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Abstract— This paper investigates the impact of intermittent 

measurement to the Simultaneous Localization and Mapping 

(SLAM) of a mobile robot. Intermittent measurement is a 

condition when the mobile robot lost its measurement data 

during observations due to sensor failure or imperfection of the 

system. SLAM is an estimation process that requires 

measurement data recursively for data update. The analysis 

focused on the effect of intermittent measurement on the position 

estimation and state error covariance during intermittent and 

after intermittent occurred. From the analysis, it can be 

concluded that intermittent measurement may lead to incorrect 

estimation of robot pose and its error covariance. 
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I. INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) is the 
process of building a map of an environment while 
consequently generating an estimate for the location of the 
robot. SLAM provides a mobile robot with the fundamental 
ability to localize itself and the features (landmarks) in the 
environment without a prior map. The setting for the SLAM in 
2D is that a mobile robot moves in an environment consisting 
of a population of landmarks. The mobile robot is equipped 
with the proprioceptive sensors that can measure its own 
motions and exteroceptive sensors which is responsible for 
measurements of the relative location between robot and any 
nearby landmarks. The objective of the SLAM problem is to 
estimate the position and orientation of the robot (robot pose) 
together with the locations of all the landmarks [1]. 

SLAM was first mathematically formulated as an 
estimation problem to understand the relationship between 
mobile robot and landmarks. All landmark positions and the 
robot pose were presented in a common state vector and a 
complete covariance matrix. A statistical basis for describing 
relationships between landmarks and manipulating geometric 
uncertainty was established prior to that, showing that there 
must be a high degree of correlation between estimates of the 
location of different landmarks and these correlations would 

grow with successive observations [1][2]. The correlations 
were crucial to achieve an efficient estimation. The more these 
correlations grow, the better the solution [3]. Stochastic 
estimation techniques such as the Kalman Filter (KF) [4], 
Particle Filter [5], H∞ Filter [6] or Information Filter (IF) [7] 
have been used to solve the SLAM problem. Kalman filter is 
the most used method due to the simplicity of algorithm and 
lower computational cost compared to other filters [8]. 

In this paper, we have studied the KF-based SLAM 
behaviour under intermittent measurement. Intermittent 
measurement is a condition when the mobile robot lost its 
measurement data during observations due to sensor failure or 
imperfection of the system. The research of intermittent 
measurement have been focused mainly for network system [9] 
[10] and there has been very limited studies on mobile robot 
application [11]. 

The paper is structured as follows. Section II presents the 
model of the system and the Kalman filter based algorithm to 
the SLAM problem. Section III shows the analysis of KF-based 
SLAM during and after intermittent measurement occurred. 
Numerical analysis through calculation of a case study is 
presented under this section to prove the findings. Finally 
section IV concludes the study. 

II. KALMAN FILTER BASED SLAM 

A. SLAM Model 

SLAM is represented through a discrete time dynamical 
system equation using process and observation model. The 
process model describes the motion of the robot while the 
observation model defines the measurement of the map 
features or landmarks with respect to the mobile robot position. 
Fig. 1 shows the setup of the SLAM that is represented by 
these models. 

For a linear system, the process model of SLAM from time 
k to time k + 1 is described as 
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Fig. 1: SLAM Model 

 

where  

 Xk  state of  the mobile robot and landmarks 

 Fk state transition matrix 

 Bk control matrix 

 uk control inputs 

 Gk noise covariance matrix 

 wk zero-mean Gaussian process noise,  
               wk ~ N (0, Q). 

The state vector m

k
X 23  is defined by 
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yxyxX   where xk and yk are the coordinates of 

the centre of the mobile robot with respect to global coordinate 
frame and θk is the heading angle of the mobile robot. The 
landmarks are model as point landmarks and represented by 
Cartesian coordinate (xi , yi), i = 1, 2,…, m. The mobile robot 
process model considered in this study can be defined as 
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with control inputs ωk  is mobile robot angular acceleration and 
υk is its velocity with associated process noises, δω and δυ. T is 
the sampling rate or the time interval of one movement step. 
The process model for the landmarks is unchanged with zero 
noise as landmarks are assumed to be stationary. 

 At time k + 1, the observation of i-th landmark is range ri 
and bearing φi, indicates relative distance and angle from 
mobile robot to any observed landmarks 
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where 
ir

v and 
i

v


are the noises on the measurements. The 

observation model can be written in a general form as 
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where Hk  is the measurement matrix and 
iir

v
 

is the zero-mean 

Gaussian noise with covariance matrix R. 

B. Algorithm 

The Kalman filter is used to provide estimates of mobile 
robot pose and landmark location. Kalman filter recursively 
computes estimates for a state Xk according to the process and 
observation model in (1) and (4) respectively. The stages of 
Kalman filter algorithm are as follows: 

 Prediction (time update) to estimate priori estimation 
of state and its error covariance: 
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 Update (measurement update) to provide a correction 
based on the measurement zk to yield a posteriori state 
estimate and its error covariance: 
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III. ANALYSIS FOR INTERMITTENT MEASUREMENT 

This paper attempts to prove that if there are some missing 
measurements data during robot observation, the estimations of 
mobile robot pose and landmarks locations are not correct and 
the covariance of the estimation is increased. The analysis was 
conducted during the intermittent measurement occurred at 
time k = a and one step after intermittent measurement at time 
k = a + 1. The impact on the state estimation and covariance 
matrix are observed. 

A. During Intermittent Measurement, k = a 

Definition 1: Measurement data lost is defined whenever 
measurement data is not successfully retrieved after one sample 
time and occurred randomly in mobile robot observations [12]. 

 The above definition describes that if a measurement is 

unavailable at time k, then the measurement matrix  0
k

H , 

where  0  denotes a zero matrix. We now demonstrate how 

Kalman filter behaves if this is partially happened during 
mobile robot observation. If the measurement data is not 



available intermittently at 1 < k < ∞ time, the state estimation 
during intermittent is equal to the priori state estimation during 
time update. Since there is no data from the observation, 
Kalman filter is unable to correct the estimation. From (7) and 
(8) 
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 Similar effect can be seen with covariance matrix Pk. 
During intermittent measurement, posteriori covariance matrix 
is similar to priori covariance and possesses high value than it 
should be due to the existence of process noise. Suppose in 
measurement update, the covariance is corrected through 
Kalman gain, but this cannot be done due to unavailability of 
measurement data. 
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Let Hi be a measurement matrix during intermittent 
measurement and Hn is a measurement matrix under normal 
condition, in which the measurement data is consistently 
available. Subscript i and n denote a parameter during 
intermittent measurement and under normal condition 
respectively. During intermittent measurement, it can be seen 

that 
ni

HH  thus from (4) 
ni

zz   which indicates that 
in

    

and 
in

rr   . This proves that the actual pose of mobile robot 

differs from than the estimated pose, in which the angle and 
relative distance between mobile robot and landmarks are 
actually larger than the estimated under intermittent condition. 
Mobile robot has made wrong estimation of its position. This 
scenario is presented in Fig. 2. 

 

 

Fig. 2: Robot position during intermittent measurement 

Fig. 2 shows that at time k = a + 1, mobile robot misinterpreted 

its position indicates by 
i

r
2

 which is smaller than the position 

(range) under normal position 
n

r
2

. The covariance that 

represents uncertainties of the prediction also differs, which in 
this case become larger. 

B. After Intermittent Measurement, k = a + 1 

Measurement data is available at k = a + 1. Kalman filter is 
able to update the priori state through the correction using 
Kalman gain Kk (7). In comparison with the normal condition, 
in which the measurement is available at k = a, following 
results are obtained: 

i. The state estimation shows an improvement, but still 
differs from the state estimation under normal 
condition. 

ii. The state covariance increases indicates that the 
estimation is slightly uncertain, due to previous 
erroneous estimation. 

This can be concluded that, at one step right after the 
measurement data was missing, the estimation of mobile robot 
pose is still not reliable. Kalman filter required more 
measurements data and updates from next observations to 
ensure a better estimation. 

C. Numerical Analysis 

A case study of intermittent measurement is presented to 
support the previous analysis. A simple plant is chosen to 
indicate the effect of intermittent measurement to the state 
estimation and covariance matrix. Consider the time discrete 
dynamical system: 
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The measurement data for k = 1, 2 and 3 are z1 = 9, z2 = 19.5 

and z3 = 29 [13]. 



Under normal condition, where all measurements data are 

available, using (5) – (9) following results are obtained: 

Table 1: Value of priori and posteriori estimation under normal condition 

Value 
of 

k = 0 k = 1 k = 2 k = 3 


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
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
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If the measurement data are not available at k = 2, priori and 

posteriori estimations of state and covariance are as follows: 

Table 2 : Priori and posteriori estimation with intermittent measurement 

Value 
of 

k = 0 k = 1 k = 2 k = 3 



k
X  – 









10
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Numerical results prove that, during intermittent measurement 
(at k = 2) the estimation of state and covariance are equal to 
the priori estimates. One step after intermittent occurred, the 
covariance of estimation increases, from 1.5 to 1.8. The 
increment indicates the raise of uncertainties, therefore leads 
to the wrong estimation. 

IV. SIMULATION RESULTS 

The case study was simulated using MATLAB to validate the 
analysis. Fig. 3 shows the estimation of the first element of the 
state, X11 before, during and after intermittent occurred. 
Simulation has proven that the state estimation during  

 

      Fig. 3: State estimation under normal and intermittent conditions 

 

     Fig. 4: Posterior covariance matrix for both conditions 

 

intermittent condition was slightly lower than that under 
normal condition. Under this condition, mobile robot 
misinterprets its current position as illustrated in Fig. 2. This 
lead to the increment of covariance matrix as shown in Fig. 4, 
in which indicates the rise of the uncertainties in the 
estimation. The simulation has proven the results obtained 
from the analysis. 

V. CONCLUSION 

This paper presented the analysis of Kalman filter-based 
SLAM during the instant that measurements data may be 
randomly unavailable. It has been shown that although the 
measurements data is not available intermittently during 
mobile robot observation, the estimation is still possible, but 
possesses erroneous result. The analysis proved that the 
measurement matrix Hk highly affects the performance of KF 
based SLAM during intermittent measurement. As future 
works we are planning to investigate the effect of intermittent 
measurement on the correlation between mobile robot and 
landmarks. 
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