive structure of the problem. The first

goal deal with the accuracy of decision tree classification and the second goal aims at

developing understandable patterns that can be interpreted as interesting knowledge

(Berry M.W. and Browne M., 2006).

The representation of acquired knowledge in tree form is intuitive and generally

easy to an assimilated by humans. The learning and classification step of decision tree

induction are simple and fast. In general, decision tree classifier to have good accuracy

(Jiawei H. and Kamber M., 2006).

2.8 CONCLUSION

This chapter reviews the concept of NIPS based on NIDS and ID3 algorithm

decision tree classifier. Intrusion detection is the act of detecting actions that attempt to

compromise the confidentiality, integrity or availability of a resource. There are 4 types

of intruder include DoS, probe, U2R and R2L. Each of intruder has specific work.

39

Intruders observed by looking at the log files. A system that performs automated

intrusion detection called IDS. Intrusion should be denied or not allowed to entry in the

LAN with reason for security. The intrusion prevention in computer networks is

described by a firewall. Firewall can be allow or deny access network packets based on

characteristics, such as IP address, port, protocol and others. Firewall can not define a

network packet as intrusion. Therefore it is required a method for define whether a

network packet as intrusion or not automatically. Decision Tree conduct a learning

process from previous network traffics. Decision tree is a tree-like structure used for

classification, where each internal node indicates a test on the attribute, each branch

represents the test results, and the leaf nodes represent classes or class distributions.

Decision tree can to convert to classification rules. These rules can define whether a

network packet as a intrusion. These rules are implemented into firewall as intrusion

prevention.

40

CHAPTER 3

METHODOLOGY

3.1 PROPOSED FRAMEWORK

Decision tree classifier to generate rules of intrusion signature patterns where

these rules as NIPS that can determine a network packet is intrusion or a normal.

Algorithm is used Quinlan’s (Mladenic D., 2003; Jiawei H. and Kamber M., 2006;

Benelbahri M.A. and Bouhoula, 2007; Berry M.W. and Browne M., 2006 and Tan P.N.

et al. 20006) ID3 to construct decision tree. Network traffic logs describe the human

behavior which is the intrusion activities or the normal activities. Every network packet

in network traffics logs extracted into five attributes as data set for data training of

decision tree. The five attributes are source IP address, destination IP address, source

port, destination port and protocol. These attributes are most important element in

network packet, because these attributes can represent a network packet to denied or

dropped that be implemented into firewall policy rules (Predrag Pale T.K., 2007). The

results of decision tree training will get rules. These rules can define a network traffic

as intrusion, then implemented into firewall rules as prevention. That is a simplified

description of a complex entity or process which in this research called framework. The

framework in this research using the NIDS and ID3 algorithm of decision tree classifier

as shown in Figure 3.1.

There are several reasons for this research using the ID3 algorithm for construct

decision tree classifier of data mining:

• Every packet network have object and clearly to identify, such as source IP address,

destination IP address, source port, destination port and protocol. Object also called

attribute or characteristics.

41

• Training data for class label attribute is discrete and not numeric. There are only two

categories of occurrence in network packet which is either intrusion or not. This can

be categorized as a class for decision tree classifier.

• Decision tree classifier using ID3 algorithm generate rules. The rules can determine

a intrusion network packet automatically, that is called NIDS. The rules can be

implemented into firewall, because they have the same attributes.

Figure 3.1 Propose framework of NIPS based on NIDS and ID3 algorithm decision tree

classifier

3.2 Network Traffic Logs

Log files record all the events on the machine. This files help administrator to

monitor various problems such as bugs, network traffics and damage of the machine.

Extract Log Files to Data Set for
Data Training

Extract Log Files to Data Set for
Data Training

Intrusion and Normal LogsIntrusion and Normal Logs

Decision Tree Classifier
using ID3 Algorithm

Decision Tree Classifier
using ID3 Algorithm

Rules of intrusionRules of intrusion

Firewall Policy RulesFirewall Policy Rules

Network Traffic Logs

 Selection Processing

 Pattern Recognition

Data Warehouse

 Data Training

42

This research, there is a machine as router to record the network traffics. Router

is a device that serves to forward packets from one network to another network, so that

hosts on a network can communicate with hosts on other networks. Every network

packet incoming and outgoing recorded this machine in log files. Illustration network

traffic logs is shown in Figure 3.2.

Figure 3.2 Network traffic logs in computer network

3.3 Determine Intrusion or Normal Network Packet using Snort NIDS

Determining occurrence of intrusion or normal at network traffic logs can be

conducted with two ways :

− See manually by perceiving activities network traffic through log. Follow the

example software application of logs files like syslog, syslog_ng, tcpdump and

others. Pattern found to see intrusion through log seen modestly, for example there

are some times trying to conduct and login of password failed, trying port scan,

abundant ping, delivery of abundant package by repeat.

− Using software to determine intrusion activities or normal activities, for example

snort software.

- Router
- Firewall
- Network traffic logs

LAN

ServerServerServer

 - Router
- Firewall
- Network traffic logs

Internet

43

Snort is an open source network intrusion detection system and can be

downloaded for free on the official website http://www.snort.org. There are millions

of users downloading and more than 300,000 registered users. Snort has become the de

facto standard for NIDS (Roozbahani A.R. and Rikhtechi L. , 2010).

Snort application is a combination of network sniffers and log files are applied

to analyze the network traffics (Beheshti, M. et al., 2008). Snort is the most commonly

used signature-based intrusion detection system, capable of performing real time traffic

analysis and packet logging on IP networks. Snort depends on a pattern matching in

snort rules and snort can only detect attacks known beforehand (Kang H. and Zhang J,

2009).

Snort rules by default placed in the folder /etc/snort/rules/. Figure 3.3 is a

fragment of the contents dos.rules file, one of the snort file rules.

Figure 3.3 Fragment of snort rules in a file dos.rules

To edit the rules required a deep knowledge of the protocol, payload intrusions

etc. Snort application has provided a lot of rules by default and can be added the new

rules by downloading periodically at the snort official site

http://www.snort.org/snort-rules/#rules.

This research using snort software as NIDS in Linux OS. Snort can determine a

network packet is intrusion or normal. nort also produces log files that can be analyzed

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"DOS IGMP IP Options
validation attempt"; sid:8092; gid:3; rev:3; classtype:attempted-dos;
reference:url,www.microsoft.com/technet/security/bulletin/ms06-007.mspx;
reference:cve,2006-0021; reference:bugtraq,16645; metadata: engine shared,
soid 3|8092;)

alert tcp $EXTERNAL_NET any <> $HOME_NET 389 (msg:"DOS Microsoft Active
Directory LDAP denial of service attempt"; sid:13475; gid:3; rev:1;
classtype:attempted-dos; reference:cve,2008-0088;
reference:url,www.microsoft.com/technet/security/bulletin/ms08-003.mspx;
metadata: engine shared, soid 3|13475;)

44

by admin. All of network traffic is saved by the log files in a folder /var/log/snort/

and save the log files that intrusion in a folder /var/log/snort/alert.

3.4 Retrieving Data Set as Data Training

Network packet consists of the source IP, destination IP, source port, destination

port, protocol and others. Intruder performs intrusion with a variety of ways such as

seeing the open ports, OS used, the type and version of software application and others.

Intruders performs intrusion in step by step process to get information. It causes intruder

left many traces in log files. Meanwhile, one IP public represents many other computers

to use by translating IP private. This is called Network Address Translation (NAT)

(Suehring S. and Ziegler R.L., 2006). NAT was called masquerading. It enables many

user do normal activities using source IP address same. Therefore to take normal

activities as data training based on source IP address.

This research the way to take intrusion activities and normal activities for data

training are :

1. For intrusion activities, capture all the network packet did an intrusion.

2. For normal activities, compare every source IP address of network packet normal

one by one with network packet intrusion. If has same source IP address then take

a network packet normal as data training.

If all network traffic as training data is the intrusion, decision tree is not useful

as a classification because all the events are pure as the intrusion. Otherwise if all the

network traffic as data training is normal. The function of decision tree is to generate

rules intrusion and normal character that can classify the new network traffic is

intrusion or normal despite having the same source IP address.

3.5 Extract Log Files

For data training, extract every log files intrusion and normal become five

parameters as attributes and categorize 'Yes' or 'No' from intrusion as shown in Table

45

3.1. The attributes are IP address source, IP address destination, port source, port

destination and protocol. For example, extract log files is shown in Figure 3.4

[**] [1:1141:11] WEB-MISC handler access [**]
[Classification: access to a potentially vulnerable web application]
[Priority: 2]
12/10-04:59:30.635958 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800
len:0x1B9
192.168.1.13:1180 -> 10.10.1.3:80 TCP TTL:128 TOS:0x0 ID:1413 IpLen:20
DgmLen:427 DF
AP Seq: 0xC8B30EC2 Ack: 0x9968151B Win: 0xFC41 TcpLen: 20
[Xref => http://cgi.nessus.org/plugins/dump.php3?id=10100][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0148][Xref =>
http://www.securityfocus.com/bid/380][Xref =>
http://www.whitehats.com/info/IDS235]

Source IP = 192.168.1.13
Destination IP = 10.10.1.3
Source Port = 1180
Destination Port = 80
Protocol = TCP

Figure 3.4 Extract log files of network traffics

For easier, dataset results from the extract to data training is formed into a table.

Put the value attribute for each column plus one column as a class worth 'Yes' or 'No' of

intrusion. Table 3.1 shows the results of the extract formed into a table.

Table 3.1 Extract Log files into table form

No Source IP Dest IP Source
Port

Dest
Port

Protocol Intrusion

1 192.168.1.13 10.10.1.3 1180 80 TCP Yes
2 ….
… … … … … … …

46

3.6 ID3 Algorithm

ID3 builds a decision tree from a fix set of examples. The resulting tree is used

to classify future samples. This research has five attributes and belongs to a class ‘Yes’

or ‘No’ of intrusive. The decision node is an attribute test each branch (to another

decision tree) being a possible value of the attribute. ID3 uses information going to help

it decide which attribute goes into a decision node.

The calculation for information gain is the most difficult part of this algorithm.

ID3 performs a search whereby the search states are decision trees and the operator

involves adding a node to an existing tree. It uses information gain to measure the

attribute to put in each node, and performs a greedy search using this measure of worth.

The ID3 algorithm that implemented in this study goes as follows:

Given a set of examples, S, categorized in categories ci, then:

1. Choose the root node to be the attribute, A, which scores the highest for information

gain relative to S.

2. For each value v that A can possibly take, draw a branch from the node.

3. For each branch from A corresponding to value v, calculate Sv. Then:

• If Sv is empty, choose the category cdefault which contains the most examples from

S, and put this as the leaf node category which ends that branch.

• If Sv contains only examples from a category c, then put c as the leaf node

category which ends that branch.

• Otherwise, remove A from the set of attributes which can be put into nodes.

Then put a new node in the decision tree, where the new attribute being tested in

the node is the one which scores highest for information gain to Sv. This new

node starts the cycle again (from 2), with S replaced by Sv in the calculations and

the tree gets built iteratively like this.

The algorithm terminates either when all the attributes have been exhausted, or

the decision tree perfectly classifies the examples. The diagram to explain the ID3

algorithm is shown in Figure 3.5.

47

Figure 3.5 Construct decision tree

3.6.1 Entropy

Given a binary categorization, C, and a set of examples, S, for which the

proportion of examples categorized as positive by C is p+ and the proportion of

examples categorized as negative by C is p– , then the entropy of S is:

 E(S) = –p+ log2(p+) – p– log2(p–)(3.1)

Given a categorization, C into categories c1, ..., cn, and a set of examples, S, for

which the proportion of examples in ci is pi, then the entropy of S is:

 E(S) = ∑
i=1

n

-pi log2(pi) ..(3.2)

If p gets close to zero, log(p) becomes a big negative number. Entropy calculates

the disorder in the data, if entropy is low score it means good, as it reflects desire to

reward categories. Similarly, if p gets close to 1, then the log2 (p) part gets very close to

zero, so the overall value gets close to zero (Dunham and Margareth H., 2002; Mladenic

Default leaf
node d

Leaf node
category c

A

Attribute B
scores
highest for
Gain(S

w
,A)

Attribute A
scores highest
for Gain(S,A)

B

etc

S
v
 must contain

only examples in
category c

Sw must have no
examples taking
value x for
attribute B and
d must be
category
containing the
most members of
Sw

48

D., 2003; Jiawei H. and Kamber M., 2006 and Berry M.W. and Browne M., 2006). Note

that 0*log2(0) is taken to be zero.

3.6.2 Information Gain

The following measure calculates entropy value for a given attribute, A, with

respect to a set of examples, S. Note that the values of attribute A will range over a set

of possibilities which call Values(A), and that, for a particular value from that set, v,

write Sv for the set of examples which have value v for attribute A, then entropy S of A

is:

 E(S,A) = ∑
v∈Value A

∣S v∣

∣S∣
 E(Sv) ..(3.3)

The information gain of attribute A, relative to a collection of examples, S, is calculated

as:

Gain(S,A) = E(S)–E(S,A)

= E(S)– ∑
v∈Value A

∣S v∣

∣S∣
 E(Sv)(3.4)

3.7 Rule Extraction IF-THEN

Calculation having taken steps by using ID3 algorithm hence formed by decision

tree example as shown in Figure 3.6.

49

Figure 3.6 Decision tree of network traffics

Figure 3.7 Pruning decision tree network traffic for NIDS

Dest Port

10.10.1.5

122.306.13.100 203.130.14.20

No

Yes Yes

16301330

Protocol

TCP

10.10.1.3

Dest IP

10.10.1.2

Yes

80

Yes

22

No

Protocol

TCP

Yes

Source IP

206.145.203.4

Dest Port

10.10.1.5

122.306.13.100 203.130.14.20

Yes

Source Port

16301330

Protocol

TCP

Dest IP

10.10.1.2

Yes

80

Yes

Protocol

TCP

Yes

Source IP

206.145.203.4

Source Port

Yes

50

Decision tree classifier made moderate with only taking pattern which

occurrence intrusive ' Yes' at final node and this describe rules of intrusion signature

pattern. Decision tree can simplified by pruning all connections are assumed to be

normal and not classified as intrusion. Figure 3.7 shows pruning decision tree network

traffics.

The Decision trees can become interpretation rule-based classifier by extracting

IF-THEN rules (Mladenic D., 2003; Jiawei H. and Kamber M., 2006; Roiger R.J. and

Geatz M.W., 2003 and Tan P.N. et al., 2006). In comparison with a decision tree, the

IF-THEN rules may be easier for humans to understand (Jiawei H. and Kamber M.,

2006).

To extract rules from a decision tree, one rule is created for each path from the

root to a leaf node. Each splitting criterion along a given path is logically AND form the

rule antecedent (“IF” part). The leaf node holds the class prediction, forming the rule

consequent (“THEN” part) (Jiawei H. and Kamber M., 2006).

This is example extracting classification rules from a decision tree. The decision

tree is shown in Figure 3.7 can converted to classification IF-THEN rules by tracing the

root node to each leaf node in the tree is shown in Figure 3.8.

R1 : IF (Source IP = 122.306.13.100) THEN Intrusion = Yes

R2 : IF (Source IP = 203.130.14.20) AND (Protocol = TCP) AND (Dest Port = 80)

THEN Intrusion = Yes

R3 : IF (Source IP = 206.145.206.4) AND (Dest IP = 10.10.1.2) THEN Intrusion = Yes

R4 : IF (Source IP = 206.145.206.4) AND (Dest IP = 10.10.1.5) AND (Protocol = TCP) AND

 (Source Port = 1330) THEN Intrusion = Yes

R5 : IF (Source IP = 206.145.206.4) AND (Dest IP = 10.10.1.5) AND (Protocol = TCP) AND

 (Source Port = 1630) THEN Intrusion = Yes

Figure 3.8 The decision tree converted to classification IF-THEN rules

51

3.8 Rules Implemented into Firewall Rules

Decision tree has to generate rules. If there is network packet match with one of

rules, the network packet is intrusion. For security, intrusion network packet will be

dropped and not forward into LAN. These rules in Figure 3.8 can be implemented in

firewall rules as shown in Figure 3.9.

R1 : -A FORWARD -s 122.306.13.100 -j DROP

R2 : -A FORWARD -s 203.130.14.20 -p tcp --dport 80 -j DROP

R3 : -A FORWARD -s 206.145.206.4 -d 10.10.1.2 -j DROP

R4 : -A FORWARD -s 206.145.206.4 -d 10.10.1.5 –p tcp --sport 1330 -j DROP

R5 : -A FORWARD -s 206.145.206.4 -d 10.10.1.5 –p tcp --sport 1630 -j DROP

Figure 3.9 Rules to be implemented into firewall rules

Firewall policy rules as shown in Figure 3.9 describe that every network packet

match rules will DROP. This action prevention of intrusion network packet.

3.9 CONCLUSION

This chapter explains propose NIPS based on NIDS and ID3 algorithm decision

tree classifier. The network traffic logs as data training have two categories that are

intrusion or normal. Network traffics extracts five attributes include source IP,

destination IP, source port, destination port and protocol. Decision tree is construct by

using ID3 algorithm. Decision tree generate rules of intrusion, where rules can

determine automatically network packet either intrusion or normal. Rules of intrusion

was implemented into firewall as prevention action.

52

CHAPTER 4

IMPLEMENTATION

4.1 NIPS BASED ON NIDS AND ID3 ALGORITHM DECISION TREE

CLASSIFIER ENVIRONMENT

Internet is made up of several computer network connections. This connection

then expanded and spread all over the world. This research takes only a few clients and

servers that can represent a large computer network like the Internet. Client request to

the server and some tried intrusion to the server. The most important in this research

obtain data training that is intrusion network packets in the network traffics and does not

depend on the size of a computer network. Machines as routers and firewalls that

important to capture network traffic in the log files and take action for network packet.

This machine can be implemented into a large computer network where the log files as

data training generated reflects the network topology used.

The implementation is built 3 Local Area Network (LAN) as client is connected

to the LAN as the server computer. There is 3 computer for servers in a LAN. Each of

LAN connected through a router. Each computer server has application server same that

is SSH server, Apache web server, MySQL database server, Sendmail Mail Server and

Squirellmail Webmail. Squirellmaill is Webmail to provide email service through a

URL or web browser. Machine computer for the router and firewall applications have a

Dynamic Host Configuration Protocol (DHCP) Server, Berkeley Internet Name

Domain (BIND) Name Server and Snort software for network traffic logs and NIDS. All

network traffic logs will be recorded in this machine as router and firewall using Snort

software. Topology network and all information shown in Figure 4.1.

Figure 4.1 Network topology

LAN 1
192.168.0.0/29 LAN 1

192.168.0.0/29

Server 1
10.10.1.2

LAN 3
192.168.2.0/27

LAN 2
192.168.1.0/28

Gateway : 192.168.0.6Gateway : 192.168.0.6 Gateway : 192.168.2.30Gateway : 192.168.1.14

Server 2
10.10.1.3

Server 3
10.10.1.5

LAN Server

Gateway : 192.168.0.6Gateway : 192.168.0.6

Gateway : 10.10.1.610.10.1.0/29
eth0 : 192.168.0.6

Network traffic logs

ROUTER / FIREWALL

eth0:1 192.168.0.6
eth0:1 192.168.1.14
eth0:1 192.168.2.30

BIND Name Server (DNS)
DHCP Server

Each server have the same application server :
- SSH Server
- Apache Web Server
- MySQL Database Server
- Sendmail Mail Server
- Squirelmail Webmail

54

4.1.1 Setting Server

A computer server provide many services to the client. In addition, server is to

detect intrusive from the client too. Each server uses Slackware Linux 12.1 Operating

System kernel 2.6.27.1. The same hardware specification for all servers in LAN is

shown in table 4.1.

Table 4.1 Server components specification

Hardware Specification
Processor AMD Duron 1200+
Mainboard ECS K7SEM
Memory 2x@256 MB
Hard Disk 80 GB
VGA Card AGP NVDIA GeForce2 MX 400
Network Card Realtek RTL8139

Computer as the server is in LAN 10.10.1.0/29. There are 3 servers. IP address

and hostname of each computer is shown in Table 4.2.

Table 4.2 IP address and server hostname

IP Address Hostname

10.10.1.2 server1
10.10.1.3 server2
10.10.1.5 server3

Setting IP address and gateway have done by using the command ifconfig and

route on the Linux command line interface. Gateway is the nearest route to the LAN.

Setting IP address and gateway is shown in Figure 4.2.

55

Figure 4.2 Setting IP address and gateway

There are several ways to setting IP address:

− Use command ifconfig. For easily command setting IP address is written in the

rc.local file. This file in the directory /etc/rc.d/rc.local. This is a local

startup command, where every time booting all command in the rc.local file is

executed.

− Setting static IP address by tools, use command netconfig then there is dialog

box.

− Setting static IP address use script in rc.inet1.conf file. In Slackware that is file

in folder /etc/rc.d/rc.inet1.conf.

Each computer has same application server. Application server is shown in Table. 4.3.

Table 4.3 Application server

Aplication Server Software Port Used
SSH Server ssh 22
Web Server apache 80
Database mysql 3306
Mail Server sendmail 143, 110, 25
Webmail squirrellmail 80, 143, 110, 25

56

Application server will run through the port as a service to the client. This

research, these ports are destination ports, one of the attribute data training. These ports

has some value as shown in Table 4.3. It is a target for the intruder to access system.

4.1.2 Setting Router and Firewall

Router is a computer or machine that forward packets from one or more than one

LAN to another LAN. Router has a broader function than the gateway. Router connect

between gateway on computer network. Figure 4.3 shows the setting IP address

computer and router.

.

Figure 4.3 Setting IP address and router

Enter command line is shown in Figure 4.3 above in file /etc/rc.d/rc.local

as the local startup command.

.

Table 4.4 Router and firewall components specification

Hardware Specification
Processor Core 2 Dou 2.0 GHz
Memory 1GB
Hard Disk 250 GB
Network Card Realtek RTL 8111/8168B

57

Computer specification for the router and firewall is shown Table 4.4. In the

implementation computer as router and firewall also as a DHCP Server, Name Server,

Firewall and network traffic logs. DHCP server functions to provide automatically IP

address, netmask, gateway and Domain Name System (DNS) for client. Name Server

will be a service that translates IP address to a system for name as well as the name of

the system to the IP address. The name system in this hierarchy called the DNS.

Software application at computer router and firewall is shown in Table 4.5.

Table 4.5 Software applications in computer as router and firewall

Software Aplication Version Port
DHCP Server dhcp-3.0.3 67
Name Server bind-9.2.3 53
Firewall iptables-1.2.10 -
Log Files snort-2.8..3.1 (/var/log/snort) -

DHCP server used for one LAN, because computer has only one network card

that is 'eth0'. The configuration of DHCP is shown Figure 4.4.

Figure 4.4 Configuration of DHCP server

58

Local DNS makes the computer host easily known in the LAN. In this

implementation the domain name is 'research.com'. The configuration of DNS are

shown in Figure 4.5, Figure 4.6 and Figure 4.7.

Figure 4.5 Configure DNS server zone at /etc/named.conf

59

Figure 4.6 Configure file /var/named/caching-examples/db.research.com

Figure 4.7 Configure file /var/named/caching-examples/db.10.10.1

In Figure 4.7, IP address 10.10.1.2 mapped to a domain name

server1.research.com and for name of another server computer is shown in Table 4.6

60

Table 4.6 Local DNS

IP Address DNS
10.10.1.6 research.com
10.10.1.2 server1.research.com
10.10.1.3 server2.research.com
10.10.1.5 server3.research.com

Client computer must to enter which computer is DNS server. Thats means DNS

server will translate hostname to IP address and contrary IP address to hostname request

from client. Settings DNS server in computer client at file /etc/resolv.conf. DNS

server translate IP address to hostname and name to IP address are shown in Figure 4.8.

Figure 4.8 Translate IP address to DNS and on the contrary

In implementation, iptables has been used to packet filter firewall. It works at

the Network Level of the OSI model. In a firewall packet filtering phase, each network

61

packet compared to a set of criteria. Depending on the packet and the criteria, the

firewall can drop the packet, forward it or send a message to the client.

Without case of generality, this implementation uses concept that accept

everything by default and drop network packets match with rules in firewall. The reason

to find which one is intrusive network packet, that will then be dropped at the firewall.

Therefore it accepts all the default network packet and drop the network packet

intrusive.

4.2 NETWORK TRAFFIC LOGS

All event in the Linux OS recorded in log files. In general log files on Linux OS

in the directory /var/log/. For example are /var/log/syslog,

/var/log/messages, /var/log/snort/alert and others.

Snort software has been used in this implementation to see network traffics logs.

Snort is the open source to run real-time analysis and packet logging on IP network.

This software can detect various attacks and infiltration, such as buffer overflow, stealth

port scans, CGI attacks, efforts of fingerprinting and others.

Snort has 3 main purposes, which are :

• Sniffer mode, to see the package through.

• Logger mode packet, to record all the packets through the network for later

analysis.

• Intrusion and Detection mode, to detect attacks made through a computer

network. To use this mode in IDS requires to setup a variety of rules that will

distinguish normal packet with intrusion packet.

In this implementation, client computers to attack or intrusion to server

computer by using some software for hackers such as nmap, nikto, tcpdump and others.

For example, the attempt for intrusion is shown in Figure 4.9, 4.10 and 4.11.

62

Figure 4.9 nmap software to scan port host 10.10.1.2

Figure 4.10 nikto software to get information web server at host 10.10.1.2

63

Figure 4.11 Try to connect host 10.10.1.2 using password root failed through SSH

In snort software an intrusive attempt was logged on directory files in

/var/log/snort/alert is shown on Section A of Appendix A and all of network

traffics that intrusion and normal in the directory /var/log/snort/snort.log.*

shown section B of Appendix A.

Log files intrusion activities and normal activities is shown in appendix A,

retrieving data set as data training refer to Section 3.4 :

1. For the data training is intrusion, take all the data intrusion on the log files in the

folder/var/log/snort/alert.

2. For the data training is normal, each network packet on log files in the folder

/var/log/snort/snort.log.* will be compared with network packet is

intrusion at no.1 above. If have the same source IP address, then take the network

packet network is normal as training data.

Therefore there is 60 data set as data training then extracted in tabular form shown in

the Table 4.7.

64

Table 4.7 Data set of network traffics for data training

No.

Source Destination Protocol

Intrusion
 IP Port IP Port

1 192.168.2.25 10.10.1.2 ICMP Yes
2 192.168.2.25 1142 10.10.1.2 161 TCP Yes
3 192.168.2.25 1143 10.10.1.2 162 TCP Yes
4 192.168.2.25 1179 10.10.1.2 110 TCP Yes
5 192.168.2.25 1175 10.10.1.2 25 TCP Yes
6 192.168.2.25 1130 10.10.1.3 22 TCP Yes
7 192.168.2.25 1131 10.10.1.3 22 TCP Yes
8 192.168.2.25 1345 10.10.1.5 22 TCP Yes
9 192.168.2.25 1347 10.10.1.5 22 TCP Yes

10 192.168.2.25 1348 10.10.1.5 22 TCP Yes
11 192.168.2.25 1351 10.10.1.5 22 TCP Yes
12 192.168.2.25 1352 10.10.1.5 22 TCP Yes
13 192.168.2.25 1356 10.10.1.5 22 TCP Yes
14 192.168.2.25 1354 10.10.1.5 22 TCP Yes
15 192.168.0.5 10.10.1.2 ICMP Yes
16 192.168.0.5 1392 10.10.1.2 80 TCP Yes
17 192.168.0.5 1394 10.10.1.2 80 TCP Yes
18 192.168.0.5 1396 10.10.1.2 80 TCP Yes
19 192.168.0.5 1400 10.10.1.2 80 TCP Yes
20 192.168.0.5 1401 10.10.1.2 22 TCP Yes
21 192.168.0.5 1405 10.10.1.2 22 TCP Yes
22 192.168.0.5 10.10.1.3 ICMP Yes
23 192.168.0.5 1458 10.10.1.3 80 TCP Yes
24 192.168.0.5 1465 10.10.1.3 80 TCP Yes
25 192.168.0.5 1463 10.10.1.3 80 TCP Yes
26 192.168.0.5 1466 10.10.1.3 80 TCP Yes
27 192.168.0.5 1394 10.10.1.5 22 TCP Yes
28 192.168.0.5 1398 10.10.1.5 22 TCP Yes
29 192.168.0.5 1402 10.10.1.5 22 TCP Yes
30 192.168.0.5 1409 10.10.1.5 22 TCP Yes
31 192.168.0.5 1411 10.10.1.5 22 TCP Yes
32 192.168.0.5 1413 10.10.1.5 22 TCP Yes
33 192.168.0.5 1181 10.10.1.3 80 TCP No
34 192.168.0.5 1183 10.10.1.3 80 TCP No
35 192.168.0.5 1185 10.10.1.3 80 TCP No
36 192.168.0.5 1384 10.10.1.5 80 TCP No
37 192.168.0.5 1391 10.10.1.5 80 TCP No
38 192.168.0.5 1393 10.10.1.5 80 TCP No
39 192.168.0.5 1409 10.10.1.5 80 TCP No
40 192.168.0.5 1411 10.10.1.5 80 TCP No
41 192.168.0.5 1413 10.10.1.5 80 TCP No
42 192.168.1.13 1173 10.10.1.3 80 TCP Yes
43 192.168.1.13 1175 10.10.1.3 80 TCP Yes
44 192.168.1.13 1179 10.10.1.3 80 TCP Yes
45 192.168.1.13 1180 10.10.1.3 80 TCP Yes
46 192.168.1.13 1158 10.10.1.2 25 TCP Yes
47 192.168.1.13 1203 10.10.1.3 22 TCP No
48 192.168.1.13 1204 10.10.1.3 22 TCP No
49 192.168.1.13 1220 10.10.1.5 22 TCP No
50 192.168.1.13 1419 10.10.1.3 80 TCP No
51 192.168.1.13 1423 10.10.1.3 80 TCP No
52 192.168.2.16 10.10.1.2 ICMP Yes
53 192.168.2.16 34592 10.10.1.2 162 TCP Yes
54 192.168.2.16 34592 10.10.1.2 161 TCP Yes
55 192.168.2.16 53814 10.10.1.2 3306 TCP Yes
56 192.168.2.16 53815 10.10.1.2 3306 TCP Yes
57 192.168.2.16 49869 10.10.1.2 80 TCP No
58 192.168.2.16 49870 10.10.1.2 80 TCP No
59 192.168.2.16 49871 10.10.1.2 80 TCP No
60 192.168.2.16 49872 10.10.1.2 80 TCP No

65

4.3 CONSTRUCT DECISION TREE USING ID3 ALGORITHM

Based on the network traffics shown in Table 4.7, there are two conditions that

must be followed in building a decision tree :

1. The value of the source port attribute so many, there 60 value in source port attribute

where the value is different each other. This causes the value of entropy of the source

port is 0 based on Equation (3.3) in section 3.4.2:

E(S,A) = ∑
v∈Value A

∣S v∣

∣S∣
 E(Sv)

E(Intrusion,Source Port) = 1/60 (–1/1 log2 1/1 – 0/1 log2 0/1)

+ 1/60 (–1/1 log2 1/1 – 0/1 log2 0/1)

+ ... + 1/60 (–1/1 log2 1/1 – 0/1 log2 0/1)

= 0 + 0 + 0 + ... +0

= 0

and value of gain is always high based on Equation (3.4) in section 3.4.2:

Gain(S,A) = E(S) – E(S,A)

G(Intrusion, Source IP) = E(Intrusion) – E(Intrusion, Source IP)

= E(Intrusion) - 0

Consequently source port attribute always as root node. If the source port attribute as

root node decision tree classification is not useful anymore, because under source

port of the node is the all value of source port attribute. Therefore, the source port is

ignored calculations to construct decision tree. Source port is used as the last node if

all attribute has become nodes in the tree, then the last options is the source port

attribute as a node.

2. Source port and destination port cannot implemented into firewall rules without

protocol. Figure 4.12 show an example of rules is wrong.

66

Figure 4.12. The description of the wrong rules in firewall

Source Port and Destination Port need Protocol to create rules into firewall.

Therefore, Protocol and Destination Port become one attribute for calculate Entropy

and Gain. To construct decision tree Protocol attribute as node for first follow is

Destination Port.

The first step to find attributes at the top of tree as root node from data set is

shown in Table 4.7, there is 60 data sets where 42 intrusion and 18 normal.

Intrusion
[42+, 18-]

 Yes No
 42/60 = 0.7 18/60 =0.3

Figure 4.13 The set of 60 examples where 42 intrusion and 18 normal

To Calculate entropy of Intrusion is based on Equation (3.1) in Section 3.4.1:

 E (S) = –p+ log2(p+) – p– log2(p–)

E (Intrusion) = – 42/60 log2 (42/60) – 18/60 log2 (18/60)

= 0.7 log2 0.7 – 0.3 log2 0.3

= 0.8813

The next step to calculate for each of attributes.

In Table 4.7 there are four values from the Source IP. Every value of the Source

IP is counted in order to know how many intrusion and not intrusion. To more easily

R1 : -A FORWARD --dport 22 -j DROP
R2 : -A FORWARD --sport 1890 -j DROP
R3 : -A FORWARD --sport 1890 –dport 22 –j DROP

67

make in the form of tables. An example in Table 4.8 is described the value of the Source

IP attribute.

Table 4.8 Source IP

Source IP Intrusion

SumYes No

192.168.2.25 14 0 14

192.168.0.5 18 9 27

192.168.1.13 5 5 10

192.168.2.16 5 4 9

Sum 60

To Calculate entropy Intrusion of Source IP based on Equation (3.3) in Section 3.4.2.

E(S,A) = ∑
v∈Value A

∣S v∣

∣S∣
 E(Sv)

 E(Intrusion,Source IP) = 14/60 (–14/14 log2 14/60 – 0/14 log2 0/14)

+ 27/60 (–18/27 log2 18/27 – 9/27 log2 9/27)

+ 15/60 (–5/10 log2 5/10 – 5/10 log2 5/10)

+ 9/60 (–5/9 log2 5/9 – 4/9 log2 4/9)

= 0 + 0.4132 + 0.1666 + 0.1487

= 0.7285

To calculate gain Intrusion of Source IP based on Equation (3.4) in Section 3.4.2.

 Gain(S,A) = E(S) – E(S,A)

G(Intrusion, Source IP) = E(Intrusion) – E(Intrusion, Source IP)

0.8813 – 0.7285

= 0.1528

To calculate entropy and gain Intrusion of Destination IP:

In Table 4.7 there are four values from the Destination IP. Every value of the

Destination IP is counted how many intrusion and not intrusion. This Procedure was

68

conducted to define the value of every attribute. In Table 4.8 is described the value of

the Source IP attribute.

Table 4.9 Destination IP

Destination
IP

Intrusion

SumYes No

10.10.1.2 18 4 22

10.10.1.3 11 7 18

10.10.1.5 13 7 20

Sum 60

To Calculate entropy Intrusion of Destination IP based on Equation (3.3) in Section

3.4.2.

 E(S,A) = ∑
v∈Value A

∣S v∣

∣S∣
 E(Sv)

E(Intrusion, Destination IP) = 22/60 (–18/22 log2 18/22 – 4/22 log2 4/22)

+ 18/60 (–11/18 log2 11/18 – 7/18 log2 7/18)

+ 20/60 (–13/20 log2 13/20 – 7/20 log2 7/20)

= 0.25 + 0.2892 + 0.3114

= 0.8506

To calculate gain Intrusion of Destination IP based on Equation (3.4) in Section 3.4.2.

 Gain(S,A) = E(S) – E(S,A)

G(Intrusion, Destination IP) = E(Intrusion) – E(Intrusion, Destination IP)

G(Intrusion, Destination IP) = 0.8813 – 0.8506

0.0307

To calculate entropy and gain Intrusion of Protocol and Destination Port attribute:

69

Table 4.10 Protocol and Destination Port

Protocol &
Destination Port

Intrusion

SumYes No

ICMP 4 0 4

TCP 22 17 3 20

TCP 25 2 0 2

TCP 80 12 15 27

TCP 110 1 0 1

TCP 161 2 0 2

TCP 162 2 0 2

TCP 3360 2 0 2

Sum 60

To Calculate entropy Intrusion of Protocol and Destination Port based on Equation (3.3)

in Section 3.4.2.

 E(S,A) = ∑
v∈Value A

∣S v∣

∣S∣
 E(Sv)

E(Intrusion, Protocol & Dest Port) = 4/60 (–4/4 log2 4/4 – 0/4 log2 0/4)

+ 20/60 (–17/20 log2 17/20 – 3/20 log2 3/20)

+ 2/60 (–2/2 log2 2/2 – 0/2 log2 0/2)

+ 27/60 (–12/27 log2 12/27 – 15/27 log2 15/27)

+ 1/60 (–1/1 log2 1/1 – 0/1 log2 0/1)

+ 2/60 (–2/2 log2 2/2 – 0/2 log2 0/2)

+ 2/60 (–2/2 log2 2/2 – 0/2 log2 0/2)

+ 2/60 (–2/2 log2 2/2 – 0/2 log2 0/2)

= 0 + 0.2033 + 0 + 0.4460 + 0 + 0+ 0 + 0

= 0.6493

To calculate gain Intrusion of Protocol and Destination Port based on Equation (3.4) in

Section 3.4.2.

 Gain(S,A) = E(S) – E(S,A)

G(Intrusion, Protocol & Dest Port) = E(Intrusion) – E(Intrusion, Protocol & Dest Port)

 G(Intrusion, Protocol & Dest Port) = 0.8813 – 0.6493

= 0.2320

70

`

Figure 4.14 Each Gain of attributes

The highest Gain in Figure 4.14 is Protocol and Destination Port attribute which

value is 0.2320. Therefore, Protocol and Destination Port attribute is used as root node

which shown in Figure 4.15.

Figure 4.15 Protocol and Destination Port as root node

Separate the attribute protocol and destination port become two parts. The first

attribute is Protocol that has the value is ICMP and TCP. Then follow the Destination

Port attribute is shown in Figure 4.15. Now define the following attributes under the

ICMP protocol.

To calculate Gain for each attribute use Protocol = ICMP:

These instances that use Protocol = ICMP as shown in Table 4.11.

Intrusion

Destination IP

Gain = 0.0307

Protocol & Destination Port

Gain = 0.2320

Source IP

Gain = 0.1528

Highest Gain

Protocol

22 161 162 33601108025

ICMP

Destination Port

TCP

71

Table 4.11 All data set using Protocol = ICMP

No. Source Destination Protocol Intrusion

 IP Port IP Port

1 192.168.2.25 10.10.1.2 ICMP Yes

2 192.168.0.5 10.10.1.2 ICMP Yes

3 192.168.0.5 10.10.1.3 ICMP Yes

4 192.168.2.16 10.10.1.2 ICMP Yes

ICMP
[4+, 0]

 Yes No
 4/4 = 1 0/4 =0

Figure 4.16 The set of 4 examples Protocol = ICMP are 4 intrusion and 0 normal

To calculate entropy of Protocol = ICMP based on Equation (3.1) in Section 3.4.1:

 E (S) = –p+ log2(p+) – p– log2(p–)

 E (ICMP) = – 4/4 log2 (4/4) – 0/4 log2 (0/4)

= 0

From the above calculation, E (ICMP) is equals to 0 This shows that the incident

was pure impurity is 'Yes' and can be described in decision tree as shown in Figure 4.17.

Figure 4.17 All of instance of ICMP Protocol is Intrusion = Yes

Protocol

22 161 162 33601108025

ICMP

Destination Port

TCP

Yes

72

Next, to find and define the next attribute under the Protocol = TCP and

Destination Port = 22.

To calculate Gain for each attributes using Protocol = TCP and Destination = 22

attribute. All of instances (see in Table 4.7) which using attribute Protocol = TCP and

Destination Port = 22 is shown in Table 2.12.

Table 4.12 All data set using Protocol = TCP and Destination Port = 22

No.

Source Destination Protocol

Intrusion
 IP Port IP Port

1 192.168.2.25 1130 10.10.1.3 22 TCP Yes

2 192.168.2.25 1131 10.10.1.3 22 TCP Yes

3 192.168.2.25 1345 10.10.1.5 22 TCP Yes

4 192.168.2.25 1347 10.10.1.5 22 TCP Yes

5 192.168.2.25 1348 10.10.1.5 22 TCP Yes

6 192.168.2.25 1351 10.10.1.5 22 TCP Yes

7 192.168.2.25 1352 10.10.1.5 22 TCP Yes

8 192.168.2.25 1356 10.10.1.5 22 TCP Yes

9 192.168.2.25 1354 10.10.1.5 22 TCP Yes

10 192.168.0.5 1401 10.10.1.2 22 TCP Yes

11 192.168.0.5 1405 10.10.1.2 22 TCP Yes

12 192.168.0.5 1394 10.10.1.5 22 TCP Yes

13 192.168.0.5 1398 10.10.1.5 22 TCP Yes

14 192.168.0.5 1400 10.10.1.5 22 TCP Yes

15 192.168.0.5 1409 10.10.1.5 22 TCP Yes

16 192.168.0.5 1411 10.10.1.5 22 TCP Yes

17 192.168.0.5 1413 10.10.1.5 22 TCP Yes

18 192.168.1.13 1203 10.10.1.3 22 TCP No

19 192.168.1.13 1204 10.10.1.3 22 TCP No

20 192.168.1.13 1220 10.10.1.5 22 TCP No

22
[17+, 3–]

 Yes No
 17/20 = 0.85 3/20 =0.15

Figure 4.18 The set of 20 examples Dest Port=22 are 17 intrusion and 3 normal

73

To calculate entropy of Destination Port = 22 based on Equation (3.1) in Section 3.4.1:

 E (S) = –p+ log2(p+) – p– log2(p–)

 E (22) = – 17/20 log2 (17/20) – 3/20 log2 (3/20)

= 0.85 log2 0.85 – 0.15 log2 0.15

= 0.6098

To calculate each entropy and Gain attributes are Source IP and Destination IP:

 Entropy and Gain Destination Port = 22 attribute of Source IP

Table 4.13 Source IP using Protocol = TCP and Destination Port = 22

Source IP

Intrusion

SumYes No

192.168.2.25 9 0 9

192.168.0.5 8 9 8

192.168.1.13 0 3 3

Sum 20

To calculate entropy Destination Port = 22 of source IP based on Equation (3.3) in

Section 3.4.2.

 E(S,A) = ∑
v∈Value A

∣S v∣

∣S∣
 E(Sv)

 E(S22, Source IP) = 9/20 (–9/9 log2 9/9 – 0/9 log2 0/9)

+ 8/20 (–8/8 log2 8/8 – 0/8 log2 0/8)

+ 3/20 (–0/3 log2 0/3 – 3/3 log2 3/0)

= 0

To calculate gain of Source IP based on Equation (3.4) in Section 3.4.2.

 Gain(S,A) = E(S) – E(S,A)

 G(S22, Source IP) = E(22) – E(S22, Source IP)

 G(S22, Source IP) = 0.6098 – 0

= 0.6098

74

 Entropy and Gain Destination Port = 22 of Destination IP

Table 4.14 Destination IP using Destination Port = 22

Destination

IP

Intrusion

SumYes No

10.10.1.2 2 0 2

10.10.1.3 2 2 4

10.10.1.5 13 1 14

Sum 20

To calculate entropy Destination Port =22 of Destination IP based on Equation

(3.3) in Section 3.4.2.

 E(S,A) = ∑
v∈Value A

∣S v∣

∣S∣
 E(Sv)

E(S22, Destination IP) = 2/20 (–2/2 log2 2/2 – 0/2 log2 0/2)

+ 4/20 (–2/4 log2 2/4 – 2/4 log2 2/4)

+ 14/20 (–13/20 log2 13/20 – 1/14 log2 1/14)

= 0 + 0.2 + 0.2599

= 0.4599

Calculate gain Destination Port =22 of Destination IP based on Equation (3.4) in

Section 3.4.2

 Gain(S,A) = E(S) – E(S,A)

 G(S22, Destination IP) = E(22) – E(S22, Destination IP)

 G(S22, Destination IP) = 0.6098 – 0.4599

0.1499

Source IP has the highest Gain. Therefore, Source IP used as the decision node

under Protocol = TCP and Destination Port = 22 which shown in Figure 4.19.

75

Figure 4.19 Source IP decision node under Destination Port = 22

The next step to find node under Protocol=TCP, Destination Port=22 and Source

IP = 192.168.2.25. To calculate Gain for each attributes use Protocol=TCP, Destination

Port=22 and Source IP = 192.168.2.25

Table 4.15 Protocol = TCP, Source IP = 192.168.2.25 and Destination Port = 22

No. Source Destination Protocol Intrusion

 IP Port IP Port

1 192.168.2.25 1130 10.10.1.3 22 TCP Yes

2 192.168.2.25 1131 10.10.1.3 22 TCP Yes

3 192.168.2.25 1345 10.10.1.5 22 TCP Yes

4 192.168.2.25 1347 10.10.1.5 22 TCP Yes

5 192.168.2.25 1348 10.10.1.5 22 TCP Yes

6 192.168.2.25 1351 10.10.1.5 22 TCP Yes

7 192.168.2.25 1352 10.10.1.5 22 TCP Yes

8 192.168.2.25 1356 10.10.1.5 22 TCP Yes

9 192.168.2.25 1354 10.10.1.5 22 TCP Yes

192.168.2.25
[9+, 0–]

 Yes No
 9/9 = 1 0/9 = 0

Figure 4.20 The set of 20 examples Source Port =22 are 17 intrusion and 3 normal

Protocol

22 161 162 33601108025

ICMP

Destination Port

TCP

Yes

Source IP

192.168.0.5 192.168.1.13192.168.2.25

76

 E (S) = –p+ log2(p+) – p– log2(p–)

E (192.168.0.25) = – 9/9 log2 (9/9) – 0/9 log2 (0/9)

= 0

From the calculation above, E (192.168.0.25) is equal 0. This is pure impurity.

That is all occurrences using Protocol=TCP, Destination Port = 22 and Source IP

=192.168.2.25 is Intrusion =’Yes’. For another is same, E(192.168.0.5) is equal to 0 and

E(192.168.0.13) is equal to 0. Therefore, decision tree is shown in Figure 4.21.

Figure 4.21 Leaf node Protocol = TCP and Destination Port = 22

This process goes on until all data classified perfectly or run out of attributes.

The complete of tree is shown in Figure 4.22. Decision tree can simplified by pruning

all connections to normal and not classified is shown in Figure 4.23.

Protocol

22 161 162 33601108025

ICMP

Destination Port

TCP

Yes

Source IP

192.168.0.5 192.168.1.13192.168.2.25

Yes Yes No

22 161 162 33061102580

Source IP

192.168.0.5192.168.2.25

Yes Yes No

Protocol

Yes Yes No No

Yes

YesYesYesYesYes

Yes Yes No

Destination IP

10.10.1.310.10.1.2 10.10.1.5

Source IP

192.168.0.5

Source IP

Source Port

192.168.0.5 192.168.1.13

Source Port

1458 1465 118114661463 11851183 1173 1175 141911801179 1423

Yes Yes No NoYes Yes

192.168.0.5

No

Source IP

192.168.1.13

Figure 4.22 Complete decision tree network traffics

ICMP TCP

Yes
Destination Port

22 161 162 33061102580

Source IP

192.168.0.5192.168.2.25

Yes Yes

Protocol

Yes Yes

Yes

YesYesYesYesYes

Yes Yes

Destination IP

10.10.1.310.10.1.2

Source IP

192.168.0.5

Source IP

Source Port

192.168.0.5 192.168.1.13

Source Port

1458 1463 14661465 1173 1175 11801179

Yes Yes Yes Yes

Figure 4.23 Pruning decision tree network traffics

ICMP TCP

Destination Port
Yes

79

4.4 RULE EXTRACTION IF-THEN

The knowledge represented in decision trees can to extracted and represented in

the form of IF-THEN rules. One rule created for each path from the root to a leaf node.

Each attribute-value pair along a given path forms a conjunction in the rule antecedent

(“IF” part). The leaf node holds the class prediction, forming the rule consequent

(“THEN” part). The IF-THEN rules may be easier than decision tree for humans to

understand. Decision tree in shown Figure 4.23 have been extracted in the form IF-

THEN as shown Figure 4.24.

R1 : IF (Protocol = ICMP) THEN Intrusion = Yes

R2 : IF (Protocolt = TCP) AND (Dest Prot = 22) AND (Source IP=192.168.2.25)

THEN Intrusion = Yes

R3 : IF (Protocolt = TCP) AND (Dest Prot = 22) AND (Source IP = 192.168.0.5)

THEN Intrusion = Yes

R4 : IF (Protocol = TCP) AND (Dest Port = 80) AND (Dest IP = 10.10.1.2) AND

(Source IP = 192.168.0.5) THEN Intrusion = Yes

R5 : IF (Protocol = TCP) AND (Dest Port = 80) AND (Dest IP = 10.10.1.2) AND

(Source IP = 192.168.2.16) THEN Intrusion = Yes

R6 : IF (Protocol = TCP) AND (Dest Port = 80) AND (Dest IP = 10.10.1.3) AND

(Source IP = 192.168.0.5) AND (Source Port = 1458) THEN Intrusion = Yes

R7 : IF (Protocol = TCP) AND (Dest Port = 80) AND (Dest IP = 10.10.1.3) AND

(Source IP = 192.168.0.5) AND (Source Port = 1463) THEN Intrusion = Yes

R8 : IF (Protocol = TCP) AND (Dest Port = 80) AND (Dest IP = 10.10.1.3) AND

(Source IP = 192.168.0.5) AND (Source Port = 1465) THEN Intrusion = Yes

R9 : IF (Protocol = TCP) AND (Dest Port = 80) AND (Dest IP = 10.10.1.3) AND

(Source IP = 192.168.0.5) AND (Source Port = 1466) THEN Intrusion = Yes

R10 : IF (Protocol = TCP) AND (Dest Port = 80) AND (Dest IP = 10.10.1.3) AND

(Source IP = 192.168.1.13) AND (Source Port = 1173) THEN Intrusion = Yes

R11 : IF (Protocol = TCP) AND (Dest Port = 80) AND (Dest IP = 10.10.1.3) AND

(Source IP = 192.168.1.13) AND (Source Port = 1175) THEN Intrusion = Yes

R12 : IF (Protocol = TCP) AND (Dest Port = 80) AND (Dest IP = 10.10.1.3) AND

(Source IP = 192.168.1.13) AND (Source Port = 1179) THEN Intrusion = Yes

R13 : IF (Protocol = TCP) AND (Dest Port = 80) AND (Dest IP = 10.10.1.3) AND

(Source IP = 192.168.1.13) AND (Source Port = 1180) THEN Intrusion = Yes

R14 : IF (Protocol = TCP) AND (Dest Port = 25) THEN Intrusion = Yes

R15 : IF (Protocol = TCP) AND (Dest Port = 110) THEN Intrusion = Yes

R16 : IF (Protocol = TCP) AND (Dest Port = 161) THEN Intrusion = Yes

R17 : IF (Protocol = TCP) AND (Dest Port = 162) THEN Intrusion = Yes

R18 : IF (Protocol = TCP) AND (Dest Port = 3306) THEN Intrusion = Yes

Figure 4.24 Rules extraction to IF-THEN

80

4.5 CLASSIFICATION INTRUSION OR NORMAL OF THE NEW

NETWORK PACKET

The example of extract rules of tree decision (see Figure 4.24) is rules of

intrusion . Every network packet will be checked with these rules one by one. If there is

one of the rules contained in a network packet, the network packet is intrusion. This

called the IDS, the network can determine the packet is intrusion or not. For illustration,

given new network traffics as show in Table 4.16.

Table 4.16 The new network traffics

No. Source Destination Protocol Intrusion

 IP Port IP Port

1 192.168.2.25 1430 10.10.1.3 22 TCP ?

2 192.168.0.5 1557 10.10.1.3 80 TCP ?

3 192.168.0.5 1622 10.10.1.2 80 TCP ?

4 192.168.1.4 1647 10.10.1.5 22 TCP ?

5 192.168.1.13 1185 10.10.1.2 80 TCP ?

6 192.168.0.5 1500 10.10.1.2 80 TCP ?

7 192.168.0.2 1352 10.10.1.5 3306 TCP ?

8 192.168.2.25 1356 10.10.1.5 22 TCP ?

9 192.168.2.20 1890 10.10.1.5 80 TCP ?

The rules based on the results of the training set of network traffics can to

predictive the new network traffics is intrusion activities or normal activities. Table 4.17

shows to predictive the new network traffics is intrusion activities or normal activities.

81

Table 4.17 To predict new network traffics

No. Source Destination Protocol Intrusion

 IP Port IP Port

1 192.168.2.25 1430 10.10.1.3 22 TCP Yes

2 192.168.0.5 1557 10.10.1.3 80 TCP No

3 192.168.0.5 1622 10.10.1.2 80 TCP Yes

4 192.168.1.4 1647 10.10.1.5 22 TCP No

5 192.168.1.13 1185 10.10.1.2 80 TCP No

6 192.168.0.5 1500 10.10.1.2 80 TCP Yes

7 192.168.0.2 1352 10.10.1.5 3306 TCP Yes

8 192.168.2.25 1356 10.10.1.5 22 TCP Yes

9 192.168.2.20 1890 10.10.1.5 80 TCP No

Consider a case for network traffic in line 1. This network packet is intrusion,

because network traffic in line 1 have subset characteristics of R2. (see Figure 4.24).

Because on R2 everything network packet has Protocol = TCP, Destination Port = 22

and source IP = 192.168.2.25 is intrusion. These characters belong line 1 in Table 4.17.

For another example, consider network traffics in line 6. This network packet is

intrusion, because network traffic in line 6 have subset characteristics of R4. Because in

R4 everything network packet has Protocol = TCP, Destination Port = 80, Destination

IP = 10.10.1.2 and source IP = 192.168.0.5 is intrusion. These characters belong line 6

in Table 4.17.

4.6 IMPLEMENTATION RULES OF INTRUSION SIGNATURE INTO

FIREWALL RULES

Rules of intrusion implemented in firewall rules for prevention, where every

network packet have rules of intrusion signature will drop. The network packet cannot

allow to go through a firewall machine. The rules of intrusion signature implemented

firewall rules is shown in Figure 4.25.

82

R1 : -A FORWARD -p icmp -j DROP

R2 : -A FORWARD -p tcp -s 192.168.2.25 --dport 22 -j DROP

R3 : -A FORWARD -p tcp -s 192.168.0.5 --dport 22 -j DROP

R4 : -A FORWARD -p tcp -s 192.168.0.5 -d 10.10.1.2 --dport 80 -j DROP

R5 : -A FORWARD -p tcp -s 192.168.0.5 --sport 1458 -d 10.10.1.3 --dport 80 -j DROP

R6 : -A FORWARD -p tcp -s 192.168.0.5 --sport 1463 -d 10.10.1.3 --dport 80 -j DROP

R7 : -A FORWARD -p tcp -s 192.168.0.5 --sport 1465 -d 10.10.1.3 --dport 80 -j DROP

R8 : -A FORWARD -p tcp -s 192.168.0.5 --sport 1466 -d 10.10.1.3 --dport 80 -j DROP

R9 : -A FORWARD -p tcp -s 192.168.1.13 --sport 1173 -d 10.10.1.3 --dport 80 -j DROP

R10 : -A FORWARD -p tcp -s 192.168.1.13 --sport 1175 -d 10.10.1.3 --dport 80 -j DROP

R11 : -A FORWARD -p tcp -s 192.168.1.13 --sport 1179 -d 10.10.1.3 --dport 80 -j DROP

R12 : -A FORWARD -p tcp -s 192.168.1.13 --sport 1180 -d 10.10.1.3 --dport 80 -j DROP

R13 : -A FORWARD -p tcp --dport 25 -j DROP

R14 : -A FORWARD -p tcp --dport 110 -j DROP

R15 : -A FORWARD -p tcp --dport 161 -j DROP

R16 : -A FORWARD -p tcp --dport 162 -j DROP

 R17 : -A FORWARD -p tcp --dport 3306 -j DROP

Figure 4.25. Rules of intrusion implemented into firewall rules

Researcher uses the command 'FORWARD' because firewall rules above will be

implemented in machine as the router will forward packets from outgoing to incoming

LAN. Each packet network must be checked against the rules established by firewall, if

the rules match the firewall will drop the network packet.

Rules of intrusion to be implemented into iptables firewall Linux are shown in

Figure 4.26, Figure 4.27 and Figure 4.28.

83

Figure 4.26 Default iptables firewall rules before enter rules

Figure 4.27 Command line to enter rules into iptables firewall rules

84

Figure 4.28 Iptables firewall rules after enter rules

4.7 DECISION TREE TO CREATE RULES MINIMIZE FIREWALL OF

INTRUSION

For security all of intrusion activities is show in Tables 4.7 must be drop is

shown in Figure 4.29.

85

Ra1 : -A FORWARD -p icmp –s 192.168.1.25 –d 10.10.1.2 –j DROP

Ra2 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1142 -d 10.10.1.2 --dport 161 -j DROP

Ra3 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1143 -d 10.10.1.2 --dport 162 -j DROP

Ra4 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1179 -d 10.10.1.2 --dport 110 -j DROP

Ra5 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1175 -d 10.10.1.2 --dport 25 -j DROP

Ra6 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1130 -d 10.10.1.3 --dport 22 -j DROP

Ra7 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1131 -d 10.10.1.3 --dport 22 -j DROP

Ra8 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1345 -d 10.10.1.5 --dport 22 -j DROP

Ra9 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1347 -d 10.10.1.5 --dport 22 -j DROP

Ra10 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1348 -d 10.10.1.5 --dport 22 -j DROP

Ra11 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1351 -d 10.10.1.5 --dport 22 -j DROP

Ra12 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1352 -d 10.10.1.5 --dport 22 -j DROP

Ra13 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1356 -d 10.10.1.5 --dport 22 -j DROP

Ra14 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1354 -d 10.10.1.5 --dport 22 -j DROP

Ra15 : -A FORWARD -p icmp -s 192.168.0.5 -d 10.10.1.3 -j DROP

Ra16 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1392 -d 10.10.1.2 --dport 80 -j DROP

Ra17 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1394 -d 10.10.1.2 --dport 80 -j DROP

Ra18 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1396 -d 10.10.1.2 --dport 80 -j DROP

Ra19 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1400 -d 10.10.1.2 --dport 80 -j DROP

Ra20 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1401 -d 10.10.1.2 --dport 22 -j DROP

Ra21 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1405 -d 10.10.1.2 --dport 22 -j DROP

Ra22 : -A FORWARD -p icmp -s 192.168.0.5 -d 10.10.1.3 -j DROP

Ra23 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1458 -d 10.10.1.3 --dport 80 -j DROP

Ra24 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1465 -d 10.10.1.3 --dport 80 -j DROP

Ra25 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1463 -d 10.10.1.3 --dport 80 -j DROP

Ra26 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1466 -d 10.10.1.3 --dport 80 -j DROP

Ra27 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1394 -d 10.10.1.5 --dport 22 -j DROP

Ra28 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1398 -d 10.10.1.5 --dport 22 -j DROP

Ra29 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1402 -d 10.10.1.5 --dport 22 -j DROP

Ra30 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1409 -d 10.10.1.5 --dport 22 -j DROP

Ra31 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1411 -d 10.10.1.5 --dport 22 -j DROP

Ra32 : -A FORWARD -p tcp -s 192.168.0.5 –sport 1413 -d 10.10.1.5 --dport 22 -j DROP

Ra33 : -A FORWARD -p tcp -s 192.168.1.13 –sport 1173 -d 10.10.1.3 --dport 80 -j DROP

Ra34 : -A FORWARD -p tcp -s 192.168.1.13 –sport 1175 -d 10.10.1.3 --dport 80 -j DROP

Ra35 : -A FORWARD -p tcp -s 192.168.1.13 –sport 1179 -d 10.10.1.3 --dport 80 -j DROP

Ra36 : -A FORWARD -p tcp -s 192.168.1.13 –sport 1180 -d 10.10.1.3 --dport 80 -j DROP

Ra37 : -A FORWARD -p tcp -s 192.168.1.13 –sport 1158 -d 10.10.1.2 --dport 25 -j DROP

Ra38 : -A FORWARD -p icmp -s 192.168.2.16 -d 10.10.1.2 -j DROP

Ra39 : -A FORWARD -p tcp -s 192.168.2.16 –sport 34592 -d 10.10.1.2 --dport 162 -j DROP

Ra40 : -A FORWARD -p tcp -s 192.168.2.16 –sport 34595 -d 10.10.1.2 --dport 161 -j DROP

Ra41 : -A FORWARD -p tcp -s 192.168.2.16 –sport 53814 -d 10.10.1.2 --dport 3306 -j DROP

Ra42 : -A FORWARD -p tcp -s 192.168.2.16 –sport 53815 -d 10.10.1.2 --dport 3306 -j DROP

Figure 4.29 All of intrusion activities implemented into firewall rules

86

Before to develop rules filtering by using packet filter, anything have to be

considered beforehand how far demarcation which will be applied. Because more and

more demarcation applied hence increased the search time and space requirements of

the packet filtering process and consequences to make downhill performance

progressively (Al-Shaer E.S. and Hamed H.H., 2006; Suehring S. and Ziegler R.L.,

2006 and Predrag Pale T.K., 2007). This matter because every incoming network packet

and go out the network checked beforehand by rules alternately until matching rule

found in firewall.

To rewrite some of all network traffics (see in Table 4.7) the number row 6, 7,

8, 9, 10, 11, 12, 13 and 14 is shown in Tables 4.18.

Tables 4.18 Some rules of all intrusion activities

No.

Source Destination Protocol

Intrusion

 IP Port IP Port

.. …. … … … … …

6 192.168.2.25 1130 10.10.1.3 22 TCP Yes

7 192.168.2.25 1131 10.10.1.3 22 TCP Yes

8 192.168.2.25 1345 10.10.1.5 22 TCP Yes

9 192.168.2.25 1347 10.10.1.5 22 TCP Yes

10 192.168.2.25 1348 10.10.1.5 22 TCP Yes

11 192.168.2.25 1351 10.10.1.5 22 TCP Yes

12 192.168.2.25 1352 10.10.1.5 22 TCP Yes

13 192.168.2.25 1356 10.10.1.5 22 TCP Yes

14 192.168.2.25 1354 10.10.1.5 22 TCP Yes

… … … … … … …

All of intrusion characteristic is shown in Tables 4.18 implemented into firewall

rules is shown in Figure 4.30.

87

Ra6 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1130 -d 10.10.1.3 --dport 22 -j DROP

Ra7 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1131 -d 10.10.1.3 --dport 22 -j DROP

Ra8 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1345 -d 10.10.1.5 --dport 22 -j DROP

Ra9 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1347 -d 10.10.1.5 --dport 22 -j DROP

Ra10 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1348 -d 10.10.1.5 --dport 22 -j DROP

Ra11 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1351 -d 10.10.1.5 --dport 22 -j DROP

Ra12 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1352 -d 10.10.1.5 --dport 22 -j DROP

Ra13 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1356 -d 10.10.1.5 --dport 22 -j DROP

Ra14 : -A FORWARD -p tcp -s 192.168.2.25 –sport 1354 -d 10.10.1.5 --dport 22 -j DROP

Figure 4.30 Some rules from all of intrusion activities

By using the decision tree all of rule above all represented by one rule is shown

in Figure 4.31.

Figure 4.31. R2 represent Ra6, Ra7, Ra8, Ra9, Ra10, Ra11, Ra12, Ra13, Ra14

If the observed of all network traffic that has Protocol = TCP, source IP =

192.168.2.25 and Destination Port = 22 and any value of Destination IP is intrusion. So,

do not need Destination IP for rules, because anything values of Destination IP that has

Protocol = TCP, source IP = 192.168.2.25 and Destination Port = 22 is intrusion. Based

on all of network traffics R2 represent and replace Ra6, Ra7, Ra8, Ra9, Ra10, Ra11,

Ra12, Ra13, Ra14. Same case for other rules.

By using decision tree and all data training is shown Table 4.7, 42 rules of

intrusion activities network traffics to represent 17 rules will implemented into firewall

rules. Compare between Figure 4.25 and Figure 4.29, by using decision tree, one rule to

represent two or more rules. This is become simple rules to be implemented firewall

rules.

R2 : -A FORWARD -p tcp -s 192.168.2.25 --dport 22 -j DROP

88

4.8 EXPERIMENTAL AND RESULT

For the calculation of ID3 algorithm and then implemented directly in the

iptables firewall rules automatically be made software. The name is software nips-

nid2s3. This software is running in Linux Operating System. This research, computers

as routers and firewalls using Linux Slackware 12.1. Figure 4.32 shows the extract and

compile nips-nid2s3 software.

Figure 4.32 Extract and compile software nips-nid2s3

All of data training in Table 4.7 contained in the file 'data' is shown in Figure 4.33

89

Figure 4.33 All of data training in ‘data’ file

Execute program using command ./syh –a sdpd and then to see iptables

firewall rules is shown in Figure 4.34.

90

Figure 4.34 Execute and then to see into firewall rules

In Figure 4.34 shows how to is to create 17 rules into firewall. The rule in line 1,

that is mean is all of network packets use protocol ICMP is drop.

91

Figure 4.35 Ping using protocol ICMP from 192.168.2.21 to 10.10.1.2 is not reply

Researcher tries computer client connect to server using protocol ICMP as

shown in Figure 4.35. This packet network to drop and not allow forwarded by firewall.

The network traffics have characteristics same match into firewall rules at line 1, that is

mean network packet has Protocol = ICMP is drop. This network packet is intrusion.

Firewall cannot allow forwarded a network packet has Protocol=ICMP.

For another, researcher tries to request to server, which request from client has

characteristics of intrusion.

92

Figure 4.36 Request SSH from 192.168.2.25 to 10.10.1.2 is connection timed out

In Figure 4.36 is someone has IP address 192.168.2.25 connect to 10.10.1.2 by

SSH service (port 22) is connection timed out. This packet network to drop and not

allow forwarded by firewall. The network traffics have characteristics same match into

firewall rules at line 6, that is mean network packet has Protocol = TCP and source IP =

192.168.2.25 and Destination Port = 20 any value of Destination IP action is drop. This

network packet is intrusion. Firewall cannot allow forwarded.

Figure 4.37 Request URL from 192.168.0.5 to 10.10.1.2 is taking too long to respond

93

In Figure 4.37 is someone has IP address 192.168.0.5 connect request Web

browser (port 80) to 10.10.1.2 port 80 s taking too long to respond. This network to

drop and not allow forwarded by firewall. The network traffics have characteristics

same match into firewall rules at line 8, that is mean network packet has Protocol = TCP

and source IP = 192.168.0.5 and Destination IP = 10.10.1.2 and Destination Port = 80

action is drop. This network packet is intrusion. Firewall cannot allow forwarded.

Figure 4.38 Request SSH from 192.168.0. 5 to 10.10.1.5 is connection timed out

In Figure 4.38 is someone has IP address 192.168.0.5 connect to 10.10.1.5 by

SSH service (port 22) is connection timed out. This packet network to drop and not

allow forwarded by firewall. The network traffics have characteristics same match into

firewall rules at line 7, that is mean network packet has Protocol = TCP and source IP =

192.168.0.5 and Destination Port = 22 and any value of Destination IP action is drop.

This network packet is intrusion. Firewall cannot allow forwarded.

4.9 CONCLUSION

In this chapter, the implementation has generate rules of intrusion as NIDS and

to implemented into firewall as prevention. Three LAN have been develop to support

the client request to server. A computer become router and firewall which have been

connected in LAN. It is a function to record log files. Snort software has been used to

determine either the intrusion or normal activities and from the log files. Decision tree

94

has been used to generate rules. Next, these rules implemented into firewall as

prevention of intrusion network packet. These the filter rules reflect the current network

traffics. Overall, this way can minimize the number of that implemented in firewall.

95

CHAPTER 5

CONCLUSION AND RECOMENDATIONS

5.1 CONCLUSION

Network security has become a critical issue with the development of business and

other transactions through the internet system. Firewall is one important element in network

security systems because it can drop the a network packet incoming to LAN. Firewall can

not define a network packet is intrusion or normal. An intrusion can be defined as any set of

actions that threaten the integrity, confidentiality or availability of a network resource, such

as user account, file system, system kernels and so on. Specifies the network packet is

intrusion to be implemented on the firewall rules are very difficult. An analyst should

reviews large data from network traffics previously. Meanwhile, to update and manage the

firewall rules are very difficult and takes a lot of time.

By using the ID3 algorithm decision tree classifier to generate rules where network

traffics as data training. A network packet from the network traffics can be seen from the

log files. To determine the network packet is intrusion or normal using snort application.

Rules generated can determine a new network packet is intrusion or normal. These

rules are implemented into firewall automatically where the firewall will drop the network

packet that match those rules as intrusion.

96

This research contributes: first, to create rules that function to determine the

network traffic is the intrusion and then implemented rules into the firewall as a prevention

automatically. This combination is called NIPS, because it can determine network packet is

intrusion automatically and can be prevented by using a firewall.

This method can minimize the number of rules in the firewall, where one rule can

replace two or more rules and make a better firewall performance. This is very helpful and

easier to update and manage the firewall rules.

This research made software that is named nips-nids2s3, this software helps

construct decision tree to generate the rules and implemented into firewall iptables

automatically as prevention.

5.2 RECOMMENDATIONS

Data collection for intrusion do if the network packets do intrusion several times

from the same source IP address. If intrusion is conducted just one time, it can be an

unintentionally and ignored. Intruder do many times intrusion many times, with goal to

find and get as much as information from a machine target. Intruder takes a lot of time and

in many ways to get information such as port scans, ping, send packages, etc. It is

impossible intruder to do intrusion just once.

In large computer networks, this condition will produces large data set and also

generate so many rules. It is recommended reduces some rules become one rule using the

port range or multi port and IP range or IP network by masking the same protocol and

action.

For future work, the whole way this is done with real time system and performed on

large computer networks such as Wide Area Network (WAN) and internet.

97

REFERENCES

Abbess T., Bouhoula A and Rusinowitch M. 2004. Protocol analysis in intrusion
detection using decision tree. Proceeding of International Conference on
Information Technology, ITCC’04, 1: 404-408.

Al-Shaer E.S. and Hamed H.H. 2004. Discovery of policy anomalies in distributed
firewalls, INFOCOM 2004, Twenty-third Annual Joint Conference of The IEEE
Computer and Communications Societies, March 2004, 4: 2605-2616.

Al-Sharafat W.S. and Reyadh S.N. 2009. Adaptive framework for network intrusion
detection by using genetic-based machine learning algorithm. International
Journal of Computer Science and Network Security, IJCSNS, 9(4): 55-61.

Beheshti, M., Han, J., Kowalski, K., Ortiz, J., Tomelden, J. and Alvillar, D. 2008.
Packet information collection and transformation for network intrusion detection
and prevention. Internatioal Symposium on Telecommunications, IEEE, pp. 42-
48.

Benelbahri M.A. and Bouhoula A. 2007. Tuple based approach for anomalies detection
within firewall filtering rules. Computer and Communication 2007, ISCC 2007,
IEEE, pp. 63-70.

Berry M.W. and Browne M. 2006. Lecture notes in data mining. Word Scientific
Publishing Co. Pte. Ltd.

Chandrasekar A., Vasudevan V. and Yogesh P. 2009. Evolutionary approach for
network anomaly detection using effective classification. International Journal
of Computer Science and Network Security, IJCSNS, 9(1): 296-302.

Dong S.K., Ha-Nam N. and Jong S.P. 2005. Genetic algorithm to improve SVM based
network intrusion detection system. Proceedings of the 19th International
Conference on Advanced Information Networking and Application (AINA'05),
IEEE, 2: 155-158.

Duanyang Z., Qingxiang X. and Zhilin F. 2010. Analysis and design for intrusion
detection system based on data mining. Education Technology and Computer
Science (ETCS) 2010, IEEE, 2: 339-342.

Dunham and Margareth H. 2002. Data mining: introductory and advanced. Prentice
Hall.

Fang Y.K., Fu Y. and Zhou J.L. 2010. Research of outlier mining based adaptive
intrusion detection techniques. Third International Conference on Knowledge
Discovery and Data Mining, IEEE, pp. 552 – 555.

98

Fayyad U., Piatetsky-Shapiro, G. and Smyth P. 1996. From data mining to knowledge
discovery in databases. AAAI and The MIT Pres.

Flior E., Anaya T., Beheshti C.M.M., Jianchao H., Kazimierz and Kowalski 2010. A
knowledge-based system implementation of intrusion detection rules,
Information Technology: New Generations (ITNG), 2010, IEEE, pp. 738-742.

Firewall is it Needed (online).
http://www.sendmeemail.co.uk/advice/html/what_is_a_firewall.htm (15 July
2008)

Gollman D. 2006. Computer security. Jhon Wiley & Sons Ltd, The Atrium, Southern
Gate, Chichester, West Sussex, England.

Golnabi K., Richard K. M., Khan L. and Al-Shaer E. 2006. Analysis of firewall policy
rules using data mining techniques. Network Operation and Management
Symposium, 2006. NOMS 2006. 10th, IEEE/IFIP, pp. 305-315.

Guan X. and Yun-jie L. 2010. An new intrusion prevention attack system model based
on immune principle. e-Business and Information System Security (EBISS),
2010, IEEE, pp.1-4.

Hao-Ran D. and Yun-Hong W. 2007. An artificial-neural-network-based multiple
classifiers intrusion detection system. Proceedings of the 2007 International
Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, Nov.
2007, IEEE, 2: 683-686.

Hua Z., Xiangru M., Zhang L. 2007, Application of support vector machine and genetic
algorithm to network intrusion detection. Wireless Communications, Networking
and Mobile Computing, 2007. WiCom 2007, IEEE, pp. 2267-2269

Iptables Tutorial 1.2.2 (online). http://security.maruhn.com/iptables-
tutorial/x12114.html (27 June 2008)

Jiawei H. and Kamber M. 2006. Data mining concepts and techniques, 2nd Edition,
Morgan Kaufmann Publishers, Elsevier Inc., 500 Sansome Street, Suite 400, San
Francisco, CA 94111.

Jingwei T., Meijuan G., Fan Z. 2009. Network intrusion detection method based on
radial basic neural network. E-Business and Information System Security, 2009,
EBISS'09, IEEE, pp. 1-4.

Joko Y. and Onno W.P. Network security : apa dan bagaimana (online).
http://www.klik-kanan.com/fokus/network_security.shtml (10 July 2008)

Kandeeban S.S. and Rajesh R.S. 2010. Integrated intrusion detection system using soft
computing. International Journal of Network Security, 10(2): 87–92.

99

Katharine C. and Kang G.S. 2010. Application-layer intrusion detection in MANETs,
Proceedings of the 43rd Hawaii International Conference on System Sciences,
IEEE, pp. 1-10.

Katić T. and Pale P. 2007. Optimization of firewall rules. Proceedings of the ITI 2007
29th Int. Conf. on Information Technology Interfaces, Cavtat, Croatia, pp. 685-
690.

Kenneth G.J. 2005. A combined association rule/radial-basis function neural network
approach to intrusion detection. Utah State University.

Khalil R.K., Fayez W.Z. 2010. Ashour M.M., and Mohamed A.M. A study of network
security systems. International Journal of Computer Science and Network
Security, IJCSNS , 10(6): 204-212.

Kang H. and Zhang J. 2009. An improved snort intrusion detection system based on
self-similar traffic model, Computer Network and Multimedia Technology,
2009, CNMT 2009, International Symposium, IEEE, pp. 1-4.

Khoi-Nguyen T. and Huidong J. 2010. Detecting network anomalies in mixed-attribute
data sets, Third International Conference on Knowledge Discovery and Data
Mining 2010, IEEE, pp. 383-386.

Mehmed M.K. and Jozef Z. 2005. Next generation of data-mining applications. IEEE
Press Editorial Board, Published by Jhon Wiley & Son, Inc., Hoboken, New
Jersey.

Mitra S. and Acharya T. 2003. Data mining: multimedia, soft computing and
bioinformatics. Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Mladenic D., Lyrac N., Bohanec M. and Moyle S. 2003. Data mining and decision
support, integration and collaboration. Kluwer Academic Publisher, Boston,
Dordrecht, London.

Mukkamala S. and Sung A.H. 2003. A comparative study of techniques for intrusion
detection, Proceedings of the 15th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’03), IEEE, pp. 570-577.

Nehinbe J.O. 2010. Log analyzer for network forensics and incident reporting,
Intelligent Systems, Modelling and Simulation (ISMS) 2010, IEEE, pp. 356-361.

Nong Y. and Xiangyang L. Member 2001. A scalable clustering technique for intrusion
signature recognition. Proceedings of the 2001 IEEE Workshop on Information
Assurance and Security United States Military Academy, West Point, NY.

PC Perspective. Re: Linux Firewall (iptables) Tutorial Thread (online).
http://forums.pcper.com/showthread.php?t=432469 (27 July 2008)

100

Quinlan K.R. 1999. Decision Tree Discovery. AAAI and The MIT Pres, 1-16.

Rafiudin R. 2002. Security UNIX. Penerbit Elex Media Komputindo, Kelompok
Gramedia, Jakarta.

Roiger R.J. and Geatz M.W. 2003. Data mining : a tutorial-based primer. Adison
Wesley.

Roozbahani A.R., Nassiri R. and Latif- Shabgahi G. 2009. Attacks classification to
improve the power of snorts. International Forum on Computer Science-
Technology and Applications , 2009, IFCSTA'09, IEEE, 1: 3-6.

Roozbahani A.R. and Rikhtechi L. 2010. Creating a collaborative architecture in snorts
to high speed networks. Computer and Automation Engineering (ICCAE), 2010,
IEEE, 1: 182-185.

Salah K. and Qahtan A. 2008. Boosting throughput of snort NIDS under linux.
Innovationns in Infromation Technology, 2008, IIT 2008, IEEE, pp. 643-64.

SANS Institute. Intrusion Detection FAQ : What is Intrusion Detection (online).
http://www.sans.org/resources/idfaq/what_is_id.php (15 July 2008)

Shingo M., Ci C., Nannan L., Kaoru S. and Kotaro H. 2010. An intrusion-detection
model based on fuzzy class-association-rule mining using genetic network
programming. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE, 41(1) 130-139.

Shum J. and Heidar A.M. 2008. Network intrusion detection system using neural
networks. Fourth International Conference on Natural Computation, IEEE, 5:
242-246.

Sinclair C., Pierce L. and Matzner S. 2000. An application of machine learning to
network intrusion detection. Applied Research Laboratory Technical Report
No.859 dan 875, Applied Research Laboratory, The University of Texas at
Austin.

Snort (online). http://www.snort.org/ (26 July 2008)

Suehring S. and Ziegler R.L. 2006. Linux firewalls third edition. Pearson Education,
Inc., Novell Press.

Tan P.N. , Steinbach M. and Kumar V. 2006. Introduction to data mining. Addison
Wesley.

Terpstra J.H. 2004, Paul L., Ronald P.R. and Scanlon T. Hardening Linux. McGraw-
Hill/Osborne, California, USA.

101

Theodiridis S. 2006. Pattern Recognition. 3rd edition, Academic Press, An Imprint of
Elsevier, USA.

Thomas T. 2004. Network security first-step. Cisco Press, Indianapolis, USA,
copyright@Cisco System, Inc.

Tibbs R.W. and Oakes E.B. 2006. Firewall and VPNs principles and practice. Pearson
Prentice Hall.

Webopedia. Intrusion Detection System (online).
http://www.webopedia.com/TERM/I/intrusion_detection_system.html (15 July
2008)

Weenke L. 2001. Real time data mining based intrusion detection. Proceeding DARPA.

Wenhui C., Weiping W., Zhepeng L. and Huaping C. 2006. Dynamic update of firewall
policy based on MFDT, Computational Intelligence and Security, 2006
International Conference, 2: 1117-1120.

Wikipedia. Intrusion detection (online). http://en.wikipedia.org/wiki/Intrusion_detection
(17 July 2008)

Wikipedia. Intrusion prevention system (online).
http://en.wikipedia.org/wiki/Intrusion_prevention (17 July 2008)

Wiliam W.S.C. 2005. Statistical method in computer security. Marcell Dekker,
Cimarron Road, Monticello, New York 12701, USA.

Winding R., Wright T. and Chapple M. 2006. System anomaly detection: mining
firewall logs. Securecomm and Workshops, 2006, pp. 1-5.

Xiao H. 2009. An improved intrusion detection system based on neural network.
Intelligent Computing and Intelligent System, 2009, ICIS 2009, IEEE, 1: 887-
890.

Yan Y. 2010. A novel intrusion detection approaches based on data mining. Computer
Engineering and Technology (ICCET), 2010 2nd Internationl Conference, IEEE,
3: 351-354.

Ye Q., Wu X. and Huang G. 2010. An intrusion detection approach based on data
mining. Future Computer and Communication (ICFCC) 2010, 2nd International
Conference, IEEE, 1: 372 -377.

102

APPENDIX A

NETWORK TRAFFIC LOGS

i) Intrusion Activities Logs using snort software in folder /var/log/snort/alert

[**] [1:1418:13] SNMP request tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/09-22:20:30.747206 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x3E
192.168.2.25:1142 -> 10.10.1.2:161 TCP TTL:128 TOS:0x0 ID:7545 IpLen:20 DgmLen:48 DF
******S* Seq: 0x9C20F9B4 Ack: 0x0 Win: 0xFFFF TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0013][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0012][Xref =>
http://www.securityfocus.com/bid/4132][Xref => http://www.securityfocus.com/bid/4089]
[Xref => http://www.securityfocus.com/bid/4088]

[**] [1:1420:13] SNMP trap tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/09-22:20:30.747603 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x3E
192.168.2.25:1143 -> 10.10.1.2:162 TCP TTL:128 TOS:0x0 ID:7546 IpLen:20 DgmLen:48 DF
******S* Seq: 0x604278A Ack: 0x0 Win: 0xFFFF TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0013][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0012][Xref =>
http://www.securityfocus.com/bid/4132][Xref => http://www.securityfocus.com/bid/4089]
[Xref => http://www.securityfocus.com/bid/4088]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/09-22:20:30.855749 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x57
192.168.2.30 -> 10.10.1.2 ICMP TTL:64 TOS:0xC0 ID:40045 IpLen:20 DgmLen:73
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.25
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:110 -> 192.168.2.25:1179 TCP TTL:64 TOS:0x0 ID:49893 IpLen:20 DgmLen:45 DF
Seq: 0x7E37D69E
(17 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/09-22:20:50.836055 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0xAA
192.168.2.30 -> 10.10.1.2 ICMP TTL:64 TOS:0xC0 ID:40048 IpLen:20 DgmLen:156
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.25
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:25 -> 192.168.2.25:1175 TCP TTL:64 TOS:0x0 ID:44216 IpLen:20 DgmLen:128 DF
Seq: 0x7EDBB8CC
(100 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-02:59:45.547181 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.2 ICMP TTL:64 TOS:0xC0 ID:18410 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5

103

** ORIGINAL DATAGRAM DUMP:
10.10.1.2:80 -> 192.168.0.5:1392 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0xABA54F77
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-02:59:46.686349 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.2 ICMP TTL:64 TOS:0xC0 ID:18412 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:80 -> 192.168.0.5:1394 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0xAC888CBE
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:895:8] WEB-CGI redirect access [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/10-03:00:00.599880 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x302
192.168.0.5:1396 -> 10.10.1.2:80 TCP TTL:128 TOS:0x0 ID:11173 IpLen:20 DgmLen:756 DF
AP Seq: 0xD388FFCD Ack: 0xB99FF92F Win: 0xFFFF TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2000-0382][Xref =>
http://www.securityfocus.com/bid/1179

[**] [1:895:8] WEB-CGI redirect access [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/10-03:00:16.855182 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x303
192.168.0.5:1400 -> 10.10.1.2:80 TCP TTL:128 TOS:0x0 ID:11236 IpLen:20 DgmLen:757 DF
AP Seq: 0xC303018D Ack: 0xC7F84882 Win: 0xFFFF TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2000-0382][Xref =>
http://www.securityfocus.com/bid/1179]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-03:00:46.282528 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.2 ICMP TTL:64 TOS:0xC0 ID:18419 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:22 -> 192.168.0.5:1401 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0xE4079F59
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-03:01:56.097112 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.2 ICMP TTL:64 TOS:0xC0 ID:18427 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:22 -> 192.168.0.5:1405 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x24DCE69E
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-03:24:22.285346 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x7E

104

192.168.2.30 -> 10.10.1.3 ICMP TTL:64 TOS:0xC0 ID:47275 IpLen:20 DgmLen:112
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.3 -> 192.168.0.5 ICMP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:84 DF
Type: 8 Code: 0 Csum: 26953 Id: 3850 SeqNo: 1
(56 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-03:25:42.348971 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.3 ICMP TTL:64 TOS:0xC0 ID:47284 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.0.5:1458 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x16D4FD96
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-03:25:44.042042 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x24E
192.168.2.30 -> 10.10.1.3 ICMP TTL:64 TOS:0xC0 ID:47287 IpLen:20 DgmLen:576
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.0.5:1465 TCP TTL:64 TOS:0x0 ID:47643 IpLen:20 DgmLen:1500 DF
Seq: 0x17899CAE
(520 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-03:25:47.832002 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x24E
192.168.2.30 -> 10.10.1.3 ICMP TTL:64 TOS:0xC0 ID:47288 IpLen:20 DgmLen:576
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.0.5:1463 TCP TTL:64 TOS:0x0 ID:52991 IpLen:20 DgmLen:1500 DF
Seq: 0x17DAFC51
(520 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-03:25:51.005147 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x208
192.168.2.30 -> 10.10.1.3 ICMP TTL:64 TOS:0xC0 ID:47290 IpLen:20 DgmLen:506
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.0.5:1466 TCP TTL:64 TOS:0x0 ID:45805 IpLen:20 DgmLen:478 DF
Seq: 0x170C8D9A
(450 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-04:33:08.098943 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.3 ICMP TTL:64 TOS:0xC0 ID:26239 IpLen:20 DgmLen:76

105

Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.25
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:22 -> 192.168.2.25:1130 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0xDB884557
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-04:33:58.593157 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.3 ICMP TTL:64 TOS:0xC0 ID:26246 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.25
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:22 -> 192.168.2.25:1131 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0xB131F2B
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-07:02:06.347845 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.5 ICMP TTL:64 TOS:0xC0 ID:62052 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.25
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:22 -> 192.168.2.25:1345 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x587FA76C
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-07:02:32.361511 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.5 ICMP TTL:64 TOS:0xC0 ID:62058 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.25
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:22 -> 192.168.2.25:1347 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x70C690D6
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-07:02:54.040474 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.5 ICMP TTL:64 TOS:0xC0 ID:62063 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.25
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:22 -> 192.168.2.25:1348 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x84827577
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-07:05:23.271162 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.5 ICMP TTL:64 TOS:0xC0 ID:62067 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.25

106

** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.2.25:1351 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0xFC7832B
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-07:05:24.541795 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x52
192.168.2.30 -> 10.10.1.5 ICMP TTL:64 TOS:0xC0 ID:62069 IpLen:20 DgmLen:68
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.25
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.2.25:1352 TCP TTL:64 TOS:0x0 ID:9056 IpLen:20 DgmLen:40 DF
Seq: 0x10080A07
(12 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-07:05:35.367546 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x24E
192.168.2.30 -> 10.10.1.5 ICMP TTL:64 TOS:0xC0 ID:62075 IpLen:20 DgmLen:576
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.25
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.2.25:1356 TCP TTL:64 TOS:0x0 ID:46541 IpLen:20 DgmLen:1500 DF
Seq: 0x13F93EAB
(520 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:1141:11] WEB-MISC handler access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
12/10-07:05:36.752156 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x1B9
192.168.2.25:1354 -> 10.10.1.5:80 TCP TTL:128 TOS:0x0 ID:4067 IpLen:20 DgmLen:427 DF
AP Seq: 0xB33FEC8B Ack: 0x131844DC Win: 0xFC41 TcpLen: 20
[Xref => http://cgi.nessus.org/plugins/dump.php3?id=10100][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0148][Xref =>
http://www.securityfocus.com/bid/380][Xref => http://www.whitehats.com/info/IDS235]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-07:10:16.388189 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.5 ICMP TTL:64 TOS:0xC0 ID:62080 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.0.5:1394 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x219C3954
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-07:10:24.155715 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x24E
192.168.2.30 -> 10.10.1.5 ICMP TTL:64 TOS:0xC0 ID:62083 IpLen:20 DgmLen:576
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.0.5:1398 TCP TTL:64 TOS:0x0 ID:56881 IpLen:20 DgmLen:1500 DF
Seq: 0x285A0AF4
(520 more bytes of original packet)
** END OF DUMP

107

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-07:10:35.049931 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.5 ICMP TTL:64 TOS:0xC0 ID:62084 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.0.5:1400 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x32F36D12
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-07:11:30.758547 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.5 ICMP TTL:64 TOS:0xC0 ID:62085 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.0.5:1409 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x681F9910
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:895:8] WEB-CGI redirect access [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/10-07:11:39.892292 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x2E6
192.168.0.5:1411 -> 10.10.1.5:80 TCP TTL:128 TOS:0x0 ID:5933 IpLen:20 DgmLen:728 DF
AP Seq: 0xA9BE804D Ack: 0x6FE9C253 Win: 0xFFFF TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2000-0382][Xref =>
http://www.securityfocus.com/bid/1179]

[**] [1:895:8] WEB-CGI redirect access [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/10-07:11:52.767158 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x306
192.168.0.5:1413 -> 10.10.1.5:80 TCP TTL:128 TOS:0x0 ID:5981 IpLen:20 DgmLen:760 DF
AP Seq: 0x57D9768C Ack: 0x7C03B6DE Win: 0xFFFF TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2000-0382][Xref =>
http://www.securityfocus.com/bid/1179]

[**] [1:469:4] ICMP PING NMAP [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/11-00:38:16.056092 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x3C
192.168.2.16 -> 10.10.1.2 ICMP TTL:48 TOS:0x0 ID:42521 IpLen:20 DgmLen:28
Type:8 Code:0 ID:62073 Seq:45584 ECHO
[Xref => http://www.whitehats.com/info/IDS162

[**] [1:1420:13] SNMP trap tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/11-00:38:16.400032 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x3C
192.168.2.16:34592 -> 10.10.1.2:162 TCP TTL:55 TOS:0x0 ID:3799 IpLen:20 DgmLen:40
******S* Seq: 0x789720AA Ack: 0x0 Win: 0x1000 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0013][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0012][Xref =>
http://www.securityfocus.com/bid/4132][Xref => http://www.securityfocus.com/bid/4089]
[Xref => http://www.securityfocus.com/bid/4088]

[**] [1:1418:13] SNMP request tcp [**]
[Classification: Attempted Information Leak] [Priority: 2]
12/11-00:38:16.603968 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x3C
192.168.2.16:34592 -> 10.10.1.2:161 TCP TTL:53 TOS:0x0 ID:38721 IpLen:20 DgmLen:40

108

******S* Seq: 0x789720AA Ack: 0x0 Win: 0x800 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0013][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0012][Xref =>
http://www.securityfocus.com/bid/4132][Xref => http://www.securityfocus.com/bid/4089]
[Xref => http://www.securityfocus.com/bid/4088]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/11-00:38:50.424780 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x52
192.168.2.30 -> 10.10.1.2 ICMP TTL:64 TOS:0xC0 ID:17264 IpLen:20 DgmLen:68
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.16
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:3306 -> 192.168.2.16:53814 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF
Seq: 0x0
(12 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/11-00:39:04.831516 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x52
192.168.2.30 -> 10.10.1.2 ICMP TTL:64 TOS:0xC0 ID:17265 IpLen:20 DgmLen:68
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.16
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:3306 -> 192.168.2.16:53815 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF
Seq: 0x0
(12 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-04:59:17.202551 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.3 ICMP TTL:64 TOS:0xC0 ID:16461 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.1.13
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.1.13:1173 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x9689FA3A
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-04:59:17.324732 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.3 ICMP TTL:64 TOS:0xC0 ID:16462 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.1.13
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.1.13:1175 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x969AC0FF
(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/10-04:59:20.841797 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0x5A
192.168.2.30 -> 10.10.1.3 ICMP TTL:64 TOS:0xC0 ID:16467 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.1.13
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.1.13:1179 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x99ACD224

109

(20 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>
http://www.whitehats.com/info/IDS135]

[**] [1:1141:11] WEB-MISC handler access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
12/10-04:59:30.635958 0:8:2:E1:27:AA -> 0:0:B4:98:21:B0 type:0x800 len:0x1B9
192.168.1.13:1180 -> 10.10.1.3:80 TCP TTL:128 TOS:0x0 ID:1413 IpLen:20 DgmLen:427 DF
AP Seq: 0xC8B30EC2 Ack: 0x9968151B Win: 0xFC41 TcpLen: 20
[Xref => http://cgi.nessus.org/plugins/dump.php3?id=10100][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0148][Xref =>
http://www.securityfocus.com/bid/380][Xref => http://www.whitehats.com/info/IDS235]

[**] [1:472:5] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
12/11-15:06:44.508449 0:0:B4:98:21:B0 -> 0:55:D0:F1:DC:1B type:0x800 len:0xAA
192.168.2.30 -> 10.10.1.2 ICMP TTL:64 TOS:0xC0 ID:21848 IpLen:20 DgmLen:156
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.1.13
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:25 -> 192.168.1.13:1158 TCP TTL:64 TOS:0x0 ID:62725 IpLen:20 DgmLen:128 DF
Seq: 0xB58FB249
(100 more bytes of original packet)
** END OF DUMP
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0265][Xref =>

http://www.whitehats.com/info/IDS135]

110

ii) Normal Activities Logs using snort software in folder /var/log/snort/alert

The other hand, there is source IP address of intrusion activities doing normal activities.

They all in folder /var/log/snort/snort.log.*

12/10-07:10:07.947573 192.168.2.30 -> 10.10.1.5
ICMP TTL:64 TOS:0xC0 ID:62077 IpLen:20 DgmLen:576
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.0.5:1384
TCP TTL:64 TOS:0x0 ID:10034 IpLen:20 DgmLen:1500 DF
Seq: 0x195C194B
(520 more bytes of original packet)
** END OF DUMP
=+

12/10-07:10:13.038867 192.168.2.30 -> 10.10.1.5
ICMP TTL:64 TOS:0xC0 ID:62079 IpLen:20 DgmLen:68
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.0.5:1391
TCP TTL:64 TOS:0x0 ID:50455 IpLen:20 DgmLen:40 DF
Seq: 0x19A3336C
(12 more bytes of original packet)
** END OF DUMP
=+

12/10-07:10:15.038869 192.168.2.30 -> 10.10.1.5
ICMP TTL:64 TOS:0xC0 ID:62079 IpLen:20 DgmLen:68
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.0.5:1393
TCP TTL:64 TOS:0x0 ID:50455 IpLen:20 DgmLen:40 DF
Seq: 0x19A3336C
(12 more bytes of original packet)
** END OF DUMP
=+

12/10-07:11:30.844676 192.168.2.30 -> 10.10.1.5
ICMP TTL:64 TOS:0xC0 ID:62086 IpLen:20 DgmLen:68
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.0.5:1409
TCP TTL:64 TOS:0x0 ID:47038 IpLen:20 DgmLen:40 DF
Seq: 0x681F9B1D
(12 more bytes of original packet)
** END OF DUMP
=+

12/10-07:11:43.212440 192.168.2.30 -> 10.10.1.5
ICMP TTL:64 TOS:0xC0 ID:62092 IpLen:20 DgmLen:576
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:80 -> 192.168.0.5:1411
TCP TTL:64 TOS:0x0 ID:62918 IpLen:20 DgmLen:1500 DF
Seq: 0x6FE9C253
(520 more bytes of original packet)
** END OF DUMP
=+

111

12/10-07:12:03.396917 192.168.0.5:1413 -> 10.10.1.5:80
TCP TTL:128 TOS:0x0 ID:6010 IpLen:20 DgmLen:761 DF
AP Seq: 0x57D97B93 Ack: 0x7C03CAC7 Win: 0xFFF2 TcpLen: 20
=+

12/11-00:43:13.223665 192.168.2.30 -> 10.10.1.2
ICMP TTL:64 TOS:0xC0 ID:17267 IpLen:20 DgmLen:576
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.16
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:80 -> 192.168.2.16:49869
TCP TTL:64 TOS:0x0 ID:58872 IpLen:20 DgmLen:1500 DF
Seq: 0x63587A97
(520 more bytes of original packet)
** END OF DUMP
=+

12/11-00:43:57.140425 192.168.2.30 -> 10.10.1.2
ICMP TTL:64 TOS:0xC0 ID:17271 IpLen:20 DgmLen:80
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.16
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:80 -> 192.168.2.16:49870
TCP TTL:64 TOS:0x0 ID:32847 IpLen:20 DgmLen:52 DF
Seq: 0x871A8285
(24 more bytes of original packet)
** END OF DUMP
=+

12/11-00:44:00.634244 192.168.2.30 -> 10.10.1.2
ICMP TTL:64 TOS:0xC0 ID:17272 IpLen:20 DgmLen:576
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.16
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:80 -> 192.168.2.16:49871
TCP TTL:64 TOS:0x0 ID:12694 IpLen:20 DgmLen:1500 DF
Seq: 0x8CA8C85C
(520 more bytes of original packet)
** END OF DUMP
=+

12/11-00:44:12.642863 192.168.2.30 -> 10.10.1.2
ICMP TTL:64 TOS:0xC0 ID:17274 IpLen:20 DgmLen:576
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.2.16
** ORIGINAL DATAGRAM DUMP:
10.10.1.2:80 -> 192.168.2.16:49872
TCP TTL:64 TOS:0x0 ID:65005 IpLen:20 DgmLen:1500 DF
Seq: 0x93BD0881
(520 more bytes of original packet)
** END OF DUMP
=+

12/12-07:01:58.825394 192.168.2.30 -> 10.10.1.3
ICMP TTL:64 TOS:0xC0 ID:43929 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.0.5:1181
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0xDEE28FFC
(20 more bytes of original packet)
** END OF DUMP
=+

12/12-07:02:23.383762 192.168.2.30 -> 10.10.1.3
ICMP TTL:64 TOS:0xC0 ID:43932 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.0.5:1183

112

TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0xF5EEEBB2
(20 more bytes of original packet)
** END OF DUMP
=+

12/12-07:02:28.429310 192.168.2.30 -> 10.10.1.3
ICMP TTL:64 TOS:0xC0 ID:43933 IpLen:20 DgmLen:68
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.0.5
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.0.5:1185
TCP TTL:64 TOS:0x0 ID:10639 IpLen:20 DgmLen:40 DF
Seq: 0xF5EF1F10
(12 more bytes of original packet)
** END OF DUMP
=+

12/12-07:13:11.164337 192.168.2.30 -> 10.10.1.3
ICMP TTL:64 TOS:0xC0 ID:43934 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.1.13
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:22 -> 192.168.1.13:1203
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0x546B278A
(20 more bytes of original packet)
** END OF DUMP
=+

12/12-07:15:26.465507 192.168.2.30 -> 10.10.1.3
ICMP TTL:64 TOS:0xC0 ID:43944 IpLen:20 DgmLen:68
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.1.13
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:22 -> 192.168.1.13:1204
TCP TTL:64 TOS:0x0 ID:5502 IpLen:20 DgmLen:40 DF
Seq: 0xD25DB00C
(12 more bytes of original packet)
** END OF DUMP
=+

12/12-07:34:30.926554 192.168.2.30 -> 10.10.1.5
ICMP TTL:64 TOS:0xD0 ID:8643 IpLen:20 DgmLen:68
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.1.13
** ORIGINAL DATAGRAM DUMP:
10.10.1.5:22 -> 192.168.1.13:1220
TCP TTL:64 TOS:0x10 ID:51116 IpLen:20 DgmLen:40 DF
Seq: 0xDCDC1009
(12 more bytes of original packet)
** END OF DUMP
=+

12/12-09:42:01.762837 192.168.2.30 -> 10.10.1.3
ICMP TTL:64 TOS:0xC0 ID:14947 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.1.13
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.1.13:1419
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0xBECBA19C
(20 more bytes of original packet)
** END OF DUMP
=+

12/12-09:42:22.874992 192.168.2.30 -> 10.10.1.3
ICMP TTL:64 TOS:0xC0 ID:14953 IpLen:20 DgmLen:76
Type:5 Code:1 REDIRECT HOST NEW GW: 192.168.1.13
** ORIGINAL DATAGRAM DUMP:
10.10.1.3:80 -> 192.168.1.13:1423

113

TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
Seq: 0xD2EEF1FA
(20 more bytes of original packet)
** END OF DUMP
=+

114

APPENDIX B

MANUAL AND LISTING PROGRAM

1. Extract of File nips-nids2s3.tar.gz

tar xvzf nips-nids2s3.tar.gz

2. Change to the directory nips-nids2s3 :

cd nips-nids2s3

3. Compile :

make

4. Before run program, to see the rule in firewall iptables :

iptables –nL

5. If there is rules, flush the rules :

iptables -F

6. Run program using command :

#./syh –a sdpd

7. See again rules at iptables using command :

#iptables –nL

Note :

• This software, dataset for data training in file 'data' at directory nips-nid2s3.
Change the content from in file 'data' to another data training then run its program
and see again the result into iptables firewall rules.

• This software, if using Slackware OS file execute iptables into directory
/usr/sbin/iptables, For another distro Linux like Fedora and Ubuntu, file
execute iptables into directory /sbin/iptables, so must change path at
content source code in ipt.c file and replace become /sbin/iptables and
then to compile again.

115

entr.h

#ifndef _ENTR_H
#define _ENTR_H

#include "lst.h"

float entr_smpl(struct lst_pkt_t *);
float entr_attr(struct lst_grp_intr_t *);
float entr_attr2(struct lst_grp_intr2_t *);

#endif /* _ENTR_H */

/* vim:ts=4:sw=4:tw=80:fdm=marker:cin:
 */

116

entr.c

#include <stdio.h>
#include <math.h>
#include "lst.h"

/* entr() {{{ */
float entr(float yes, float no)
{

float sum;

if ((yes == 0) || (no == 0)) {
return 0;

}
sum = yes + no;
return (- (yes / sum) * log2f(yes / sum) - (no / sum) * log2f(no / sum));

}
/* }}} */
/* entr_smpl() {{{ */
float entr_smpl(struct lst_pkt_t *head)
{

struct lst_pkt_t *walk;
unsigned int intr_y = 0, intr_n = 0;

walk = head;
while (walk != NULL) {

if (walk->intrusion == 0) {
intr_n++;

} else {
intr_y++;

}
walk = walk->next;

}
return entr(intr_y, intr_n);

}
/* }}} */
/* entr_attr() {{{ */
float entr_attr(struct lst_grp_intr_t *head)
{

struct lst_grp_intr_t *walk;
float sum, ret;

/* calculate sample sum */
sum = 0;
walk = head;
while (walk != NULL) {

sum += walk->yes + walk->no;
walk = walk->next;

}

walk = head;
ret = 0;
while (walk != NULL) {

ret += ((walk->yes + walk->no) / sum) * entr(walk->yes, walk->no);
walk = walk->next;

}
return ret;

}
/* }}} */
/* entr_attr2() {{{ */
float entr_attr2(struct lst_grp_intr2_t *head)
{

struct lst_grp_intr2_t *walk;
float sum, ret;

117

/* calculate sample sum */
sum = 0;
walk = head;
while (walk != NULL) {

sum += walk->yes + walk->no;
walk = walk->next;

}

walk = head;
ret = 0;
while (walk != NULL) {

ret += ((walk->yes + walk->no) / sum) * entr(walk->yes, walk->no);
walk = walk->next;

}
return ret;

}
/* }}} */

/* vim:ts=4:sw=4:tw=80:fdm=marker:cin:
 */

118

 grp.c

#include <stdio.h>
#include "lst.h"
#include "pkt.h"

/* grp_intr_src() {{{ */
void grp_intr_src(struct lst_pkt_t *pkt_head,
 struct lst_grp_intr_t **grp_src_head,
 struct lst_grp_intr_t **grp_src_tail)
{

struct lst_pkt_t *pkt_walk;
struct lst_grp_intr_t *grp_src_tmp;

lst_grp_intr_init(grp_src_head, grp_src_tail);
pkt_walk = pkt_head;
while (pkt_walk != NULL) {

grp_src_tmp = lst_grp_intr_find(*grp_src_head, pkt_walk->src);
if (pkt_walk->intrusion == 1) {

if (grp_src_tmp == NULL) {
lst_grp_intr_add(grp_src_head, grp_src_tail,
 pkt_walk->src, 1, 0);

} else {
grp_src_tmp->yes++;

}
} else {

if (grp_src_tmp == NULL) {
lst_grp_intr_add(grp_src_head, grp_src_tail,
 pkt_walk->src, 0, 1);

} else {
grp_src_tmp->no++;

}
}
pkt_walk = pkt_walk->next;

}
}
/* }}} */
/* grp_intr_dst() {{{ */
void grp_intr_dst(struct lst_pkt_t *pkt_head,
 struct lst_grp_intr_t **grp_dst_head,
 struct lst_grp_intr_t **grp_dst_tail)
{

struct lst_pkt_t *pkt_walk;
struct lst_grp_intr_t *grp_dst_tmp;

lst_grp_intr_init(grp_dst_head, grp_dst_tail);
pkt_walk = pkt_head;
while (pkt_walk != NULL) {

grp_dst_tmp = lst_grp_intr_find(*grp_dst_head, pkt_walk->dst);
if (pkt_walk->intrusion == 1) {

if (grp_dst_tmp == NULL) {
lst_grp_intr_add(grp_dst_head, grp_dst_tail,
 pkt_walk->dst, 1, 0);

} else {
grp_dst_tmp->yes++;

}
} else {

if (grp_dst_tmp == NULL) {
lst_grp_intr_add(grp_dst_head, grp_dst_tail,
 pkt_walk->dst, 0, 1);

} else {
grp_dst_tmp->no++;

}
}

119

pkt_walk = pkt_walk->next;
}

}
/* }}} */
/* grp_intr_proto() {{{ */
void grp_intr_proto(struct lst_pkt_t *pkt_head,
 struct lst_grp_intr_t **grp_proto_head,
 struct lst_grp_intr_t **grp_proto_tail)
{

struct lst_pkt_t *pkt_walk;
struct lst_grp_intr_t *grp_proto_tmp;

lst_grp_intr_init(grp_proto_head, grp_proto_tail);
pkt_walk = pkt_head;
while (pkt_walk != NULL) {

grp_proto_tmp = lst_grp_intr_find(*grp_proto_head, pkt_walk->proto);
if (pkt_walk->intrusion == 1) {

if (grp_proto_tmp == NULL) {
lst_grp_intr_add(grp_proto_head, grp_proto_tail,
 pkt_walk->proto, 1, 0);

} else {
grp_proto_tmp->yes++;

}
} else {

if (grp_proto_tmp == NULL) {
lst_grp_intr_add(grp_proto_head, grp_proto_tail,
 pkt_walk->proto, 0, 1);

} else {
grp_proto_tmp->no++;

}
}
pkt_walk = pkt_walk->next;

}
}
/* }}} */
/* grp_intr_sport() {{{ */
void grp_intr_sport(struct lst_pkt_t *pkt_head,
 struct lst_grp_intr_t **grp_sport_head,
 struct lst_grp_intr_t **grp_sport_tail)
{

struct lst_pkt_t *pkt_walk;
struct lst_grp_intr_t *grp_sport_tmp;

lst_grp_intr_init(grp_sport_head, grp_sport_tail);
pkt_walk = pkt_head;
while (pkt_walk != NULL) {

grp_sport_tmp = lst_grp_intr_find(*grp_sport_head, pkt_walk->sport);
if (pkt_walk->intrusion == 1) {

if (grp_sport_tmp == NULL) {
lst_grp_intr_add(grp_sport_head, grp_sport_tail,
 pkt_walk->sport, 1, 0);

} else {
grp_sport_tmp->yes++;

}
} else {

if (grp_sport_tmp == NULL) {
lst_grp_intr_add(grp_sport_head, grp_sport_tail,
 pkt_walk->sport, 0, 1);

} else {
grp_sport_tmp->no++;

}
}
pkt_walk = pkt_walk->next;

}
}

120

/* }}} */
/* grp_intr_dport() {{{ */
void grp_intr_dport(struct lst_pkt_t *pkt_head,
 struct lst_grp_intr_t **grp_dport_head,
 struct lst_grp_intr_t **grp_dport_tail)
{

struct lst_pkt_t *pkt_walk;
struct lst_grp_intr_t *grp_dport_tmp;

lst_grp_intr_init(grp_dport_head, grp_dport_tail);
pkt_walk = pkt_head;
while (pkt_walk != NULL) {

grp_dport_tmp = lst_grp_intr_find(*grp_dport_head, pkt_walk->dport);
if (pkt_walk->intrusion == 1) {

if (grp_dport_tmp == NULL) {
lst_grp_intr_add(grp_dport_head, grp_dport_tail,
 pkt_walk->dport, 1, 0);

} else {
grp_dport_tmp->yes++;

}
} else {

if (grp_dport_tmp == NULL) {
lst_grp_intr_add(grp_dport_head, grp_dport_tail,
 pkt_walk->dport, 0, 1);

} else {
grp_dport_tmp->no++;

}
}
pkt_walk = pkt_walk->next;

}
}
/* }}} */
/* grp_intr_proto_dport() {{{ */
void grp_intr_proto_dport(struct lst_pkt_t *pkt_head,
 struct lst_grp_intr2_t **grp_proto_dport_head,
 struct lst_grp_intr2_t **grp_proto_dport_tail)
{

struct lst_pkt_t *pkt_walk;
struct lst_grp_intr2_t *grp_proto_dport_tmp;

lst_grp_intr2_init(grp_proto_dport_head, grp_proto_dport_tail);
pkt_walk = pkt_head;
while (pkt_walk != NULL) {

grp_proto_dport_tmp = lst_grp_intr2_find(*grp_proto_dport_head,
 pkt_walk->proto,

 pkt_walk->dport);
if (pkt_walk->intrusion == 1) {

if (grp_proto_dport_tmp == NULL) {
lst_grp_intr2_add(grp_proto_dport_head, grp_proto_dport_tail,
 pkt_walk->proto, pkt_walk->dport, 1, 0);

} else {
grp_proto_dport_tmp->yes++;

}
} else {

if (grp_proto_dport_tmp == NULL) {
lst_grp_intr2_add(grp_proto_dport_head, grp_proto_dport_tail,
 pkt_walk->proto, pkt_walk->dport, 0, 1);

} else {
grp_proto_dport_tmp->no++;

}
}
pkt_walk = pkt_walk->next;

}
}

121

id3.c

#include <stdio.h>
#include "lst.h"
#include "pkt.h"
#include "grp.h"
#include "ipt.h"
#include "entr.h"

/* id3() {{{ */
void id3(char level, struct lst_pkt_t *pkt_head, char shift, unsigned int src,

 unsigned int dst, unsigned int proto, unsigned int dport)
{

/* vars {{{ */
struct lst_grp_intr_t *grp_src_head = NULL,

 *grp_src_tail,
 *grp_dst_head = NULL,
 *grp_dst_tail,
 *grp_proto_head = NULL,
 *grp_proto_tail,
 *grp_cmpl_head = NULL,
 *grp_cmpl_tail,
 *grp_walk;

struct lst_pkt_t *l_pkt_head = NULL,
 *l_pkt_tail;

float entr_s,
 entr_src,
 entr_dst,
 entr_proto,
 gain_src,
 gain_dst,
 gain_proto;

char tmp;
/* }}} */
if (level == 0) { /* {{{ */

/* grouping {{{ */
grp_intr_src(pkt_head, &grp_src_head, &grp_src_tail);
grp_intr_dst(pkt_head, &grp_dst_head, &grp_dst_tail);
grp_intr_proto(pkt_head, &grp_proto_head, &grp_proto_tail);
/* }}} */
/* calculate entropy and gain {{{ */
entr_s = entr_smpl(pkt_head);
entr_src = entr_attr(grp_src_head);
entr_dst = entr_attr(grp_dst_head);
entr_proto = entr_attr(grp_proto_head);
gain_src = entr_s - entr_src;
gain_dst = entr_s - entr_dst;
gain_proto = entr_s - entr_proto;
/* }}} */
if ((gain_src > gain_dst) && (gain_src > gain_proto)) {

/* gain source is higest {{{ */
grp_walk = grp_src_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, grp_walk->data, 0, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(grp_walk->data, 0, 0, 0, 0);
} else {

id3(1, l_pkt_head, 1, grp_walk->data, 0, 0, 0);
}
grp_walk = grp_walk->next;

}

122

/* }}} */
} else if ((gain_dst > gain_src) && (gain_dst > gain_proto)) {

/* gain destination is higest {{{ */
grp_walk = grp_dst_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, grp_walk->data, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(0, grp_walk->data, 0, 0, 0);
} else {

id3(1, l_pkt_head, 2, 0, grp_walk->data, 0, 0);
}
grp_walk = grp_walk->next;

}
/* }}} */

} else {
/* gain protocol is higest {{{ */
grp_walk = grp_proto_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, 0, grp_walk->data, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(0, 0, grp_walk->data, 0, 0);
} else {

id3(1, l_pkt_head, 4, 0, 0, grp_walk->data, 0);
}
grp_walk = grp_walk->next;

}
/* }}} */

}
/* }}} */

} else if (level == 1) { /* {{{ */
entr_s = entr_smpl(pkt_head);
if (shift == 1) {

/* gain source is higest {{{ */
/* gain {{{ */
grp_intr_dst(pkt_head, &grp_dst_head, &grp_dst_tail);
grp_intr_proto(pkt_head, &grp_proto_head, &grp_proto_tail);
gain_proto = entr_s - entr_proto;
/* }}} */
if (gain_dst > gain_proto) {

/* gain destination is higer {{{ */
grp_walk = grp_dst_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, grp_walk->data, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, grp_walk->data, 0, 0, 0);
} else {

id3(2, l_pkt_head, 3, src, grp_walk->data, 0, 0);
}
grp_walk = grp_walk->next;

}
/* }}} */

} else {
/* gain protocol is higer {{{ */
grp_walk = grp_proto_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, 0, grp_walk->data, 0, 0,

123

 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, 0, grp_walk->data, 0, 0);
} else {

id3(2, l_pkt_head, 5, src, 0, grp_walk->data, 0);
}
grp_walk = grp_walk->next;

}
/* }}} */

}
/* }}} */

} else if (shift == 2) {
/* gain destination is higest {{{ */
/* gain {{{ */
grp_intr_src(pkt_head, &grp_src_head, &grp_src_tail);
grp_intr_proto(pkt_head, &grp_proto_head, &grp_proto_tail);
entr_src = entr_attr(grp_src_head);
entr_proto = entr_attr(grp_proto_head);
gain_src = entr_s - entr_src;
gain_proto = entr_s - entr_proto;
/* }}} */
if (gain_src > gain_proto) {

/* gain source is higer {{{ */
grp_walk = grp_src_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, grp_walk->data, 0, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(grp_walk->data, dst, 0, 0, 0);
} else {

id3(2, l_pkt_head, 3, grp_walk->data, dst, 0, 0);
}
grp_walk = grp_walk->next;

}
/* }}} */

} else {
/* gain protocol is higer {{{ */
grp_walk = grp_proto_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, 0, grp_walk->data, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(0, dst, grp_walk->data, 0, 0);
} else {

id3(2, l_pkt_head, 6, 0, dst, grp_walk->data, 0);
}
grp_walk = grp_walk->next;

}
/* }}} */

}
/* }}} */

} else {
/* gain proto is higest {{{ */
/* gain {{{ */
grp_intr_src(pkt_head, &grp_src_head, &grp_src_tail);
grp_intr_dst(pkt_head, &grp_dst_head, &grp_dst_tail);
entr_src = entr_attr(grp_src_head);
entr_dst = entr_attr(grp_dst_head);
gain_src = entr_s - entr_src;

124

gain_dst = entr_s - entr_dst;
/* }}} */
if (gain_src > gain_dst) {

/* gain source is higer {{{ */
grp_walk = grp_src_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, grp_walk->data, 0, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(grp_walk->data, 0, proto, 0, 0);
} else {

id3(2, l_pkt_head, 5, grp_walk->data, 0, proto, 0);
}
grp_walk = grp_walk->next;

}
/* }}} */

} else {
/* gain destination is higer {{{ */
grp_walk = grp_dst_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, grp_walk->data, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(0, grp_walk->data, proto, 0, 0);
} else {

id3(2, l_pkt_head, 3, 0, grp_walk->data, proto, 0);
}
grp_walk = grp_walk->next;

}
/* }}} */

}
/* }}} */

}
/* }}} */

} else if (level == 2) { /* {{{ */
if (shift == 3) {

grp_intr_proto(pkt_head, &grp_proto_head, &grp_proto_tail);
grp_walk = grp_proto_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, 0, grp_walk->data, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, dst, grp_walk->data, 0, 0);
} else {

id3(3, l_pkt_head, 0, src, dst, grp_walk->data, 0);
}
grp_walk = grp_walk->next;

}
} else if (shift == 5) {

grp_intr_dst(pkt_head, &grp_dst_head, &grp_dst_tail);
grp_walk = grp_dst_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, grp_walk->data, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, grp_walk->data, proto, 0, 0);
} else {

125

id3(3, l_pkt_head, 0, src, grp_walk->data, proto, 0);
}
grp_walk = grp_walk->next;

}
} else if (shift == 6) {

grp_intr_src(pkt_head, &grp_src_head, &grp_src_tail);
grp_walk = grp_src_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, grp_walk->data, 0, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(grp_walk->data, dst, proto, 0, 0);
} else {

id3(3, l_pkt_head, 0, grp_walk->data, dst, proto, 0);
}
grp_walk = grp_walk->next;

}
}
/* }}} */

} else if (level == 3) { /* {{{ */
grp_intr_dport(pkt_head, &grp_cmpl_head, &grp_cmpl_tail);
grp_walk = grp_cmpl_head;

while (grp_walk != NULL) {
tmp = pkt_filter(pkt_head, 0, 0, 0, 0, grp_walk->data,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, dst, proto, 0, grp_walk->data);
} else {

id3(4, l_pkt_head, 0, src, dst, proto, grp_walk->data);
}
grp_walk = grp_walk->next;

}
/* }}} */

} else if (level == 4) { /* {{{ */
grp_intr_sport(pkt_head, &grp_cmpl_head, &grp_cmpl_tail);
grp_walk = grp_cmpl_head;

while (grp_walk != NULL) {
tmp = pkt_filter(pkt_head, 0, 0, 0, grp_walk->data, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, dst, proto, grp_walk->data, dport);
}
grp_walk = grp_walk->next;

}
/* }}} */

}
/* freeing {{{ */
lst_pkt_free(l_pkt_head);
lst_grp_intr_free(grp_src_head);
lst_grp_intr_free(grp_cmpl_head);
/* }}} */

}
/* }}} */
/* id3_sdpd() {{{ */
void id3_sdpd(char level, struct lst_pkt_t *pkt_head, char shift,
 unsigned int src, unsigned int dst, unsigned int proto,
 unsigned int dport)
{

/* vars {{{ */

126

struct lst_grp_intr_t *grp_src_head = NULL,
 *grp_src_tail,
 *grp_dst_head = NULL,
 *grp_dst_tail,
 *grp_cmpl_head = NULL,
 *grp_cmpl_tail,
 *grp_walk;

struct lst_grp_intr2_t *grp_proto_dport_head = NULL,
 *grp_proto_dport_tail,
 *grp_walk2;

struct lst_pkt_t *l_pkt_head = NULL,
 *l_pkt_tail;

float entr_s,
 entr_src,
 entr_dst,
 entr_proto_dport,
 gain_src,
 gain_dst,
 gain_proto_dport;

char tmp;
/* }}} */
if (level == 0) { /* {{{ */

/* grouping {{{ */
grp_intr_src(pkt_head, &grp_src_head, &grp_src_tail);
grp_intr_dst(pkt_head, &grp_dst_head, &grp_dst_tail);
grp_intr_proto_dport(pkt_head, &grp_proto_dport_head,
 &grp_proto_dport_tail);
/* }}} */
/* calculate entropy and gain {{{ */
entr_s = entr_smpl(pkt_head);
entr_src = entr_attr(grp_src_head);
entr_dst = entr_attr(grp_dst_head);
entr_proto_dport = entr_attr2(grp_proto_dport_head);
gain_src = entr_s - entr_src;
gain_dst = entr_s - entr_dst;
gain_proto_dport = entr_s - entr_proto_dport;
/* }}} */
if ((gain_src > gain_dst) && (gain_src > gain_proto_dport)) {

/* gain source is higest {{{ */
grp_walk = grp_src_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, grp_walk->data, 0, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(grp_walk->data, 0, 0, 0, 0);
} else {

id3_sdpd(1, l_pkt_head, 1, grp_walk->data, 0, 0, 0);
}
grp_walk = grp_walk->next;

}
/* }}} */

} else if ((gain_dst > gain_src) && (gain_dst > gain_proto_dport)) {
/* gain destination is higest {{{ */
grp_walk = grp_dst_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, grp_walk->data, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(0, grp_walk->data, 0, 0, 0);
} else {

id3_sdpd(1, l_pkt_head, 2, 0, grp_walk->data, 0, 0);

127

}
grp_walk = grp_walk->next;

}
/* }}} */

} else {
/* gain protocol and dport is higest {{{ */
grp_walk2 = grp_proto_dport_head;
while (grp_walk2 != NULL) {

tmp = pkt_filter(pkt_head, 0, 0, grp_walk2->data, 0,
 grp_walk2->datb, &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(0, 0, grp_walk2->data, 0, grp_walk2->datb);
} else {

id3_sdpd(1, l_pkt_head, 12, 0, 0, grp_walk2->data,
 grp_walk2->datb);

}
grp_walk2 = grp_walk2->next;

}
/* }}} */

}
/* }}} */

} else if (level == 1) { /* {{{ */
entr_s = entr_smpl(pkt_head);
if (shift == 1) {

/* gain source is higest {{{ */
/* gain {{{ */
grp_intr_dst(pkt_head, &grp_dst_head, &grp_dst_tail);
grp_intr_proto_dport(pkt_head, &grp_proto_dport_head,
 &grp_proto_dport_tail);
entr_dst = entr_attr(grp_dst_head);
entr_proto_dport = entr_attr2(grp_proto_dport_head);
gain_dst = entr_s - entr_dst;
gain_proto_dport = entr_s - entr_proto_dport;
/* }}} */
if (gain_dst > gain_proto_dport) {

/* gain destination is higer {{{ */
grp_walk = grp_dst_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, grp_walk->data, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, grp_walk->data, 0, 0, 0);
} else {

id3_sdpd(2, l_pkt_head, 3, src, grp_walk->data, 0,
0);

}
grp_walk = grp_walk->next;

}
/* }}} */

} else {
/* gain protocol and dport is higer {{{ */
grp_walk2 = grp_proto_dport_head;
while (grp_walk2 != NULL) {

tmp = pkt_filter(pkt_head, 0, 0, grp_walk2->data, 0,
 grp_walk2->datb, &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, 0, grp_walk2->data, 0, grp_walk2-
>datb);

} else {

128

id3_sdpd(2, l_pkt_head, 13, src, 0, grp_walk2-
>data,

 grp_walk2->datb);
}
grp_walk2 = grp_walk2->next;

}
/* }}} */

}
/* }}} */

} else if (shift == 2) {
/* gain destination is higest {{{ */
/* gain {{{ */
grp_intr_src(pkt_head, &grp_src_head, &grp_src_tail);
grp_intr_proto_dport(pkt_head, &grp_proto_dport_head,
 &grp_proto_dport_tail);
entr_src = entr_attr(grp_src_head);
entr_proto_dport = entr_attr2(grp_proto_dport_head);
gain_src = entr_s - entr_src;
gain_proto_dport = entr_s - entr_proto_dport;
/* }}} */
if (gain_src > gain_proto_dport) {

/* gain source is higer {{{ */
grp_walk = grp_src_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, grp_walk->data, 0, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(grp_walk->data, dst, 0, 0, 0);
} else {

id3_sdpd(2, l_pkt_head, 3, grp_walk->data, dst, 0,
0);

}
grp_walk = grp_walk->next;

}
/* }}} */

} else {
/* gain protocol and dport is higer {{{ */
grp_walk2 = grp_proto_dport_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, 0, grp_walk2->data, 0,
 grp_walk2->datb, &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(0, dst, grp_walk2->data, 0, grp_walk2-
>datb);

} else {
id3_sdpd(2, l_pkt_head, 14, 0, dst, grp_walk2-

>data,
 grp_walk2->datb);

}
grp_walk = grp_walk->next;

}
/* }}} */

}
/* }}} */

} else {
/* gain protocol and dport is higest {{{ */
/* gain {{{ */
grp_intr_src(pkt_head, &grp_src_head, &grp_src_tail);
grp_intr_dst(pkt_head, &grp_dst_head, &grp_dst_tail);
entr_src = entr_attr(grp_src_head);
entr_dst = entr_attr(grp_dst_head);

129

gain_src = entr_s - entr_src;
gain_dst = entr_s - entr_dst;
/* }}} */
if (gain_src > gain_dst) {

/* gain source is higer {{{ */
grp_walk = grp_src_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, grp_walk->data, 0, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(grp_walk->data, 0, proto, 0, dport);
} else {

id3_sdpd(2, l_pkt_head, 13, grp_walk->data, 0,
proto,

 dport);
}
grp_walk = grp_walk->next;

}
/* }}} */

} else {
/* gain destination is higer {{{ */
grp_walk = grp_dst_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, 0, grp_walk->data, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(0, grp_walk->data, proto, 0, dport);
} else {

id3_sdpd(2, l_pkt_head, 14, 0, grp_walk->data,
proto,

 dport);
}
grp_walk = grp_walk->next;

}
/* }}} */

}
/* }}} */

}
/* }}} */

} else if (level == 2) { /* {{{ */
if (shift == 3) {

grp_intr_proto_dport(pkt_head, &grp_proto_dport_head,
 &grp_proto_dport_tail);
grp_walk2 = grp_proto_dport_head;
while (grp_walk2 != NULL) {

tmp = pkt_filter(pkt_head, 0, 0, grp_walk2->data, 0,
 grp_walk2->datb, &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, dst, grp_walk2->data, 0, grp_walk2->datb);
} else {

id3_sdpd(3, l_pkt_head, 0, src, dst, grp_walk2->data,
 grp_walk2->datb);

}
grp_walk2 = grp_walk2->next;

}
} else if (shift == 13) {

grp_intr_dst(pkt_head, &grp_dst_head, &grp_dst_tail);
grp_walk = grp_dst_head;
while (grp_walk != NULL) {

130

tmp = pkt_filter(pkt_head, 0, grp_walk->data, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, grp_walk->data, proto, 0, dport);
} else {

id3_sdpd(3, l_pkt_head, 0, src, grp_walk->data, proto,
 dport);

}
grp_walk = grp_walk->next;

}
} else {

grp_intr_src(pkt_head, &grp_src_head, &grp_src_tail);
grp_walk = grp_src_head;
while (grp_walk != NULL) {

tmp = pkt_filter(pkt_head, grp_walk->data, 0, 0, 0, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(grp_walk->data, dst, proto, 0, dport);
} else {

id3_sdpd(3, l_pkt_head, 0, grp_walk->data, dst, proto,
 dport);

}
grp_walk = grp_walk->next;

}
}
/* }}} */

} else if (level == 3) { /* {{{ */
grp_intr_sport(pkt_head, &grp_cmpl_head, &grp_cmpl_tail);
grp_walk = grp_cmpl_head;

while (grp_walk != NULL) {
tmp = pkt_filter(pkt_head, 0, 0, 0, grp_walk->data, 0,
 &l_pkt_head, &l_pkt_tail);
if (tmp == PKT_ALL_NORM) {

/* pruning / ignore */
} else if (tmp == PKT_ALL_INTR) {

ipt_blk(src, dst, proto, grp_walk->data, dport);
}
grp_walk = grp_walk->next;

}
/* }}} */

}
/* freeing {{{ */
lst_pkt_free(l_pkt_head);
lst_grp_intr_free(grp_src_head);
lst_grp_intr_free(grp_dst_head);
lst_grp_intr2_free(grp_proto_dport_head);
lst_grp_intr_free(grp_cmpl_head);
/* }}} */

}
/* }}} */

/* vim:ts=4:sw=4:tw=80:fdm=marker:cin:
 */

131

ipt.c

#include <stdio.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/wait.h>

/* ipt_blk() {{{ */
void ipt_blk(unsigned int src, unsigned int dst, unsigned int proto,
 unsigned int sport, unsigned int dport)
{

struct protoent *protoe;
char saddr[INET_ADDRSTRLEN];
char *env[] = {NULL};
char **argv;
char *arg;
char buff[11];
int idx;
struct in_addr iaddr;
pid_t pid;

argv = (char **) malloc(16 * sizeof(char *));
arg = strdup("iptables");
argv[0] = arg;
arg = strdup("-A");
argv[1] = arg;
arg = strdup("FORWARD");
argv[2] = arg;
idx = 2;

if (src) {
iaddr.s_addr = src;
inet_ntop(AF_INET, &iaddr, saddr, INET_ADDRSTRLEN);
idx++;
arg = strdup("-s");
argv[idx] = arg;
idx++;
arg = strdup(saddr);
argv[idx] = arg;

}
if (dst) {

iaddr.s_addr = dst;
inet_ntop(AF_INET, &iaddr, saddr, INET_ADDRSTRLEN);
idx++;
arg = strdup("-d");
argv[idx] = arg;
idx++;
arg = strdup(saddr);
argv[idx] = arg;

}
if (proto) {

protoe = getprotobynumber(proto);
idx++;
arg = strdup("-p");
argv[idx] = arg;
idx++;
arg = strdup(protoe->p_name);
argv[idx] = arg;
if (sport) {

132

idx++;
arg = strdup("--sport");
argv[idx] = arg;
idx++;
sprintf(buff, "%d", sport);
arg = strdup(buff);
argv[idx] = arg;

}
if (dport) {

idx++;
arg = strdup("--dport");
argv[idx] = arg;
idx++;
sprintf(buff, "%d", dport);
arg = strdup(buff);
argv[idx] = arg;

}
}
idx++;
arg = strdup("-j");
argv[idx] = arg;
idx++;
arg = strdup("DROP");
argv[idx] = arg;
idx++;
argv[idx] = NULL;
pid = fork();
if (pid == 0) {

/* child */
execve("/usr/sbin/iptables", argv, env);
exit(EXIT_FAILURE);

} else if (pid > 0) {
/* parent */
wait(NULL);

}
for (idx = 0; idx < 16; idx++) {

if (argv[idx] == NULL) {
break;

}
free(argv[idx]);

}
free(argv);

}
/* }}} */
/* ipt_reset() {{{ */
void ipt_reset()
{

char *argv[] = {"iptables", "-F", "FORWARD", NULL};
char *env[] = {NULL};
pid_t pid;

pid = fork();
if (pid == 0) {

/* child */
execve("/usr/sbin/iptables", argv, env);
exit(EXIT_FAILURE);

} else if (pid > 0) {
/* parent */
wait(NULL);

}
}
/* }}} */
/* vim:ts=4:sw=4:tw=80:fdm=marker:cin:
 */

133

lst.h

#ifndef _LST_H
#define _LST_H

struct lst_grp_intr_t {
unsigned int data, yes, no;
struct lst_grp_intr_t *next;

};

struct lst_grp_intr2_t {
unsigned int data, datb, yes, no;
struct lst_grp_intr2_t *next;

};

struct lst_pkt_t {
unsigned int src, dst, proto, sport, dport, intrusion;
struct lst_pkt_t *next;

};

void lst_grp_intr_init(struct lst_grp_intr_t **, struct lst_grp_intr_t **);
void lst_grp_intr_add(struct lst_grp_intr_t **, struct lst_grp_intr_t **,
 unsigned int, unsigned int, unsigned int);
void lst_grp_intr_view(struct lst_grp_intr_t *);
struct lst_grp_intr_t *lst_grp_intr_find(struct lst_grp_intr_t *, unsigned int);
void lst_grp_intr_free(struct lst_grp_intr_t *);

void lst_grp_intr2_init(struct lst_grp_intr2_t **, struct lst_grp_intr2_t **);
void lst_grp_intr2_add(struct lst_grp_intr2_t **, struct lst_grp_intr2_t **,
 unsigned int, unsigned int, unsigned int, unsigned int);
void lst_grp_intr2_view(struct lst_grp_intr2_t *);
struct lst_grp_intr2_t *lst_grp_intr2_find(struct lst_grp_intr2_t *,
 unsigned int, unsigned int);
void lst_grp_intr2_free(struct lst_grp_intr2_t *);

void lst_pkt_init(struct lst_pkt_t **, struct lst_pkt_t **);
void lst_pkt_add(struct lst_pkt_t **, struct lst_pkt_t **, unsigned int,
 unsigned int, unsigned int, unsigned int, unsigned int,

 unsigned int);
void lst_pkt_view(struct lst_pkt_t *);
void lst_pkt_free(struct lst_pkt_t *);

#endif /* _LST_H */

/* vim:ts=4:sw=4:tw=80:fdm=marker:cin:
 */

134

lst.c

#include <stdio.h>
#include <stdlib.h>
#include <netdb.h>
#include <arpa/inet.h>
#include "lst.h"

/* lst_grp_intr_init() {{{ */
void lst_grp_intr_init(struct lst_grp_intr_t **head, struct lst_grp_intr_t **tail)
{

*head = *tail = NULL;
}
/* }}} */
/* lst_grp_intr_add() {{{ */
void lst_grp_intr_add(struct lst_grp_intr_t **head, struct lst_grp_intr_t **tail,
 unsigned int data, unsigned int yes, unsigned int no)
{

struct lst_grp_intr_t *tmp;

tmp = (struct lst_grp_intr_t *) malloc(sizeof(struct lst_grp_intr_t));
tmp->data = data;
tmp->yes = yes;
tmp->no = no;
if (*head == NULL) {

*head = *tail = tmp;
} else {

(*tail)->next = tmp;
*tail = (*tail)->next;

}
tmp->next = NULL;

}
/* }}} */
/* lst_grp_intr_view() {{{ */
void lst_grp_intr_view(struct lst_grp_intr_t *head)
{

struct lst_grp_intr_t *walk;

walk = head;
while (walk != NULL) {

printf("%d:%d:%d:%d\n", walk->data, walk->yes, walk->no,
 walk->yes + walk->no);
walk = walk->next;

}
}
/* }}} */
/* lst_grp_intr_find() {{{ */
struct lst_grp_intr_t *lst_grp_intr_find(struct lst_grp_intr_t *head,
 unsigned int search)
{

struct lst_grp_intr_t *walk;

walk = head;
while ((walk != NULL) && (walk->data != search)) {

walk = walk->next;
}
return walk;

}
/* }}} */
/* lst_grp_intr_free() {{{ */
void lst_grp_intr_free(struct lst_grp_intr_t *head)
{

struct lst_grp_intr_t *walk;
walk = head;

135

while (walk != NULL) {
head = head->next;
free(walk);
walk = head;

}
}
/* }}} */
/* lst_grp_intr2_init() {{{ */
void lst_grp_intr2_init(struct lst_grp_intr2_t **head,
 struct lst_grp_intr2_t **tail)
{

*head = *tail = NULL;
}
/* }}} */
/* lst_grp_intr2_add() {{{ */
void lst_grp_intr2_add(struct lst_grp_intr2_t **head,
 struct lst_grp_intr2_t **tail,
 unsigned int data, unsigned int datb,
 unsigned int yes, unsigned int no)
{

struct lst_grp_intr2_t *tmp;

tmp = (struct lst_grp_intr2_t *) malloc(sizeof(struct lst_grp_intr2_t));
tmp->data = data;
tmp->datb = datb;
tmp->yes = yes;
tmp->no = no;
if (*head == NULL) {

*head = *tail = tmp;
} else {

(*tail)->next = tmp;
*tail = (*tail)->next;

}
tmp->next = NULL;

}
/* }}} */
/* lst_grp_intr2_view() {{{ */
void lst_grp_intr2_view(struct lst_grp_intr2_t *head)
{

struct lst_grp_intr2_t *walk;

walk = head;
while (walk != NULL) {

printf("%d:%d:%d:%d:%d\n", walk->data, walk->datb, walk->yes, walk->no,
 walk->yes + walk->no);
walk = walk->next;

}
}
/* }}} */
/* lst_grp_intr2_find() {{{ */
struct lst_grp_intr2_t *lst_grp_intr2_find(struct lst_grp_intr2_t *head,
 unsigned int search,

 unsigned int searci)
{

struct lst_grp_intr2_t *walk;

walk = head;
while ((walk != NULL) &&
 ((walk->data != search) || (walk->datb != searci))) {

walk = walk->next;
}
return walk;

}
/* }}} */
/* lst_grp_intr2_free() {{{ */

136

void lst_grp_intr2_free(struct lst_grp_intr2_t *head)
{

struct lst_grp_intr2_t *walk;
walk = head;
while (walk != NULL) {

head = head->next;
free(walk);
walk = head;

}
}
/* }}} */
/* lst_pkt_init() {{{ */
void lst_pkt_init(struct lst_pkt_t **head, struct lst_pkt_t **tail)
{

*head = *tail = NULL;
}
/* }}} */
/* lst_pkt_add() {{{ */
void lst_pkt_add(struct lst_pkt_t **head, struct lst_pkt_t **tail,
 unsigned int src, unsigned int dst, unsigned int proto,

 unsigned int sport, unsigned int dport, unsigned int intrusion)
{

struct lst_pkt_t *tmp;

tmp = (struct lst_pkt_t *) malloc(sizeof(struct lst_pkt_t));
tmp->src = src;
tmp->dst = dst;
tmp->proto = proto;
tmp->sport = sport;
tmp->dport = dport;
tmp->intrusion = intrusion;
if (*head == NULL) {

*head = *tail = tmp;
} else {

(*tail)->next = tmp;
*tail = (*tail)->next;

}
tmp->next = NULL;

}
/* }}} */
/* lst_pkt_view() {{{ */
void lst_pkt_view(struct lst_pkt_t *head)
{

struct lst_pkt_t *walk;
struct protoent *proto;
struct in_addr src, dst;
char psrc[INET_ADDRSTRLEN], pdst[INET_ADDRSTRLEN];

walk = head;
while (walk != NULL) {

proto = getprotobynumber(walk->proto);
src.s_addr = walk->src;
inet_ntop(AF_INET, &src, psrc, INET_ADDRSTRLEN);
dst.s_addr = walk->dst;
inet_ntop(AF_INET, &dst, pdst, INET_ADDRSTRLEN);
printf("%s|%s:%d->%s:%d%c\n", proto->p_name, psrc, walk->sport, pdst,
 walk->dport, (walk->intrusion) ? '+' : '-');
walk = walk->next;

}
}
/* }}} */
/* lst_pkt_free() {{{ */
void lst_pkt_free(struct lst_pkt_t *head)
{

struct lst_pkt_t *walk;

137

walk = head;
while (walk != NULL) {

head = head->next;
free(walk);
walk = head;

}
}
/* }}} */
/* vim:ts=4:sw=4:tw=80:fdm=marker:cin:
 */

138

pkt.h

#ifndef _PKT_H
#define _PKT_H

#include "lst.h"

#define PKT_NO_MATCH 0 /* no packet match */
#define PKT_ALL_NORM 1 /* all packet(s) is normal (there is no intrusion) */
#define PKT_ALL_INTR 2 /* all packet(s) is intrusion */
#define PKT_NORM_INTR 3
#define PKT_INTR_NORM 3

char pkt_filter(struct lst_pkt_t *, unsigned int, unsigned int, unsigned int,
 unsigned int, unsigned int, struct lst_pkt_t **,
 struct lst_pkt_t **);
#endif /* _PKT_H */

139

pkt.c

#include <stdio.h>
#include "pkt.h"
#include "lst.h"

/* pkt_filter() {{{ */
char pkt_filter(struct lst_pkt_t *pkt_head, unsigned int src, unsigned int dst,
 unsigned int proto, unsigned int sport, unsigned int dport,
 struct lst_pkt_t **n_pkt_head, struct lst_pkt_t **n_pkt_tail)
{

struct lst_pkt_t *pkt_walk;
int pkt_intr_exists = 0, pkt_norm_exists = 0;

pkt_walk = pkt_head;
lst_pkt_init(n_pkt_head, n_pkt_tail);
while (pkt_walk != NULL) {

if ((!src || (src == pkt_walk->src)) &&
 (!dst || (dst == pkt_walk->dst)) &&

(!proto || (proto == pkt_walk->proto)) &&
(!sport || (sport == pkt_walk->sport)) &&
(!dport || (dport == pkt_walk->dport))) {
if (pkt_walk->intrusion == 1) {

pkt_intr_exists = 1;
} else {

pkt_norm_exists = 1;
}
lst_pkt_add(n_pkt_head, n_pkt_tail, pkt_walk->src, pkt_walk->dst,
 pkt_walk->proto, pkt_walk->sport, pkt_walk->dport,

pkt_walk->intrusion);
}
pkt_walk = pkt_walk->next;

}

if (*n_pkt_head == NULL) {
return PKT_NO_MATCH;

}

if (!pkt_intr_exists) {
return PKT_ALL_NORM;

} else if (!pkt_norm_exists) {
return PKT_ALL_INTR;

}
return PKT_NORM_INTR;

}
/* }}} */
/* vim:ts=4:sw=4:tw=80:fdm=marker:cin:
 */

140

main.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <getopt.h>
#include "lst.h"S
#include "grp.h"
#include "id3.h"
#include "pkt.h"
#include "ipt.h"

/* main() {{{ */
int main(int argc, char **argv)
{

/* vars {{{ */
FILE *fp; /* file pointer */
char buff[256], /* buffer */

 p; / (help char) pointer */
struct lst_pkt_t *pkt_head, /* (list) packet head */

 pkt_tail; / (list) packet tail */
struct in_addr src, /* source address */

 dst; /* destination address */
struct protoent *proto; /* protocol */
unsigned int sport, /* source port */

 dport, /* destination port */
 intrusion;

int opt, opt_idx = 0;
struct option opt_long[] = {

{"reset" , 0, 0, 'r'},
{"version" , 0, 0, 'v'},
{"debug" , 0, 0, 'd'},
{"log-packet" , 1, 0, 'p'},
{"log-intrusion" , 1, 0, 'i'},
{"file-time-reference", 1, 0, 'f'},
{"algorithm" , 1, 0, 'a'},
{"usage" , 0, 0, 'u'},
{"help" , 0, 0, 'h'},
{"schedule" , 1, 0, 's'},
{0 , 0, 0, 0 }

};
int debug = 0, reset, schedule = 0, algo = 0;
char *file_packet = NULL,

 *file_intr = NULL,
 *file_ref = NULL;

/* }}} */
/* function prototype {{{ */
void show_version();
void show_usage();
/* }}} */
/* parse option {{{ */
while ((opt = getopt_long(argc, argv, "rvVduha:p:i:f:s:", opt_long,
 &opt_idx)) != -1) {

switch (opt) {
case 'r':

reset = 1;
break;

case 'v':
case 'V':

show_version();
exit(EXIT_SUCCESS);

case 'd':

141

debug = 1;
break;

case 'h':
case 'u':

show_usage();
exit(EXIT_SUCCESS);

case 's':
schedule = atoi(optarg);
break;

case 'p':
file_packet = strdup(optarg);
break;

case 'i':
file_intr = strdup(optarg);
break;

case 'f':
file_ref = strdup(optarg);
break;

case 'a':
if (strncmp(optarg, "sdpd", 4) == 0) {

algo = 1;
} else if (strncmp(optarg, "sdp", 3) == 0) {

algo = 0;
} else {

show_usage();
exit(EXIT_SUCCESS);

}
break;

}
}
/* }}} */
lst_pkt_init(&pkt_head, &pkt_tail);
/* read data {{{ */
fp = fopen("data", "r");
while (fgets(buff, 255, fp) != NULL) {

p = strtok(buff, ":"); /* number */
p = strtok(NULL, ":"); /* src */
inet_pton(AF_INET, p, &src);
p = strtok(NULL, ":"); /* dst */
inet_pton(AF_INET, p, &dst);
p = strtok(NULL, ":"); /* sport */
sport = (unsigned int) atoi(p);
p = strtok(NULL, ":"); /* dport */
dport = (unsigned int) atoi(p);
p = strtok(NULL, ":"); /* proto */
proto = getprotobyname(p);
p = strtok(NULL, ":"); /* intrusion */
intrusion = (strncasecmp(p, "yes", 3) == 0) ? 1 : 0;
lst_pkt_add(&pkt_head, &pkt_tail, src.s_addr, dst.s_addr,
 proto->p_proto, sport, dport, intrusion);

}
fclose(fp);
/* }}} */
ipt_reset();
if (algo == 0) {

id3(0, pkt_head, 0, 0, 0, 0, 0);
} else {

id3_sdpd(0, pkt_head, 0, 0, 0, 0, 0);
}
lst_pkt_free(pkt_head);
if (file_packet != NULL) free(file_packet);
if (file_ref != NULL) free(file_ref);
if (file_intr != NULL) free(file_intr);
return EXIT_SUCCESS;

}

142

/* }}} */
/* show_version() {{{ */
void show_version()
{

printf("NIPS-NID2S3 version 0.1\n");
}
/* }}} */
/* show_usage() {{{ */
void show_usage()
{

printf("Usage: syh [--algorithm|-a [sdp|sdpd]]\n");
}
/* }}} */
/* vim:ts=4:sw=4:tw=80:fdm=marker:cin:
 */

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

