
 

 

 

  

Abstract—The process of designing a set of good DNA 

sequences is an essential problem and one of the most practical 

and important research topics in DNA-based computing and 

the DNA nanotechnology area. In this field of research, a DNA 

sequence design problem is defined as a multi-objective 

problem, and it is evaluated using four objective functions, 

h-measure, similarity, continuity and hairpin. In addition, two 

constraints, GC content and melting temperature (Tm), are 

used to maintain uniform chemical characteristics of the 

sequences. In the authors’ previous research, an ant colony 

system (ACS) was proposed to solve the DNA sequence design 

problem based on nearest neighbour. The Watson-Crick base 

pair ∆Go37 was used as the distance between nodes for the 

thermodynamic parameters in the problem models for the 

heuristic approach in the ACS algorithms. In the current study, 

a non-heuristic approach and four new models using the 

heuristic approach are proposed, and results from the models 

are compared. 

Index Terms—Ant colony optimization, DNA sequence 

design, nearest-neighbour thermodynamic. 

I. INTRODUCTION 

n DNA computing [1], single-strand DNA must hybridise 

correctly to produce a good solution. Otherwise, DNA 

computing fails to generate identical results for the same 

problem and algorithm. Additionally, DNA molecules could 

be wasted if they are used in an undesirable reaction. 

Usually, in DNA computing, the calculation process consists 

of several chemical reactions, where the successful lab 

experiment depends on DNA sequences that have been used. 

Thus, DNA sequence design is an approach for achieving 

high computation accuracy and is one of the most practical 

and important research topics in DNA computing. 

 In the authors’ previous research [2], an ant colony system 

(ACS) was proposed to solve the DNA sequence design 
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problem based on nearest neighbour thermodynamic 

parameters using the Watson-Crick base pair ∆Go37 as the 

distance between nodes in the problem model for a heuristic 

approach in the ACS algorithm. In this study, a non-heuristic 

approach and four new models with heuristic approaches are 

proposed, and results from the models are compared.  

II. DNA SEQUENCE DESIGN 

In this study, the objective functions and constraints, 

which have been employed by Shin et al. [3], are chosen, but 

the formulations have been modified for h-measure and 

similarity based on Garzon’s formulation [4]. Two objective 

functions, h-measure and similarity, are chosen to estimate 

the uniqueness of each DNA sequence. The function 

H-measure checks the possibility of unintended DNA base 

pairing based on the hamming distance [4], and similarity is 

defined as an inverse hamming distance between two given 

DNA sequences [3]. Two additional objective functions, 

hairpin and continuity, are used to prevent the formation of a 

secondary structure of the DNA sequence. Two constraints, 

GC-content and melting temperature (Tm), are used to 

maintain uniform chemical characteristics of the sequences. 

DNA sequence design is a multi-objective optimisation 

problem. There are several ways to solve a multi-objective 

problem, such as the value function method, the weighted 

sum method, and evolutionary algorithms. In this study, a 

common method is used, the weighted sum method, to 

convert the problem into a single-objective problem, which 

can be formulated as follows: 

                        
∑=
i

iiDNA ff ωmin                             (1) 

as subjected to Tm and GC-content constraints, where fDNA is 

the objective function for each i {h-measure, similarity, 

hairpin, continuity}, and ωi is the weight for each fi. In this 

problem, ω is typically set by the decision maker such that   

and ω>0. If all the weights are committed or set to 1, then all 

objectives are treated equally. 

The basic notations are defined as shown in Table 1. The 

following notations are used:  
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For a given sequence x∈ Λ
∗

, the number of non-blank 

nucleotides is defined as follows: 
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and a shift of sequence x by i bases is denoted as follows: 
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A. h-measure 

The h-measure computes how many nucleotides are 

complementary to prevent cross-hybridisation of two 

sequences including position shift. The fitness function is as 

follows: 

1

( ) ( , )
n

h measure i i j
j
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=

= −∑ ∑ ∑ ∑
           (8) 

where Σi and Σj are anti-parallel to each other. Anti-parallel 

means the sequences have different directions. The first 

sequence has a 5 3  direction, and the second sequence 

has a 3 5  direction. h-measure(x,y) is also divided into 

two terms. One term is for the overall complementary, and 

the other is the penalty term for the continuous 

complementary region. 
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hdis is a real value between 0 and 1, and hcon is an integer 

between 1 and l. Both values are set by the user [3].  

B. Similarity 

The similarity measure, fSimilarity(x,y), computes the 

similarity in the same direction of two given sequences to 

keep each sequence as unique as possible including position 

shift [4]. Similarity uses a fitness function as follows:  
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where Σi and Σj are parallel to each other. Similarity(x, y) is 

also divided into two terms. One term is for the overall 

complementary and the other is the penalty term for the 

continuous complementary region. 
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sdis is a real value between 0 and 1, and scon is an integer 

between 1 and l. Both values are set by the user. 

C. Hairpin 

The hairpin measure calculates the probability of forming 

a secondary structure. Hairpin uses a fitness function as 

follows: 

1

( ) ( )
n

hairpin i
i

f hairpin
=

=∑ ∑ ∑
                (20) 

 

TABLE I 

BASIC DEFINITIONS 

Notation Description 

 {A,C,G, T,−} 

 {A,C,G, T}
 

  and  

a, b  
a, b = {A, C,G, T, − } (with blank) 

X, y  
x, y = {A, C,G, T} and {A, C, G, T, − } 

|x| length of x 

xi (1  i  |x|) ith nucleotide from 5’-end of sequence x 

Σ A set of n sequences with the same length l 

Σi 
ith member of Σ 

ā 
complementary base of a 
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where 

),min(),,( pirlipirppinlen −−−+=           (22) 

D. Continuity 

If the same bases occur continuously in a sequence, the 

sequence might exhibit unexpected structures. 
)(xfContinuity  

calculates the degree of successive occurrence of the same 

bases [4]. Continuity for a set of sequences Σ is defined as 

follows: 
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E. GC content 

GC content is the percentage of G and C in a sequence. 

For example, the 12-mer DNA sequence 

5’-ATGGTTGCATGC-3’ has four Gs and two Cs. Thus, by 

using Eq. 26, the GC content for this DNA sequence is 50%. 

 

GCcontent (yG zC) / (wA xT yG zC)= + + + +    (26) 

F. Melting temperature 

Melting temperature is one of the most important features 

for a laboratory experiment. It is defined as the temperature 

where half of the double-stranded DNA starts to break into 

its single-stranded form. The nearest-neighbour formulation 

for melting temperature is defined as follows: 

)log(6.16
ln
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∆
= Na

CRS

H
xT

T

m

            (27) 

where ∆H and ∆S are enthalpy and entropy changes of the 

annealing reaction. R denotes the universal gas constant 

(Boltzmann’s constant) and CT is the total oligonucleotide 

strand concentration. For non-self-complementary 

molecules, CT is replaced by CT/4. Na
+
 is the salt 

concentration for salt adjustment. 

III. ANT COLONY SYSTEM (ACS) 

Ant colony optimisation (ACO) is a population-based 

metaheuristic for combinatorial optimisation problems. ACO 

is inspired by the ability of ants to find the shortest path 

between their nest and a source of food. Marco Dorigo first 

introduced ACO in his PhD thesis [5] and applied it to the 

travelling salesman problem (TSP). Since then, ACO has 

been applied to the quadratic assignment problem [6], the 

vehicle routing problem [7], bin packing, stock cutting [8], 

and RNA secondary structure prediction [9]. 

The ant colony system (ACS) is an improved ant system 

(AS) [10] in three main aspects: the state transition rule, the 

global updating rule, and the local pheromone updating rule. 

 

1. State transition rule 

In ACS, the state transition rule is the following. An ant 

that is positioned at node r chooses the city s to move to by 

applying the rule given by Eq. 28 as follows: 

[ ][ ]{ }
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qqifurur
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o
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      (28) 

where q is a random number uniformly distributed in [0 .. 1], 

q0 is a parameter (0 q0 1), S is a random variable selected 

according to a probability distribution, τ (r,u) is the 

pheromone intensity and η(r,u) is heuristic information. 

 

2. Global updating rule 

In ACS, only the globally best ant is allowed to deposit 

pheromone.  Global updating is performed after all ants have  

TABLE II 

∆H AND ∆S VALUES OF FOUR NEAREST-NEIGHBOUR PARAMETERS FOR THE HEURISTIC MODEL 

 

Pair 
Breslauer SantaLucia Unified Sugimoto 

∆Hx ∆Sx ∆Hx ∆Sx ∆Hx ∆Sx ∆Hx ∆Sx 

AA/TT -9.1 -24.0 -8.4 -23.6 -7.9 -22.2 -8.0 -21.9 

AG/CT -7.8 -20.8 -6.1 -16.1 -7.8 -21.0 -6.6 -16.4 

AT/AT -8.6 -23.9 -6.5 -18.8 -7.2 -20.4 -5.6 -15.2 

AC/GT -6.5 -17.3 -8.6 -23.0 -8.4 -22.4 -9.4 -25.5 

GA/TC -5.6 -13.5 -7.7 -20.3 -8.2 -22.2 -8.8 -23.5 

GG/CC -11.0 -26.6 -6.7 -15.6 -8.0 -19.9 -10.9 -28.4 

GC/GC -11.1 -26.7 -11.1 -28.4 -9.8 -24.4 -10.5 -26.4 

TA/TA -6.0 -16.9 -6.3 -18.5 -7.2 -21.3 -6.6 -18.4 

TG/CA -5.8 -12.9 -7.4 -19.3 -8.5 -22.7 -8.2 -21.0 

CG/CG -11.9 -27.8 -10.1 -25.5 -10.6 -27.2 -11.8 -29.0 
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Fig. 1. ACS modelling for DNA sequence design problem with the 

thermodynamic values. 

 

completed their tours. The pheromone level is updated by 

applying the global updating rule of Eqs. (29-30) as follows: 

 

),(.),().1(),( srsrsr τατατ ∆+−←              (29) 
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where 0<α<1 is the pheromone decay parameter for global 

updating, and Lgb is the length of the globally best tour from 

the beginning of the trial.  

 

3. Local updating rule 

While building a solution (i.e., a tour), ants visit edges and 

change their pheromone level by applying the local updating 

rule of Eq. (31) as follows: 

 

),(.),().1(),( srsrsr τρτρτ ∆+−←            (31) 

 

where 0<ρ<1 is the pheromone decay parameter for local 

updating. 

IV. ANT COLONY SYSTEM FOR DNA SEQUENCE DESIGN 

Since ACS algorithms are normally applied to path 

finding problems, a model similar to a finite state machine, 

which has four nodes, is presented to solve the DNA 

sequence design problem. In this model, the nodes represent 

A, C, G, and T of the DNA bases. Every node is connected 

to every other node, including itself. 

 

 

In this study, two types of models are proposed: an 

approach without heuristic [11] and an approach with 

heuristic [2]. For the model using the heuristic approach, 

four nearest neighbour thermodynamic parameters are used: 

Breslauer [12], SantaLucia [13], Unified [14], and Sugimoto 

[15], as shown in Table 2. Figure 1 illustrates how these 

values are used as distances in the model using a heuristic 

approach in the ACS algorithm. 

At first, every ant is placed randomly at any node. Next, 

every ant moves from one node to the other nodes to 

construct the DNA sequence. During the tour, the ant 

chooses the next node by applying the state transition rule, 

as formulated in Eq. (28). 

Because the required solution is a set of DNA sequences, 

a mechanism is needed to store the DNA sequence in an 

archive to be analysed. The archive storing process is started 

with the calculation of all objective functions for each DNA 

sequence. Next, the total values are sorted by ascending 

order, and the DNA sequences are placed in the archive, 

starting with the smallest value of the total objective and 

only if the range of GC content and melting temperature 

constraints are satisfied. The storing archive process 

continues until the number of DNA sequences in the archive 

is equal to number of ants, n. 

Next, in the archive updating process, the DNA sequences 

in the archive are sorted in descending order based on the 

total objective values. The N-first worst DNA sequences will 

be selected and removed. Those DNA sequences will be 

replaced by N-new DNA sequences. Figure 2 shows the 

pseudo-code for the ACS algorithm. 

 
 

 
 

 

 

 

 TABLE III 

DNA SEQUENCE PARAMETERS 

 

Parameter Value 

h-measure 
hcon 

hdis 

6 

0.17 

similarity 
scon 

sdis 

6 

0.17 

continuity threshold  t 2 

hairpin 
Rmin 6 

Pmin 6 

GC content 
Min 0 

Max 100 

Tm 
Min 0oC 

Max 150°C 

Na+ 1 Moll 

 

TABLE IV 

ANT COLONY SYSTEM PARAMETERS 

 

Parameter Value 

Β 2 

ζ 0.1 

ρ 0.1 

q0 0.9 

N-remove/new 1 

Number of sequences 7 (no. of ants-nk) 

Length of DNA sequence 20 (no. of tours) 

Maximum number of iteration (tmax) 100 
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TABLE V 

COMPARISON AMONG THE BEST RESULTS FROM EACH OF THE PROPOSED APPROACHES 

 

Approaches h-measure similarity Continuity Hairpin Total 

without Heuristic  54.00 43.71 0.00 0.00 97.71 

with Breslauer ∆H  39.86 54.29 0.00 0.00 94.14 

with Breslauer ∆S  42.86 52.57 0.00 0.00 95.43 

with SantaLucia ∆H 54.57 44.00 0.00 0.00 98.57 

with SantaLucia ∆S 46.86 49.71 0.00 0.00 96.57 

with Unified ∆H 55.29 44.86 0.00 0.00 100.14 

with Unified ∆S 49.57 45.71 0.00 1.86 97.14 

with Sugimoto ∆H 51.71 43.71 0.00 3.00 98.43 

with Sugimoto ∆S 53.14 41.71 0.00 1.86 96.71 

 

V. RESULTS AND DISCUSSION 

The experiments consist of nine different cases. The first 

one involved a computational model without heuristic 

values. The rest involved computational model with 

heuristic values (∆H or ∆S), which are taken from Breslauer, 

SantaLucia, Unified, and Sugimoto nearest-neighbor 

thermodynamic parameters. The experiments were 

conducted for 100 runs, and the experimental results were 

collected for further analysis. The parameters for the 

calculation of objectives and constraints are shown in Table 

3 and the parameters for the ACS are shown in Table 4. In 

this experiment, the value of weight for each fitness is equal 

to one and the length of each sequence is fixed to 20 

nucleobases.  

The comparison among the best results obtained from 

each of the proposed approaches is shown in Table 5. It was 

found that the ∆H and ∆S of Breslauer gives the best results. 

The ∆S of SantaLucia and the ∆S of Unified show better 

results than without the heuristic, but the ∆H of SantaLucia 

and the ∆H of Unified show the worst results.  

VI. CONCLUSIONS 

This research presents an implementation of the ant 

colony system in a DNA sequence design problem using two 

models, an approach without a heuristic and an approach 

with a heuristic. For the modelling approach with the 

heuristic, four nearest neighbour thermodynamic parameters 

are used, which are Breslauer, SantaLucia, Unified, and 

Sugimoto. The ACS algorithm is implemented with four 

objectives, H-measure, similarity, continuity, and hairpin, 

and subjected to two constraints, GC content and Tm. In 

summary, the Breslauer nearest-neighbor thermodynamic 

parameter is the most suitable values in DNA sequence 

design application. 
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""""""""""""12$%+="+<"KLM"*,F3,%2,*"&%"(.25&R,"(.,",F3()"S&'5"'5,"%3/A,."+<"(%'*"7<3))8"34&'"

$$$$$$$$$$$$$$$$$$1()23)(',"())"KLM"*,F3,%2,*"&%"(.25&R,"A(*,*"+%"<+3."+AT,2'&R,"<3%2'&+%*"(%J"'5,%"*+.'"&%"J,*2,%J&%P"+.J,.4"

!!"###"*#<&.*'7*8"KLM"*,F3,%2,*"&%"(.25&R,"

""""""""""""""""""2#KLM"*,F3,%2,*"S5&25"5(R,"5&P5,."R()3,"&%"(.25&R,"&*".,/+R,J4"""""""""""""""""

""""""""""""5'%12$

!!"###"B'+.&%P"'5,"(.25&R,"-.+2,**"

$$$$$$$$$$$$1()23)(',"())"KLM"*,F3,%2,*"A(*,*"+%"<+3."+AT,2'&R,"<3%2'&+%*"(%J"'5,%"*+.'"&%"(*2,%J&%P"+.J,.4"

""""""""""""!"#",(25"KLM"*,F3,%2,"%""

""""""""""""""""""15,26,J"<+."=>68("3(""(%J"?2"2+%*'.(&%'*4""

""""""""""""""""""12$-(**,J"(%J"(.25&R,"&*"%+'"<3))"34&'"*'+.,J"KLM"*,F3,%2,"'+"(.25&R,4"

$$$$$$$$$$$$/&0+$

!!"###"U)+A()":5,.+/+%,"O-J('&%P$<+."'5,"A,*'"KLM"*,F3,%2,"-.+J32,J"AI"(%'*4"

""""""""""""M"1+)3#+%-.$&)/)'$%*-0#"('1%&*+$"7EF="GV8"&*"(--)&,J4"""

$$$$$$,'+-.$%3/A,."+<"KLM"*,F3,%2,*"&%"(.25&R,"(.,",F3()"S&'5"'5,"%3/A,."+<"(%'*4"

%%%%%%""9"""W"?4"

,'+-."E%JX1+%J&'&+%"!!"###"7/(Y&/3/"%+="+<"&',.('&+%"&*".,(25,J8"

 

Figure 2 : ACS algorithms for DNA sequence design problem 

 

International Conference of Modelling Identification and Control- Cairo, Egypt -ICMIC 2013

291


