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ABSTRACT 

 

 

 Membrane based gas separation process technology has been recognized as one of 

the most efficient and advanced unit operation for gas separation. The main problem in 

membrane gas separation is the trade off between permeability and selectivity. The 

membrane that provide high permeability offered low selectivity and vice versa. 

Therefore in this study, a high performance Polyethersulfone (PES) flat sheet 

asymmetric membrane will be fabricated based on high of both permeability and 

selectivity. The main objectives of this study are to illustrate the effect of shear rate on 

asymmetric membrane structure and gas separation performance. The membranes are 

produced by a simple dry/wet phase inversion technique using a conventional method. 

By using several membrane with different shear rate, the membranes then been installed 

to the gas permeation rig and to be tested by natural gas which are oxygen and nitrogen. 

Then, the permeability and selectivity can be calculated. The membrane with the 

optimum performance was chosen for further membrane fabrication. 
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ABSTRAK 

 

 

Membran yang menggunakan teknologi proses pengasingan gas telah dikenalpasti 

sebagai salah satu unit operasi yang paling berkesan dan maju. Masalah utama dalam 

proses ini ialah dalam mengenalpasti antara pemisihan dan pemilihan gas tersebut. 

Membran yang menghasilkan kadar pemisahan yang tinggi akan mempunyai kadar 

pemilihan yang rendah dan begitulah sebaliknya. Oleh itu dalam kajian ini, suatu 

membran Polyethersulfone (PES) yang rata,leper dan asimetrik  dan berprestasi tinggi 

akan dibuat berdasarkan kadar pemilihan dan pemisahan yang tinggi. Tujuan kajian ini 

adalah untuk mengkaji kesan kadar pemotongan ke atas struktur membran asimetrik dan 

prestasi pengasingan gas. Membran tersebut dibuat dengan proses pemisahan fasa 

kering/basah dengan menggunakan kaedah konvesional. Dengan menggunakan 

membran yang mempunyai perbezaan kadar pemotongan, membran kemudian dipasang 

kepada mesin pemisahan gas untuk diuji dengan gas tulen iaitu oksigen dan nitrogen. 

Kemudian, kadar pemisahan dan pemilihan dikira. Membran yang mempunyai prestasi 

yg optimum dipilih bagi pembentukan membrane seterusnya. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Gas Separation Membranes 
 
 

Gas separation by selective permeation through polymer membranes is one of the 

fastest growing branches of the separation technology. Gas separation membrane 

systems have received a lot of attention from both industry and academia. This is 

because there is a belief that membrane separation processes may offer more capital and 

energy efficiency when compared to the conventional separation processes in some 

application. In order to accomplish this objective, membrane materials with superior 

permeability and selectivity and advanced fabrication technologies to yield hollow fibers 

with an ultra-thin dense selective layer are the primary focuses for most membrane 

scientists in the last two decades.   

 
 

Most of the membrane expert have been investigating and synthesizing new 

polymers that are able to exhibit both higher gas permeabilities and selectivities since 

the past 40 years. Presently, the structure, pressure-normalized flux and selectivity of the 

membrane polymer have become the focus of the studies among researchers. In addition, 

they are aiming for defect-free ultrathin dense selective layer membrane materials. 

Significant progresses have been made in the membrane materials, dope preparation, 

fabrication technology and fundamental understanding of membrane formation. 
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The effect of shear rate has been observed in the separation  performance of 

ultrafiltration, reverse osmosis and gas separation membranes. The selectivity increased 

with increasing dope extrusion rate in hollow fiber spinning while the gas permeation 

rate reduced. The relative selectivities also increased with shear rate increased (Chung et 

al, 1993). 

 
 

These are two developing processes, gas separation with polymeric membranes and 

pervaporation. Gas separation with membranes is more developed technology then 

pervaporation. The membrane separation process produces a permeate enriched in the 

more permeable species and a residue enriched in the less permeable component. 

 
 

In term of material development, membranes prepare from polyethersulfone (PES) 

have been received special attention for gas separation due to some of them possessing 

surprisingly high gas selectivities for gas pair O2/N2 and CO2/CH4. Polyethersulfone also 

have many other desirable properties, such as spinnability, thermal and chemical 

stability and mechanical strength. These properties are essential to yield a membrane 

module with stable and predicable long-term performance.  

 

 
 

 
1.2 Problem Statement 
 
 

Most of gas separation membranes are the solution-diffusion type. The key of 

membrane performance variables are selectivity, permeability and durability. For 

solution-diffusion membranes permeability is defined as the product of the solubility and 

diffusivity. Traditionally, there has been a trade-off between selectivity and 

permeability; high selectivity membranes have more permeability and vice versa. 

Membrane based gas separation technology has some problems that must be solved 

before commercial use. For many gas separations, application membranes with high 

selectivity and permeability are not available. 
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 One of the major problems confronting the use of membrane based gas 

separation processes in a wide range of application is the back of membranes yielding 

high flux and high selectivity. Therefore, by using different of shear rate, were expected 

to enhance the membrane performance. These are the major study need to accomplish in 

this field to make the membrane capable in producing what we want without problem 

above. 

 
 
 
 
1.3 Objectives of the Research 

 
 
1. To fabricate high selectivity and permeability asymmetric polyethersulfone 

(PES) membrane for gas separation. 

2. Improving phase inversion condition to enhance membrane selectivity by 

controlling the shear rates used that affect the molecular orientation. 

3. To study the effect of using different operating pressure on the gas separation 

performance. 

 
 
 
 
1.4   Scopes of the Research 
 
 

1. Fabrication of polymer solution using PES, N-methyl-2-pyrrolidone (NMP) and 

water. 

2. Characterized of the developed membrane using pure gases N2 and O2 as test 

gases. 

3. Characterised the performance of using different operating pressure on 

separation of N2 and O2 gases. 

 
 



 
 
 
 

CHAPTER II 
 
 
 
 

LITERATURE REVIEW 
 
 
 
 
2.1 History of Membrane Based Separation  
 
 

Membrane based separation processes over the last three decades have proved their 

potential as better alternatives to traditional separation processes. Although report 

concerning the permeability of synthetic membranes date back to the mid 19th century, 

membrane science and technology study started as in early 15th century (Boretos, 1973).  

 
An early demonstration of gas separation using natural rubber membranes date 

back to the 1830’s. Gas separation using polymeric membranes has achieved important 

commercial success in some industrial processes since the first commercial scale 

membrane gas separation system was produced in the late 1970’s. In order to extend its 

application and compete successfully wait traditional gas separation, processes such as 

cryogenics, pressure swing adsorption and absorption and researchers made great 

attention in fabricating high separation performance membranes in both academia an 

industry (Wang  et al, 2002).   
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The Table 2.1 provides the history of development of the membrane technology. 
 
 
Table 2.1 : Milestones in the development of membrane based separation 
 
 
Name of Inventor Year Invention 

Abbe Nollet 1748 Wine and water were separated with animal skin 

by reverse osmosis 

J.K. Mitchell 1831 First scientific observation related to gas 

separation 

Thomas Graham 1850 Graham’s Law of diffusion 

L. Kahlenberg 1906 The separation of a mixture of a hydrocarbon 

and an alcohol through a rubber membrane 

D. H. Hagerbaumer 1955 Conducted the first quantitative investigation 

with a microporous Vycor glass membrane with 

a high-pressure drop across it to allow for the 

separation of liquid-liquid mixtures. 

Leob and Sourirajan 1961 Make the first anisotropic membrane 

Binning et al 1965 Operation of separating a liquid-liquid mixture 

into a vapor mixture using a nonporous 

polymeric film. 

Permea Inc. 1980 Launched its hydrogen separating Prism 

membrane 

Gesellchaft fur 

Trenntechnik  

1982 Installed a pervaporation plant to separate water 

from concentrated alcohol solutions. 

Exxon 1990 Pervaporation in its refineries to separate 

hydrocarbon mixtures containing aromatics and 

aliphatics. 
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It was only in the last decade that the first mixed gas permeation experiments were 

conducted to evaluate the true separation property of membranes. Most of the models 

describing the mixed gas transport behavior are based on modifications to single gas 

transport models. Furthermore, these models only provide a description of the mixed gas 

transport phenomena under steady-state and simplified experimental conditions. The 

lack of experimental data hinders understanding of the true mixed gas transport 

phenomena through membranes. The modern era of gas separation membrane was 

introduced when polymeric membranes became economically viable. H2-recovery was 

the first major application of membrane gas-separation technology followed by the 

CO2/CH4 separation and the production of N2 from air (Pereira, 1999). 

 
 

Since then, membrane-based gas separation has grown into a US$ 150 million per 

year business and substantial growth in the near future is likely. Several research studies 

(Pereira, 1999; Di Luccio, 1994; Pinnau, 1994) have focused the membrane formation in 

order to control the properties of the resulting membrane and optimize the applications, 

compared to other developing membrane processes such as gas separation and 

pervaporation (Souza et al, 1998). 

 

 
 

 
2.2    Overview of Membrane 

 
 

Membrane is a barrier that can separate the chosen component in liquid or solvent 

only that can pass through when giving pressure to it. Separation of membrane is a 

process that separates the particle by using the medium called membrane. The liquid will 

force to pass through the membrane by giving pressure. In separation membrane 

process, the component that is bigger in a solution will be block. From that, two phases 

will appear where one of them rich of the component or vice versa. (Geankoplis, 1980) 
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Membrane scientists continue to discuss the best way to classify membrane 

processes. As shown in Figure 2.1 feed through the membrane and molecules smaller 

than the cut off weight of the membrane pass through the membrane as permeate. 

Larger molecules, excluded by the membrane pores are retained as retentate 

(Estabrook, 2003). 

 

 

                         

feed 

Membrane 
filter 

concentrate 
(retantate) 

permeate 

permeate
e

               Figure 2.1:  Membrane Separation Process (Baker, 2002) 
 
 
 
 
 
2.3   The Advantages of Membranes Technologies.  
 
 
 The technologies of membrane separation have been developing to be the top of 

process separation. The advantage of membranes separation has been found in certain 

processes such as producing, separation, recovering, and drying (Koros et al, 1998). The 

advantages are: 

 
 

1. The membranes are highly selective and so it has high effectiveness in separation 

process. 
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2. Membrane processes are characterized by low energy consumption, possibility of 

different module design and easy scale up. These advantages make these 

processes superior to many other established separation processes. 

3. The membrane based separation processes are costly effective and 

environmentally friendly. 

4. These polymers not only exhibited better thermal and mechanical properties than 

natural polymers, but also presented a wide range of gas transport and separation 

properties. 

5. Membrane process are able to recover minor but valuable components from a 

main stream without substantial costs.  

6. The separation process of membrane do not used large or complex machine that 

have to more from a part of plant to another part of plant. It only consist some 

instrument that is easy to operate. This process can be continuously. 

 
 
 
 
2.4   Classification of Membranes 
 
 

Referring to figure 2.2, membrane can be classified into two types which is 

symmetrical membrane and asymmetric membrane. 

 
 

 
 

 
Membrane 

Symmetrical
membrane 

Asymmetric 
membrane 

microporous Non-porous,
dense 

Electrically-
Charge 

Thin-Film 
Composite 

Supported 
Liquid 

 
Figure 2.2: Classification of Membrane (Baker, 2002) 
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2.4.1   Symmetrical Membranes 
 
 

Symmetrical membranes have a uniform composition structure throughout, and 

they can be porous or dense. The resistance to mass transfer in these membranes are 

determined by the total membranes thickness. A decrease in membrane thickness result 

in an increased permeation rate (Strathmann, 1980). 

  
 
2.4.1.1 Microporous Membranes 
 
 

The simplest form of microporous membrane is a polymer film with cylindrical 

pores or capillaries. However, more  commonly microporous membranes have a more 

open and   random structure with interconnected pores. They are very similar in structure 

and function to conventional filters. However in  contrast with conventional filters, these 

pores are extremely small (Strathmann, 1980). 

 
 
2.4.1.2 Non-porous, Dense Membranes 

 
 

This type of membranes consists of a dense film through which permeants are 

transported by diffusion under the driving force of a pressure, concentration, or electrical 

potential gradient. The separation of various components of a mixture is related directly 

to their relative transport rates within the membrane, which are determined by their 

diffusivity and solubility in the membrane material. Thus, this type of membranes can 

separate permeants of similar size if their concentration in the membrane material differ 

significantly (Strathmann, 1980). 

 
 
2.4.1.3 Electrically-Charged Membranes 
 
 

These types of membranes are also referred to as ion-exchange membranes. They 

can be dense or microporous, but most commonly are very finely microporous, with the 

pore walls carrying fixed positively or negatively charged ions. Separation is achieved 
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mainly by exclusion of ions of the same charge as the fixed ions on the membrane 

structure, and is affected by the charge and concentration of ions in the solution. This 

type of membranes is used for processing electrolyte solution in electrodialysis. 

 
 
2.4.2 Asymmetric Membranes 

 
 

Asymmetric membranes are used primarily for pressure driven membrane 

processes, such as ultrafiltration and gas separation. Their structure consist of a very thin 

(0.1 to 2.0µm) polymer layer on highly porous 100 to 200µm thick sublayer 

(Strathmann, 1980). This means that this membrane consist two layer; a thin, dense and 

nonporous skin layer that perform the separation, supported by on a finely microporous 

substrate that made from the same material that only provides the mechanical strength 

(Baker, 2002). The sublayer only acts as a support and does not affect the separation 

characteristics or the permeation rate of the membrane in pressure driven processes. To 

obtain high permeation rates, the selective layer of gas separation membranes must be 

extremely thin (Baker, 2002). Since the permeation rate in ultrafiltration or gas 

separation processes is inversely proportional to the thickness of the thin barrier layer, 

asymmetric membranes exhibit much higher permeation rates than symmetric structures 

of comparable thickness. Another advantage of asymmetric membranes is the 

membranes are surface filters retaining all the rejected materials at the surface where 

they can be removed by shear forces applied by the feed solution moving parallel to the 

membrane surface (Costello I.M., 1994). 

 
 

Ideal asymmetric membranes for gas separation should meet the following 

requirement. (Paul and Yampol, 1994) 

 
1.      The selective skin layer should defect free so that gas transport takes places     

exclusively by solution diffusion not by poorly selective flow through process

  

2.      The selective layer should be as thin as possible to maximize the gas fluxes
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3.      The supporting substructure should not contribute any resistant to gas transport 

 

4.      The substructure should provide sufficient mechanical strength to support the 

delicate selective layer in high pressure operation. 

 
 

2.4.2.1 Thin-film Composite Membrane 

 
 

This membrane consist of a thin dense film of highly cross-linked polymer formed 

on the surface of a thicker microporous support. The dense polymer layer is extremely 

thin, on the order of 0.1 mm or less, so membrane permeability is high. Because it is 

highly cross-linked its selectivity is also high. 

 
 
2.4.2.2 Liquid Membranes 
 
 

Liquid membranes have become increasingly significant in the context of 

facilitated transport that utilizes carriers to selectively transport components such as 

metal ions at a relatively high rate across the membrane interface. Generally, formation 

of a thin film is not a problem. Difficulty is encountered, in maintaining and controlling 

this film and properties during a mass separation process (Lin W.H., 1999). 

 
 
 
 

2.5  Applications of Membrane Separation Processes 
 
 

Seven major membrane processes were covered: four developed processes, 

microfiltration (MF), ultrafiltration (UF), reverse osmosis (RO) and electrodialysis (ED) 

and one developing processes, gas separation with polymer membranes (Cussler, 1987). 

 

The first three processes, microfiltration, ultrafiltration, and reverse osmosis are 

related filtration techniques, in which a solution containing dissolved suspended solutes 
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is forced through a membrane filter. The solvent passes through the membrane and the 

solutes are retainted. These processes differ principally in the size of the particles 

separated by the membrane. 

 

Microfiltration is considered to refer to membranes that have pore diameters from 

1000 A. Microfiltration membranes are used to filter suspended particulates, bacteria or 

large colloids from solution. Ultrafiltration refer to membranes having pore diameter in 

the range 20-1000 A. Ultrafiltration membranes can be used to filter dissolved 

macromolecules such as proteins from solution. In the case of reverse osmosis, the 

membrane pores are so small in the range of 5-20 A in diameter that they are within the 

range of the thermal motion of the polymer chains. Reverse osmosis membranes are 

used to separate dissolved microsolutes such as salt from water. The principal 

application of reverse osmosis is the production of drinking water from brackish 

groundwater or the sea (Koros, 1998). 

 

The fourth fully developed membrane process is electrodialysis, in which charged 

membranes are used to separate ions from aqueous solution under the driving force of an 

electrical potential difference. The process utilizes an electrodialysis stack, built on the 

filter-press principle and containing several hundred individual cells formed by a pair of 

anion and cation exchange membranes. The principal application of electrodialysis is the 

desalting of brackish groundwater (Riley, 2001). 

 

Gas separation with membranes is the more mature of the two developing 

technologies. In gas separation, a mixed gas feed at an elevated pressure is passed across 

the surface of a membrane that is selectively permeable to one component of the feed. 

The membrane separation process produces a permeate enriched in the more permeable 

species and a residue enriched in the less permeable species. Current applications are the 

separation of hydrogen from argon, nitrogen and methane in ammonia plants, the 

production of nitrogen from air and the separation of carbon dioxide from methane in 

natural gas operation (Riley, 2001). Table 2.2 shown the detail of membrane separation 

process.
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Table 2.2: Applications of Membrane Separation Process (Baker,2002) 
 
 
Separation 

Process 

Por Size/ Nature 

Of Species 

Retained 

Process 

Driving 

 Force 

Applications 

Microfiltration  0.02-10 µm 10-500 KPa Sterile solution/water purification 

Beverage filtration effluents 

Cell harvesting 

Ultrafiltration 10-200Å 0.1-1 MPa Dairy (whey recovery, precheese 

concentration) 

Electrocoat colloids 

Effluents (oil-water, pulp and paper, 

dye-stuffs, tannery) 

Biological (enzymes, fermentations)

Water purification  

Reverse 

Osmosis 

1-10Å 2-10 MPa Water desalination, ultrapure water, 

dairy industry, effluent treatment 

(metal-finishing, photographic, 

chemical processes), biomedical 

applications, and pharmaceutical 

industries.  

Electrodialysis Cation & anion 

membrane 

Electrical 

potential 

gradient 

Water desalination, acidity 

reduction in citrus juice, 

deionization of whey  

Gas Separation Depend on gas 

size 

1-10 bar  H2 recovery/removal, CO2 removal 

O2 enrichment, helium recovery, 

N2 enriched air, pollution control, 

sour gas treating,  

 

 



 14

2.6    Membranes Formation  
 
 

In the membrane field, the term “phase inversion” is commonly used 

to describe  the phase separation process. Membrane can be prepared by phase inversion 

techniques and can be categorized into four different techniques as shown in Figure 2.3. 

 
 

 

Phase Inversion Techniques 

Thermal 
Precipitation Air casting of 

Dope Solution 
Precipitation 

From The 
Vapour Phase 

Immersion 
Precipitation 

 
 

Figure 2.3: Phase Inversion Techniques (Baker, 2002) 
 
 

In the air casting technique process, the polymer is dissolved in a mixture of a 

volatile solvent and less volatile nonsolvent.  During the evaporation of the solvent, the 

solubility of the polymer decreases and then phase separation take places. In the 

precipitation from the vapor phase process, phase separation of the polymer solution is 

induced by penetration of nonsolvent vapor in the solution. For thermal induced phase 

separation (TIPS) technique, it is based on the phenomenon that the solvent quality 

usually decreases when the temperature is decreased.  After demixing is induced, the 

solvent is removed by extraction, evaporation or freeze drying.  In the immersion 

precipitation case, a polymer is cast as a thin film on a support or extruded through a die, 

and is subsequently immersed in a nonsolvent bath.  Precipitation can occur because of 

the good solvent in the polymer solution is exchanged with nonsolvent in the 

coagulation bath (Fleming, 1998). 



 15

Among these techniques, immersion precipitation is widely used to produce 

commercial gas separation membranes and other membrane based-separation. 

Immersion precipitation technique is divided into three categories: wet phase inversion 

technique, dry phase inversion technique and dry/wet phase inversion technique. 

 
 
2.6.1  Wet Phase Separation 

 
 
The wet phase separation technique is the most common method for preparation 

and production of polymeric membrane. A cast thin layer of a polymer solution is 

immersed in a liquid nonsolvent for polymer that is miscible with polymer solvent. The 

exchange of the solvent from thin layer of polymer solution with a nonsolvent from the 

coagulation bath produces thermodynamic instability in now ternary membrane forming 

system. The thermodynamic instability is resolved by the separation into polymer-rich 

phase forms a solid membrane matrix while the polymer-lean phase leaves a porous 

structure by leaching out the system (Nusa Vogrin et al., 2002). 

 
 

2.6.2  Dry Phase Separation 
  
 

Flat sheet skinned asymmetric membrane are generally made by a casting solution 

consisting of polymer, solvents and non-solvent. If the non-solvent components are less 

volatile to the solvent components, evaporation will ultimately produce a critical non-

solvent concentration that causes the membrane to be transform from a single phase to a 

two phase structure. If the solvents and non-solvents components are removed solely by 

evaporation, membrane formation is defined as a dry phase inversion process (Pinnau, 

1991). 

 
 
2.6.3  Dry / Wet Phase Inversion 
 

 
Asymmetric flat sheet polyethersulfone (PES) membrane can be prepared using a 

simple dry/wet phase inversion method. The flat sheet membrane was prepared by 
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casting a dope solution on a glass plate by using a pneumatically controlled casting 

machine with appropriate shear rate. The asymmetric membrane was then quenched 

immediately and smoothly in an aqueous bath at room temperature and remained there 

for two whole days for solvent-nonsolvent exchange process to occur. After that, the 

membrane was immersed in an alcohol nonsolvent bath for a day and then dried at room 

temperature for another day (Pinnau, 1991). 

 
Comparisons between wet and dry processes are appropriate and can be discussed 

in terms as shown in Figure 2.4. 

 
 

Casting 

Casting Evaporation 

A 

Evaporation Quench 

B 

Casting Evaporation Quench 

C 

 
 
 

(A) dry phase inversion, (B) wet phase inversion, (C) dry/wet phase inversion 
 
 

Figure 2.4: Schematic representation of phase inversion processes (Baker, 2002)  
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2.7   Fundamental of Gas Separation 
 
 
 The separation of gas can be devided into two ways which is through porous gas 

membrane and nonporous gas membrane. 

 

               
 

 
Membrane Gas Separation 

 
Porous Gas Membrane 

 
Nonporous Gas Membrane 

 
      Figure 2.5: Membrane Gas Separation 
 
 

2.7.1 Gas Separation in Porous Membranes  
 
 

The gases are separated because of the molecular size of small pores in the 

membrane. If the pores are relatively large, for example from 0.1 to 10 μm, gases 

permeate the membrane by convective flow, no separation occurs in this case. If the 

membrane pores are extremely small, on the order of 5 Å to 20 Å, then molecular 

sieving separates the gases.  However, transport through this type of membrane is 

complex and includes both diffusion in the gas phase and diffusion of adsorbed species 

on the surface of the pores (surface diffusion). If the pores are smaller than 0.1 μm, then 

the pore diameter is the same size as or smaller than the mean free path of the gas 

molecules.  In this case, diffusion through such pores is governed by Knudsen diffusion 

and the transport rate of any gas is inversely proportional to the square root of its 

molecular weight (Koros, 1998). 
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2.7.2 Gas Separation in Nonporous Membranes  
 
 

Solution-diffusion mode is the simplest description of gas transport in  

the nonporous dense membranes. In solution-diffusion mode, gas molecules from the 

upstream gas phase absorb into the membrane then diffuse across the membrane and 

finally desorbed on the down stream gas phase side. The membrane materials used in 

most separations are glassy polymers which derive their selectivity primarily from their 

ability to separate gases based on subtle differences in penetrant sizes (Wang, 2002). 

 
 
 Table 2.3: Lennard-Jones collision diameter of some gas molecules 
 
 

Gas molecules 
 

Lennard-Jones Collision diameter 
(Å) 

Helium 
Hydrogen 
Carbon Dioxide 
Oxygen 
Nitrogen 
Methane 

2.58 
2.92 
3.30 
3.43 
3.68 
3.82 

 
 
 
 
2.8   Terminology of Gases 
 
 

The terminology of gases can be devided to 3 ways which is Solution-Diffusion, 

Knudson-Diffusion, and Molecular Sieving. 
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Terminology 

of Gases 

Solution-
Diffusion  

Knudsen-
Diffusion 

Molecular 
Sieving 

 
 

Figure 2.6: Terminology of gases 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 2.7: Schematic representation of main mechanism of  
membrane-based gas separation 
 
 
 
 

Solution-Diffusion 
separation is based 
on both solubility 
and mobility factor 
in essentially all 
cases. Diffusivity 
selectivity favor the 
smallest molecule. 
Solubility selectivity 
favors the most 
condensable 
molecule. 

Ultramicroporous 
molecular sieving-
separation is based 
primarily on the 
much higher 
diffusion rates of the 
smallest molecular, 
but sorption level 
differences may be 
important factors for 
similarly sized 
penatrants like O2 & 
N2 

Knudsen flow-
separation is 
based on  the 
inverse square 
root ration of the 
molecular weights 
of A & B. 

Viscous flow 
separation no 
separation 
achieved 

Figure 2.7: Schematic representation of main mechanism of membrane-based gas        

separation (Baker, 2002) 
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 As shown in figure 2.7, gas separation can be performed using membrane based on 

one of three general transport mechanism: which are Knudsen-diffusion, solution-

diffusion and molecular sieving. Solution-diffusion through polymer selective layers is 

used exclusively in current commercial devices and will be discussed in detail in this 

review. Molecular sieving have received attention due to reported higher productivities 

and selectivities than solution-diffusion membrane. Fragility and fouling by 

condensibles have precluded the commercialization of large scale commercially robust 

systems based on either ultramicroporous carbon or glass hollow fiber membrane 

 
 The third type of separation, based on Knudsen diffusion, relief upon pores in the 

barrier layer that are smaller in diameter than the distance a molecule would travel in the 

gas phase between collisions to create a separation. For an equimolar feed, such as 

“Knudsen” diffusion process gives relative permeation rates equal to inverse square root 

of the molecular weights of the gases (W.J Koros and G.K Fleming, 1993) 

 
 
 
 
2.9 Gas Permeation Experiment 
 
 

Pure gas permeation tests were performed at 27◦C and pressures at 1 atm. 

Pressure-normalized fluxes, (P/L)i of nitrogen and oxygen permeating through a 

membrane were determined from bubble flow meter measurements as described by 

Pinnau: 

 
To calculate the permeability we use the equation 2.1  

 
                                
=                    and         Q = V/ t     (2.1) Qi

                             L ⎠⎝
P
⎟
⎞

⎜
⎛

PiAΔ
Where, 

• Q represent of volumetric flow rate of gas at standard temperature and 

pressure (cm3/s) 

• ΔP is the trans membrane pressure difference (cm Hg) 

• A represent the membrane surface area (cm2) 
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To calculate the selectivity we use the equation 2.2 
 
 

   =           (2.2) 
( )

 
 
Where, 

• α A/B is define as the pure gas pressure-normalized permeation rate ratio 

of gas A to gas B. 

 
 

From the above equation, it is evident that the permeance of a membrane depends 

on the thickness of the effective separation layer while the selectivity is independent of 

the dense layer thickness (Chung et al, 1999). 

 
 
 
 
2.10 Current Status of Gas Separation Membranes 
 
 

Membranes offer lower energy cost and viable economics at low volume, 

simplicity of operation, portability, compactness and mechanical reliability. 

Polyethersulfone membrane-based separation, for example have grown to represent 

about one-third of new liquid-nitrogen production capacity for small users. Membrane 

separations are not as competitive for large units or where high purity is required. Most 

of today gas separation membranes are formed into hollow-fiber modules due to their 

low production cost. Currently only eight or nine polymer materials have been used to 

make at least 90% of the total installed gas separation membrane-based systems. 

 

 

 

 

 

∝ B
A*

( )BLP
ALP

/
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 Table 2.4 show the principal gas separation markets, producers and membrane 

systems (Koros, 1991). 

 

Table 2.4: Principal Gas Separation Markets, Producers and Membrane Systems 

Company Markets Membrane Material Used Module Type 

Permea Large gas companies Polysulfone Hollow fiber 

Medal(Air Liquide) Nitrogen separation Polyimide / polyaramide Hollow fiber 

IMS (Praxair) Hydrogen separation Polyimide Hollow fiber 

Grace Membrane 

System (GMS) 

CO2, H2 and natural 

gas separations 

Tetrabromo polycarbonate Spiral wound 

Separex CO2, H2 and methane Cellulose acetate Spiral wound 

Ube Industries CO2 and vapor 

recovery 

Polyimide Hollow fiber 

GKSS Licensees H2 Silicone rubber Plate frame 

Cynara (Natco) CO2 Cellulose acetate Hollow fiber 

Membrane 

Technology and 

Research 

Dehydration Silicone rubber Spiral wound 

 
 
 
 

 
2.11 Factor Affecting Gas Permeation in Membrane 
 
 
2.11.1 Pressure 
 
 

When the dilute solutions pass through the membrane, the fluxes will increase, but  

after the optimum pressure the purity of the fluxes become low because the pressure will 

destroy the membrane structure of the membrane. So the particle that larger than the 

membrane pores also can pass through the membrane.  
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2.11.2 Temperature 
 
 

Flux increases proportionally with temperature due to reduce kinematics viscosity. 

Increased flux leads to an increased rate of fouling. Also temperature increases the 

chemical activity and foulant deformation, which can accelerate foulant layer 

densification, resulting an increased hydraulic resistance. Ultimately, flux in a fouling 

system is reduced at a higher rate from a temperature increase, and may actually 

stabilize at a lower value than would occur at lower temperatures. 

   
 
2.11.3 Flow Rate  

 
 

For every different concentration, when the flow rate of process is increase, the 

diffusion through the membrane will totally increase. Thus, the fluxes will also increase.  

 

2.11.4 Concentration 
 
 

The increasing of solute concentration when operating time it will cause the polar 

increase, thus the effects of fluxes will decrease.  

 
 
 
 
2.12 Effect of Shear Rate 
 
 
 The effect of shear rate molecular orientation has been observed in the separation 

performance of ultrafiltration, reverse osmosis and gas separation membranes. The 

selectivity increased with increasing dope extrusion rate in flat sheet membrane while 

the gas permeation rate reduced. The relative selectivities also increased with shear rate 

increase. Once a certain shear is reached, all permeances increase, while their 

selectivities decrease with an increase in shear rate (Chung et al, 1993). 
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 The molecular orientation in the active layer of PES membranes was in increase in 

molecular orientation in the high sheared membranes which enhance the gas selectivity. 

Membrane forming polymer solutions are typically shear thinning and exhibit 

viscoelastic properties (Ismail et al, 2003). 

 
 Rheological conditions during manufacture would also affect membrane 

performance by altering molecular orientation. According to the result, using polarized 

reflection infrared spectroscopy and gas permeation test, molecular orientation was 

found to be intensified in the high-shear membrane pressure-normalized flux and 

selectivity as well as raising the selectivity if the membrane, some even surpass the 

recornized intrinsic selectivity of the membrane polymer (Shilton et al, 2002). Shear rate 

is calculated by the following equation: 

 
 
Shear Rate = v/g        (2.3) 
 
  and  
  
v = s/t        (2.4) 
 
where,      

• v = velocity of coasting knife 

• g = gap setting 

• s = distance of bubble  

• t = time (constant) 
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