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OPTIMIZATION AND CHARACTERIZATION OF GLYCOLYSIS OF 

WASTE POLYETHYLENE TEREPHTHALATE (PET) WITH 

POLYETHYLENE GLYCOL (PEG) 

 

ABSTRACT 

 

 

Chemical recycling of poly (ethylene) terephthalate (PET) has been the subject of 

increased interest as a valuable feedstock for different chemical processes. In this 

research, the glycolysis of PET will be studied using excess Polyethylene Glycol 

(PEG) as depolymerization agent assisted by magnesium acetate as catalyst. The 

influence of several operating conditions covering temperature (165–215 ◦C), 

reaction time (0–4 h), and catalyst concentration and PEG to PET weight ratio was 

analyzed. The purified monomer was characterized by Differential Scanning 

Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Fourier Transform 

Infrared Spectroscopy (FTIR).Response surface methodology (RSM) software was 

used to predict the optimal condition of glycolysis process. The optimal condition of 

glycolysis time, temperature, amount of catalyst and amount of PEG were 205◦C, 

2.49hr, 0.12g (2.4wt% of PET used) and 36.87g of PEG respectively. Where using 

this optimized condition the yield of the process can be reached up to 96.3%. 

 

 

 

 

 

 

 

 



 

 

xv 

 

PENGOPTIMUMAN DAN PENCIRIAN PROSES “GLYCOLYSIS” 

(PENGITARAN SEMULA) “POLYETHYLENE TEREPHTHALATE (PET)” 

DENGAN POLIETILENA GLIKOL (PEG) 

 

ABSTRAK 

 

 

Mengitar semula bahan plastics (PET) telah menjadi subjek utama pada mas kini, 

dimana bahan yang dikitar semula boleh dijadikan sebagai bahan mentah berharga 

untuk pemprocessan  yang berbeza. Dalam kajian ini, glikolisis PET akan dikaji 

menggunakan “Polyethylene Glycol” (PEG) sebagai ejen penyahpolimeran dibantu 

oleh “magnesium acetate” sebagai pemangkin. Pengaruh parameter  yang meliputi 

suhu (165-215 ◦ C), masa reaksi (0-4 h), dan  kepekatan pemangkin dan nisbah PEG 

yang digunakan telahpun telah dianalisis. Bahan glikolisis yang diperolehi telah 

dicirikan dengan mengunakan, “Differential Scanning Calorimetry” (DSC), 

“Thermogravimetric Analysis” (TGA), dan “Fourier Transform Infrared 

Spectroscopy” (FTIR). “Response Surface Methodology” (RSM) perisian telah 

digunakan untuk meramal keadaan optimum proses glikolisis. Dimana keadaan 

optimum glikolisis masa, suhu, jumlah pemangkin dan jumlah PEG adalah 205 ◦ C, 

2.49hr, 0.12g (2.4wt% PET yang digunakan) dan 36.87g PEG masing-masing. Jika 

menggunakan keadaan ini hasil proses boleh mencecah sehingga kepada 96.3%.
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

1.1 BACKGROUND OF THE STUDY 
 

Polyethylene terephthalate is a polyester material that is most often used to make 

fibers, containers for food and beverages, pharmaceuticals and make-up. 

Polyethylene terephthalate is often referred as PET or PETE and was previously 

called PETP or PET-P.  

PET is a linear thermoplastic resin that is formed by the condensation of 

terephthalic acid and ethylene glycol. Because of its low cost (Thompson et al., 

2009), excellent tensile strength, chemical resistance, clarity, processability, and 

reasonable thermal stability (Caldicott, 1999) the usage of PET is wide spread. The 

demand of PET is summarised in the Table 1.1 (Scheirs & Kaminsky, 2006). PET is 

suitable material for packaging of soft drinks, bakery products, frozen foods, 

cosmetics and household cleaner and many other products. Customers choose PET 

because it is inexpensive, resealable, shatter-resistant and recyclable (Carraher, 2000; 

ILSI Europe, 2000; Olabisi, 1997). Adding to that its excellent barrier characteristics 

to oxygen and carbon dioxide, it shows spurt growth in the soft drink industries. 
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Moreover PET’s high toughness/weight property ratio make an added advantage 

over other other types of container materials (Welle, 2011).  

The total global consumption has risen from 11.8 million metric tons in1997 

(Paszun & Spychaj, 1997) to 23.6 million in 2005 (Pohler, 2005, as cited in 

Karayannidis& Achilias, 2007) and 54 million in 2010 (IHS, 2011). It is expected to 

grow by 4.5% per year from 2010 to 2015. In Europe and America, region the major 

cause of the demand and usage is the soft drink sector. While in Asia the usage is 

increased because of the fibre production. Recently the production trend of fibers has 

shifted from developed countries to developing countries (Pohler, 2005). 

Table 1.1 The global demand and future prediction of PET by application. (Unit in thousand 

tons) 

 1990 1995 2000 2005 2010 

      

Fiber 8900 11700 18800 24200 33300 

PET resin (for bottles) 1100 3100 7100 11900 18900 

Film 1000 1100 1400 1400 1700 

Others 700 800 1100 1900 2200 

      

Total 11700 16700 28400 39400 56100 

      

 

Since, the PET creates no harm to livings of earth and does not have adverse 

effect on the environment, large scale production cannot be avoided. But large scale 

of continual production implies dramatic effect in term of treatment of PET waste. 

With the increase in the amount of PET wastes, its disposal began to pose serious 

economical and environmental problems. 

An important note that should be taken into account that out of 80 billion 

plastics bottles manufactured per year 85% is not recycled (The Container Recycling 

Institute). Most of the plastics bottles make their way to ocean or discarded in 
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landfill. And it is a important fact that the PET is completely non-biodegradable. In 

the year 2000, the global PET production capacity exceeded 33 million metric tons 

per year (Rieckmann, 2003). According to Greenpeace, 1.7 tons of CO2 emissions 

are prevented for each ton of PET plastics recycled,  

By considering, emerge societies awareness towards environmental safety 

issues, recycling becomes more preferable means of treatment of PET waste. Along 

with the added advantage in terms of energy conservation, recycling of PET is 

conducted in wide-scale (Nir et al., 1993).The recycling of PET does not only serve 

as a partial solution to the solid waste problem but also contributes to the 

conservation of raw petrochemical products and energy. It is estimated that every 

1kg of production of PET requires 2kg of oil burning and raw material. 

Consequently burning of 1 kg oil for energy emits 3kg of carbon dioxide. Simply, 

per kg of plastic, about 6 kg carbon dioxide is created during production and 

incineration.  

Present researches proven that, recently the PET bottles recycled at very low 

rate causing billion of bottles must be manufactured from fossil fuels itself to replace 

that were not recycled. Another problem rises here, where the trees are needed for 

making charcoal. So the production of new PET bottles without recycling will 

promotes carbon dioxide emission to the atmosphere (Paszun & Spychaj, 1997).  

Nevertheless, recycled products can results in 50-60% capital saving (Sinha et al., 

2008).  

Focussing on the recycling process, currently the PET is recycled by various 

techniques. Primary recycling also known as in-plant process, where uncontaminated 

PET scrap undergoes re-extrusion process. (Al-Salem, 2009; Al-Salem et al., 2009). 

Second is the Secondary recycling, where the Pet scraps undergo separation and 

processing into granules by mechanical means. One major disadvantage is that the 

processing involves extrusion by means of heat and heat, which will cause 

deterioration the properties each time it is recycled (Aguado & Serrano, 1999). 

Quaternary recycling is the thermal treatment of waste PET by incineration for the 

thermal recovery. The tertiary recycling involves chemical recycling where PET 

polymer breakdown into its respective monomer, oligomer and dimer. Chemical 
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understanding and development of mathematical model through RSM, may aid the 

glycolysis process become more profitable in term of economic value and 

environmental concern.  

 

1.3  RESEARCH OBJECTIVE 
 

The objectives in this present research are:  

RO1. Identify the optimal process parameter for glycolysis of PET waste.  

RO2. To characterize the end product of glycolysis process.  

RO3. Investigate effect Polyethylene Glycol as depolymerising agent.  

 

1.4  SCOPE OF RESEARCH 
 

Survey shows very limited or almost no work on optimization of Glycolysis of PET 

waste using RSM. Adding to that almost all researches proposed the usage of 

Ethylene Glycol(EG), Diethylene Glycol(DEG) and mixture of DEG and EG as 

depolymerising agent and non of the research conducted detailed research on using 

Polyethylene Glycol (PEG) as depolymerising agent. Through this study, parameter-

setting or optimization will be performed using Polyethylene Glycol (PEG) as 

depolymerising agent.In brief the scope of the study is stated as below;  

1. Influence of reaction time on glycolysis yield.  

2. Influence of reaction temperature on glycolysis yield.  

3. Influence of catalyst concentration on glycolysis yield.  
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4. Influence of ratio of Polyethylene Glycol (PEG) to Poly (ethylene) 

Terephthalate (PET). 

 

1.5  RATIONALE AND SIGNIFICANCE 
 

This research is able to provide information about the possibility of PEG to be used 

in PET glycolysis process. Hence, by optimizing multiple responses/parameters that 

present the complexity of PET glycolysis can be resolved providing product with 

desirable quality and quantity. The novelty of the research is to change waste into 

wealth.    
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1  POLYEHTYLENE TEREPHTHALATE 
 

“Polyethylene terephthalate (PETE) is polymerized form of ethylene terephthalate 

(C10H8O4) monomer units. PETE is a recyclable plastic with identification code 

“1”.  World-wide PETE-1 is used as a synthetic fiber, polyester, packaging materials, 

containers of soft drinks and etc”. (Moinuddin Sarker et al., 2010). 

“Capability for The world-wide use of PETE-1 has gradually increased and 

most of the waste PETE-1 is being dumped into the environment instead of 

recycling; this creates environmental problem” (Moinuddin Sarker et al., 2010). 

After the usage the PET plastics are being discarded in the landfill or make their way 

to oceans, hence causing various economical and environmental difficulties since it 

is known as non-biodegradable. Every day the plastics that have been left out in the 

landfill undergo photo- degradation and forming small solid particles. This might 

cause harmful health hazard if the food chain of entire surrounding habitant is 

affected by the solid complex (Moinuddin Sarker et al., 2010). Besides that another 

possible danger might be arise when these non-biodegradable substance undergo 

incineration (burning) causing release of harmful green house gases. When it comes 



 

 

8 

 

to recycling process, many researchers have been conducted and the thermal 

degradation with the aid of catalyst would be a better solution. (Moinuddin Sarker et 

al., 2010).  

 

2.1.1 Properties and Synthesis of PET 

 

Poly (ethylene) Terephthalate posses unique physical and chemical properties. It 

appears as amorphous glass-like material. Crystallinity and the rigidity of PET can 

be modified or enhanced by addictives or heat treatment of the molten polymer. The 

major added advantage of it properties is that, PET when heated above 72℃ PET in 

semi-crystalline state changes rubbery elastic form where it can be stretched or 

aligned into desired shape. Therefore, reforming followed by rapid quenching of 

reformed PET results in in extremely tough plastic (Sinha et al., 2008). Commercial 

PET melts between 255 and 265℃. Adding to that morphological and structural 

reorganization of PET leads to better crystal structures as the temperature increases 

(Awaja & Pavel, 2005). 

 Its monomer, BHET can be synthesized by the esterification reaction 

between terephthalic acid and ethylene glycol with water as a byproduct, or by 

transesterification reaction between ethylene glycol and dimethyl terephthalate with 

methanol as a byproduct (Fig 2.1). Polymerization is through a polycondensation 

reaction of the monomers (done immediately after esterification/ transesterification) 

with water as the byproduct (Fig 2.2). 
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hemical Reaction between ethylene glycol and terephthalic ac

Figure 2.2 Polycondensation of BHET yields PET.

Table 1.2: Properties of PET 

 ASTM  Test 
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3
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% 

lProperties 
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3
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 D638 % 

t of Friction @ 40psi, - Static/Dynam

roperties 
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PET 
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1.38 
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4 X 10
5
 

70 
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recycling by reacting PE

for 30 min without a cata

10 

EMICAL RECYCLING OF PET 
 

is et al. (2006) discusses that hydrolysis is the one

o recycle PET waste by the reaction between water in a

to terephthalic acid (TPA). In common practice the

duce PET or can be converted into more valuable materia

ioka et al., 2003). For acid catalysed hydrolysis proce

cid have been practiced (Brown & O’Brien, 1976). While

tic soda is used (Alter, 1986). Meanwhile for the ne

eam is used (Campanelli et al., 1993). Nowadays hydr

growing interest of PET production factories. 

Figure 2.3 Hydrolysis Reaction 

is is the degradation of PET to dimethyl terephthalate (D
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is into DMT and EG by the reaction of methanol and and

ature nearly 210℃. Finally the crude DMT is purifi
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2.2.3 Glycolysis 
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is the depolymerisation reaction of PET into its respecti

bis(2-hydroxyethyl terephthalate)). The etherifi

re the ester linkage is replaced hydroxyl terminals (Shams
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2.2.4 Comparison between Methanolysis, Hydrolysis and Glycolysis 

 

Focussing on hydrolysis, it is comparatively slower than the methanolysis and 

glycolysis. Among the three depolymerizing agents (i.e. water, methanol, ethylene 

glycol), water is the weakest nucleophile (Sinha et al, 2008). Addding to that 

hydrolysis process occur at elevated temperatures and pressure. On the other hand 

the recovery of monomer (TPA) which quite complex and indirectly affect the 

quality of end product. 

 While the major disadvantage of methanolysis is the cost of separation and 

refining process. Furthermore the water formed at the end causing poisonous effect 

on the catalyst meanwhile causing formation of various azeotropes (Patterson, 2007). 

Before glycolysis , methanolysis is major commercial mode of PET recycling but 

now the process not practiced in commercial because complexity in term of 

recovering DMT causing it to become obsolete (Paszun, 1997). 

 One major added advantage of glycolysis is that the monomer produced  

(BHET) can be mixed with fresh BHET, and the mixture can be used for the other 

(DMT-based or TPA-based) PET production lines. Glycolysis presents lower 

environmental impacts than hydrolysis of PET packaging waste (Calero et, al). 

Adding to that glycolysis is the least complex, and capital-intensive process. For that 

reason glycolysis attract researcher interest and more focus has been given out for 

the development of recycling of Pet through glycolysis. In recent year many 

researches has been publish using wide range of temperature and reaction time, and 

some researchers have devoted their time on the investigation and development of 

efficient glycolysis catalyst (Challa, 1960; As cited in Patterson, 2007). 
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2.3  CATALYZED GLYCOLYSIS 
 

Recent studies reported that, glycolysis may conducted at relatively low reaction 

temperature , reaction time and either under pressure or at atmospheric pressure 

(Zahedi et al, 2009). The glycolysis process is very sluggish without catalyst. 

Therefore recent works more focussed on development of catalyst. Frequently is zinc 

acetate is reported to posses higher yield over the depolymerisation of PET. Other 

than that there are many other metal salts that have been investigated such as, cobalt 

acetate (Baliga et al., 1989), lead acetate (Chen.C.H, et al., 2001). Their works have 

proved that the order of activity of the catalysts increases from zinc to lead acetate. 

(Zn+2 > Mn+2 > Co+2 > Pb+2). Some metal chlorides such as zinc chloride, lithium 

chloride, magnesium chloride and ferric chloride also proved to catalyse the process 

(Troev. K et al, 2003).   

 In recent years researchers are more focussed on the development on milder 

catalyst which presents no harm to the environment. Lately in year 2009 an 

interesting study has been made on the catalytic effect of ionic liquids on trans-

etherification of PET (Wang H. et al., 2009).  The Figure below show the effect of 

catalysed and non-catalysed depolymerisation of PET with EG (Ethylene Glycol). 
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either the development of new catalyst or kinetic study of the glycolysis process (all 

of them with zinc acetate as catalyst). Considering the zinc acetate as catalyst, it has 

an adverse effect on the environment because of non-biodegradability of zinc cation. 

Presently there is research on optimization of glycolysis using magnesium acetate as 

catalyst. 

 

2.4  OPTIMIZATION OF GLYCOLYSIS 
 

Chen.C.H, et al. (2001) found out that the glycolysis process is depend upon the 

reaction parameter such as reaction time, temperature and catalyst concentration. The 

effect of these parameters can be sequenced in the following descending order: 

catalyst concentration>glycolysis temperature>glycolysis time. 

 

2.4.1 Effect of reaction temperature 

 

Optimization study conducted by Katoch.S et al. (2009) suggested that    the 

conversion increases with increasing temperature of the system while the reaction 

temperature is maintained. Then the trend reaches a maximum, the conversion 

percentage reaches a steady state. They suggest that at lower temperature 

(approximately below 140°C) the reaction seems to be very sluggish. This is due to 

the presents of thermodynamic equilibrium state between corresponding liquid states 

causing slow rate of release  partially depolymerised PET from solid phase into 

liquid phase. When the temperature is raised   (approximately above than 180°C) 

causing acceleration of non-polymerized or partially polymerized polyester from 

solid phase to the liquid phase. (Katoch.S et al., 2012), 
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2.4.2 Effect of the reaction time 

 

Recently Buasri , et al. (2011) presented a research on the characterization of PET co 

polyester. The influence of the variation of reaction time on percentage conversion 

of PET-PLA was clearly discussed. The study was carried out by maintaining the 

temperature at 180℃ and catalyst amount as 0.4% by weight of PET. Trend of the 

conversion of reaction observed to be proceeding in a higher rate, and pace is 

decreased when the reaction reached certain point. Therefore the yield observed after 

the optimum point become constant.  

 Meanwhile in the recent research on glycolysis of poly(ethylene 

terephthalate) catalyzed by ionic liquids states that the weight percentage of BHET 

(yield) initially increased and then decreased. From the study the researchers 

conclude that at first PET is depolymerised into oligomers and dimers which would 

increase the tendency for the formation of BHET then in the presence of excess 

depolymerising agent the reaction tend to shift to opposite direction where BHET is 

further depolymerised into dimer and oligomer (Wang H. et al., 2009). 

 

2.4.3 Effect of amount of catalyst 

 

As previously discussed catalyst has strong impact on the glycolysis process. The 

observation of Zhou et al states that the conversion of Pet and the selectivity towards 

BHET increase with increasing catalyst amount. Meanwhile increased addition of 

catalyst attributes to the repolymerization and BHET selectivity is decreased. Adding 

to that López-Fonseca et al., et al states that PET degradation into BHET was 

favoured with increasing temperature and catalyst concentration. But the effect of 
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temperature was strong compared to the catalyst amount. The result obtained showed 

that the yield of the process is increased to certain point when the catalyst amount is 

increased and only increase to a maximum limit when temperature of the system is 

increased (López-Fonseca et al., 2011) 

 

2.4.4 Effect of PET/ Depolymerization agent Ratio 

 

The effect of the PET/ Depolymerizing agent ratio cannot be neglected. At lower 

concentration of depolymerisation agent, the reaction becomes very sluggish. This is 

due to the surface reactivity, which is rate-determining process. Increasing the 

amount attributes to the acceleration of surface reactivity and formation of BHET the 

monomer. Meanwhile excess amount of the depolymerising agent aids the formation 

of BHET and minimize the formation of oligomers (Idris. S.E and Yassin K.E.,2012)  

 

2.4.5 Effect of stirring rate 

 

Studies proves that the conversion of PET glycolysis is considerably lower for the 

lower stirring speed, and increased significantly up to certain point when the stirring 

speed is increased. Further increase in stirring speed does not gives any noticeable 

effect on the conversion. (López-Fonseca et al., 2011) 

 

2.4.6 Effect of PET scarp size 

 

In some studies the effect of size of PET scrap also evaluated. As discussed before 

surface reactivity may be the rate determining step for the glycolysis process. The 
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particle size attributes to the lower conversion at a fixed time and temperature. 

Granulated PET scrapa promises high surface contact for the reaction therefore the 

conversion of PET increased. On the other hand it is proven that the effect of particle 

size towards PET degradation is comparatively stronger than the effect of stirring 

rate.  

 

2.4.7 Optimization using RSM 

 

In this advanced era, technologies have been developed drastically for the for the 

customer satisfaction. Due to customers demand and high expectation 

product/process design become extremely complicated. Therefore, 

manufacturing/processing industries prioritize optimizing multiple 

responses/parameters.    

 To resolve the problem design of experiments (DOE) is extensively adopted 

in industries for the optimal parameter setting which attributes to improved process 

conduction. Response Surface Methodology (RSM) is one of majorly used tools of 

DOE to obtain the optimal parameter settings. In RSM, analysis of variance 

(ANOVA) is used in indentifying significant factors. Based on experimental data, 

RSM can generate an equation representing the relationship between controlled and 

manipulated variable. 

 Recently RSM also been used for predicting the optimal condition glycolysis 

process of waste PET. At beginning of this year a journal article presented by 

Katoch.S et al. (2009) thoroughly discussed about the optimization of glycolysis 

time and temperature of PET scrap. Until now there is no research that discusses 
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about all the parameters (catalyst amount and depolymerising agent ratio) that can be 

considered in the glycolysis of PET. 

 

2.5  CHARACTERIZATION OF GLYCOLYSIS PRODUCTS 
 

2.5.1 Thermal Characterization 

 

2.5.1.1 Differential Scanning Calorimetry 

Differential Scanning Calorimetry (DSC) is one of most widely used method of 

thermal analysis. Throughout thermal analysis thermodynamic data such as heat 

capacity, phase transition, enthalpy and kinetic data can be obtained. The added 

advantage of thermal analysis is the easy handling and the amount of sample would 

require is small. Meanwhile DSC is used to measure the energy would require to 

obtain a zero temperature difference between sample and a inert reference substance.  

 Meanwhile for the glycolysis process, DSC is widely used for the 

characterization of the polymeric materials. At first Wolf et al. (2003) Investigated 

and invented DSC based method to study the effect of catalyst activity towards 

depolymerisation reaction to produce BHET from PET. Then Johnson and Teeters 

further studied the DSC characterization technique to analyse the glycolysis process.  

 

2.5.1.2 Thermo Gravimetric Analysis 

Thermogravimetric analysis (TGA) also thermal analysis technique employed to 

characterize or analyse wide variety of polymeric materials. TGA analyses the rate 

mass change of the sample as a function of temperature or time. Commonly these 
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data would be useful in-term of analysing the thermal stability and compositional 

properties.  

 For the characterization of polymeric material of PET glycolysis Gamlen et 

al. (1999) have been expanded the research of Wolf et al. (2003) the precursor of 

PET thermal characteristic. With the development of DSC method together with 

TGA, the observation on the effectiveness of the catalyst towards depolymerisation 

follows the data of conventional method. However, the thermal analysis techniques 

are more convenient. Nowadays almost every research regarding characterization of 

degradation of PET involves DSC and TGA analysis.  

 

2.5.2 Fourier Transform Infrared Spectroscopy (FTIR) 

 

Fourier Transform infrared spectroscopy accounts for the frequencies of vibration 

between the bonds of atom. Each material has a unique arrangement and attachment 

of atoms, therefore a infrared spectrum of a compound cannot be matched with the 

other.  Adding to that the size of the peaks accounts for the amount of material 

presents in the sample.  

 In recent study on the Fourier transform infrared spectrophotometer (FTIR) 

was used to identify the chemical bonds in the digested polyethylene terephthalate 

obtained from the glycolysis. The chemical bonds in the sample were identified at 

the peaks of the displayed infrared spectra for a specific transmittance and wave 

number (López-Fonseca et al., 2011). 

 

 



 

 

22 

 

2.6  DEPOLYMERIZING AGENT 
 

Almost every work done on the depolymerization of PET is based on Ethylene 

glycol as the depolymerimization agent. Diethylene Glycol also been analyzed past 

decade. On the other hand , mixture of both EG and DEG also being studied (Viksne 

and Kalnins, 2002) nowdays. Adding to that, recently an optimization study 

conducted by Katoch.S et al. (2009) proved that propylene glycol also gives 

significant effect on the glycolysis of PET. 

 Focussing on Poly (ethylene glycol) (PEG), Garrci’a et al. (2007) stated that   

is a biodegradable biopolymer that possesses hydroxyl terminal groups. Adding to 

that the hydrophilic character of that terminal group it is very sensitive towards 

hydrolysis. Therefore PEG has the potential to be applied as the depolymerising 

agent for the glycolysis process. Recently Patel et al., investigated Glycolysis of PET 

waste was carried out using poly(ethylene glycol) (PEG) of various molecular 

weights (200, 400, 600). Followed by Ristić. I et al. (2007) have conducted research 

on the potential use of recycled poly ethylene terephthalate in polyurethane 

synthesis, using polyethylene Glycol as the depolymerization agent. Until now there 

is limited work have been done on the PEG as the depolymerization agent. 
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CHAPTER 3 

 

 

 

 
RESEARCH METHODOLOGY 

 

 

 

3.1 INTRODUCTION 

 

In this chapter, the experimental materials and apparatuses, setup and procedures 

will be explained in details. The glycolysis of PET waste will be conducted at 

different reaction time (30-240 min), reaction temperature (175-215℃), amount of 

catalyst (0.01-0.15), and PEG to PET ratio (10:5,15:5,20:5,30:5). Then obtained PG 

(glycolysis product) will be subjected to thermal characterization (TGA and DSC) 

and FTIR. For the comparison purpose glycolysis process with DEG catalysed by 

zinc acetate will be compared.  

 

3.1 RAW MATERIALS  
 

3.2.1 Polyethylene Glycol (400) 

 

Polyethylene glycol is a condensation polymers of ethylene oxide and water with the 

general formula H (OCH2CH2)nOH. Polyethylene glycols present in various 

molecular weights. PEG with a mean molecular weight up to 400 is non-volatile 

liquids at room temperature. While PEG 600 poses a lower melting range and appear 
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as pasty solution in ambient condition. The mean molecular weight above PEG 600 

appears as solid or in the flakes form. PEG up to mean molecular weight of 600 is 

completely miscible in water. PEG – 400 is widely used in commercial industry 

because it’s a thermally stable medium due to its higher molecular weight (higher 

specific heat). Therefore it is more preferred to hot bath applications. Since this 

glycolysis process is highly affected by temperature difference. Therefore PEG 400 

is chosen as depolymerising agent. 

 

 

Table 3. 1 Properties of Polyethylene Glycol (PEG- 400) 

Characteristics Test Method Unit PEG 400 

Moles of Ethylene Oxide - - 8EO 

Appearance Visual - Colourless 

Viscosity @ 40℃ ATM D-445 Cst 31-35 

Hydroxyl Number ASTM D-4252 Mg KOH/gr 340-415 

pH ASTM-1172  5-7 

Molecular Weight Calculated Kg/Kmol 270-330 

Water Content Ballestra B-Z6 Wt% 0.5max 

 

 

3.2.2 Magnesium Acetate 

 

As discussed earlier in the survey, any metal acetate can aid the transesterification 

process. 

 

Table 3. 2 Properties of Magnesium Acetate Tetra hydrate 

Characteristics Magenesium Acetate Tetrahydrate 

Molecular Formula C4H6O4Mg.4H2O 

Molecular Weight 214.3982g 

Appearance White 

Specific Gravity 1.454 

Melting point 80 ℃ 

Solubility 120% in water. 
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transesterification catalyst.  A 50 mL round-bottom three-necked flask equipped with 

a thermometer and a reflux condenser was initially loaded with 5.0 g of PET, 20.0 g 

of polyethylene glycol, and certain amount of magnesium acetate (0.05-0.15g). The 

reaction was carried out in atmospheric pressure condition and the reaction 

temperature was varied from 175-215℃. The reaction time (30-240min) for the 

glycolysis process also varied for the optimization process. The flask is placed in a 

heating mental and the temperature and time is set as per desired. The 

undepolymerized PET is separated quickly from the gycolysed product by means of 

mechanical separation to prevent the precipitation of product doring the cooling 

down process. Then excess cold distilled water is used to wash the undepolymerized 

PET and mixed with the product fraction. The washed undepolymerized Pet is then 

dried and weighed. The conversion of PET is defined by Eq. (1): 

 

Conversion percentage of PET= 
�����

��
 × 100%    (Eq 3.1)

   

Where  ��  resembles the initial weight of Pet that charged into the flask. While � 

represents the weight of undepolymerized PET (after dried and weighed). 

 

 The product that was mixed with cold water is then subjected to vigorous 

agitation where is tend to dissolve the remaining PEG, magnesium acetate, and the 

monomer. The mixture is then filtered, dried and and labelled as fraction B 

Meanwhile, the collected filtrate after the vigorous agitation followed by filtration 

was then concentrated to about 100ml by boiling it. The concentrated filtrate was 

stored in refrigerator at 4℃ for 24hours. Continual refrigeration will cause the the 

monomer to separate out (formation of white crystalline). The white crystalline is the 



 

 

separated using vacuum

fraction A.   

 

The yield of monomer

 

Y (%) = 
��������,�/��

����,�/��

 

Where  ����,� represe

�� ! �"#,$ represents w

the   MWmonomer and M

and the PET (192 gmol

 

 

3.3.3 Experimental Set

 

Figur

27 

sing vacuum filtration, dried and weighed. This fraction

f monomer (Y) was defined as 

���������

�����
 × 100%    

represents the initial weight of PET charged int

represents weight of monomer at a specific reaction ti

and MWPET are the molecular weights of monome

 (192 gmol−1)per repeating unit. 

rimental Setup 

Figure 3.2 Three neck Glass Reactor for Glycolysis

 

This fraction was labelled as 

  (Eq 3.2) 

 charged into the flask and 

ion time. Meanwhile 

s of monomer (640 gmol−1) 

 
Glycolysis 



 

 

28 

 

 

3.4  ANALYSIS  
 

 The analysis was conducted on the product obtained for the characterization 

process. Three types of characterization techniques have been adapted. Which is 

Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA), and 

Fourier Transform Infrared Spectroscopy (FTIR)  

 

3.4.1 Differential Scanning Calorimetry 

 

DSC scans of the products were obtained using DSC-1000 by heating from room 

temperature to 200℃ at a rate of 10 ℃/min in an atmosphere of nitrogen. 

 

3.4.2 Thermogravimetric analysis (TGA) 

 

A thermogravimetric analyzer (TGA-500) was used to analyse the weight loss of the 

products in a nitrogen atmosphere during a temperature range from room 

temperature to 500℃ at a heating rate of 10 ℃/min. 

 

 

3.4.3 Fourier Transform Infrared Spectroscopy (FTIR) 

 

The FTIR analysis is conducted with Q1000 model with ATR attachment. 
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CHAPTER 4 

 

 

 

RESULTS AND DISCUSSION 

 

The effect of process conditions such as reaction temperature, reaction time, the 

molar ratio of PEG and amount of catalyst were investigated in this study. The 

collected data from the experimental procedure were optimizatized using RSM to 

have a proper visual upon the results obtained to gain a better understanding on the 

relationship between manipulated variables.  

 

4.1  INFLUENCE OF REACTION TIME 
 

The effects of glycolysis time on the conversion of PET and selectivity of monomer 

were presented in fig 4.1. When glycolysis time increase the conversion of PET 

increases and eventually reaches 100% when the reaction time almost 3hours. As 

described before conversion is the function of degree of degradation of PET. 

Meanwhile the selectivity of monomer reaches it maximum around one and hour of 

reaction time and decreases as the conversion increases. This is due presents of 

equilibrium between the dimer ,oligomer and the monomer .The depolymerisation 

reaction can be represented as 
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 Fig 4.2 illustrates the effects of time on product distribution. It is very clear 

that, initially the presents of oligomer and dimer (fraction B) is higher compared to 

the monomer, indicating the initiation of PET depolymerisation and formation of 

oligomer and dimer. Correspondingly, at initial state the weight percentage of 

monomer (fraction A) is less and increasing rapidly after 30 minutes. After 2 hour 

there is minute decrease in the monomer weight percentage, causing the selectivity 

towards fraction A to be decreased. Meanwhile the weight percentage of dimer and 

oligomer decreases with increasing glycolysis time. As stated by Bartolome .L. et al. 

(2001) prolonging the reaction after the equilibrium tends to shift the reaction 

backward causing the formation of dimer. 

 In term of the yield of the process, the trend of fig 4.3 illustrates the amount 

of fraction A with time. After one hour of reaction time the yield is maintained at a 

specific value while the conversion is increased. Therefore it can be concluded that, 

initially PET was depolymerised into oligomer and dimer fractions and eventually to 

monomer in the presence of polyethylene glycol.  With increasing reaction time 

more oligomers and dimmers are formed while the amount of monomer formed is 

constant. 
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Figure 4.1 Effects of glycolysis time on the conversion of PET and selectivity of monomer 

(1atm, 185C, with 0.05 g of catalyst and 20g PEG) 

 

 

Figure 4.2 Effect of glycolysis time on distribution of the products (1atm, 185C, with 0.05 g 

of catalyst and 20g PEG) 
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Figure 4.3 Effect of glycolysis time on yield of monomer (1atm, 185C, with 0.05 g of 

catalyst and 20g PEG) 
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increasing reaction temperature more oligomers and dimmers are formed while the 

amount of monomer formed is constant. 

 

 

Figure 4.4 Effects of reaction temperature on the conversion of PET and selectivity of 

monomer (1 atm, 90min with 0.05g of catalyst and 20g PEG) 

 

 

Figure 4.5 Effect of reaction temperature on distribution of the products (1 atm, 90min with 

0.05g of catalyst and 20g PEG) 
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Figure 4.6 Effect of reaction temperature on yield of the process (1 atm,  90min with 0.05g 

of catalyst and 20g PEG) 

 

 

4.3  INFLUENCE OF AMOUNT OF CATALYST 
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Figure 4.7 Effect of catalyst amount on yield of monomer (1 atm, 185C, 90min with 20g 

PEG) 

 

 

Figure4.8 Effect of catalyst amount on product distribution (1 atm, 185C, 90min with 20g 

PEG) 
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4.4  INFLUENCE OF AMOUNT OF PEG 
 

The fig 4.8 shows the effect of PEG on the the yield of monomer. At initial stage the 

amount of PEG used for the glycolysis process increase the yield of monomer when 

the saturation limit is reached the quantity of PEG used does not affect the yield of 

the process. 

 

 

Figure 4.9 Effect of PEG amount on yield of monomer (1 atm, 185C, 90min with 0.05g of 

catalyst) 

 

 

 

4.5  REACTION MECHANISM AND CHARACTERIZATION  
 

4.5.1 Reaction Mechanism 

 

The alcoholysis reaction can be denoted as 

R1CO2R2 + R3OH ⇔ R1CO2R3 + R2OH     (Eq 4.1) 

Thus the polyether (glycol) can be used as agent of depolymerisation of polyesters 

such as PET. (Katoch.S. et al., 2012). In the presence of catalyst, the polyether 

(glygols) which consist of hydroxyl end group will attack the ester linkage in the 
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4.5.2.2 Thermogravimetric Analysis (TGA) 

The thermal property of product of glycolysis is discussed in comparison with BHET 

(monomer of glycolysis process with ethylene glycol). The standard TGA for BHET 

is shown in the figure. The Figure 4.12 shows TGA curve for the glycolysed product 

(monomer) obtained. TGA curve for BHET composes of two decomposition region. 

Where the first decomposition region is around 190-220°C and the second 

decomposition region occurred at 380-400°C.  

 Meanwhile the TGA curve for the glycolysed product (monomer) poses a 

similar trend with the standard curve of BHET. The sample exhibits three 

decomposition region, first occurred around 80 to 120°C, the second region occurred 

around 190-240°C and completely decompose around 390-430°C. The first 

decomposition region occurred due of presents of water along with the sample. 

Improper drying after the filtration may cause the sample contains some portion of 

water. The first decomposition occurred at 190-220°C is due to thermal degradation 

of BHET. Comparing with the sample’s TGA curve the second mass loss around 

190-240°C is due to the presents of lower molecular weight component. Where 

BHET exhibit a rapid decomposition about 25% meanwhile the sample exhibit just 

7-8% of mass loss. Indicating the presence of low molecular weighted component is 

less. The second mass loss occurred in BHET TGA, is about 55wt%. This is due to 

the formation of oligomers, dimer and PET results of thermal polymerization. 

Meanwhile the sample exhibit drastic mass loss about 80wt% at 390-430°C. Thus 

indicate the presence of component with higher molecular weight. 
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Figure 4.12 TGA curve of glycolysed sample (monomer) and standard BHET 

 

 

 

4.5.2.3 Fourier Transform Infrared Spectroscopy  

The Figure 4.13 illustrates the FTIR spectral analysis of of glycolysed product 

(monomer) and Figure 4.14 illustrates the spectrum of PET and PEG. The gycolysed 

product shows a band between 3000cm-1 to 3100cm-1 resembles stretching 

frequencies of hydroxyl groups. Referring to the PET spectrum the stretching of –

OH (3000-3600cm-1) group is quite intense but in the glycolysed product spectrum 

is isn’t,which proves the glycolysis have been occurred. Stretching frequencies for 

CH2 (-CH streching) groups may stand at 2850-3000 cm-1. The sharp bend around 

1720 cm−1 stands carbonyl –C=O stretching results from the formation of ester 

linkage. Meanwhile PEG FTIR does not contain any spectra around 1700cm-1. The 

spectra tend to become sharper if number of ester linkage presents in the sample is 

higher. Frequency around frequencies 1100 cm-1 and 600-900 cm-1 stand for etheric 

linkage and for the aromatic ring, respectively due to ester. Overall it confirms that 

the glycolysis have occurred using PEG. 
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Figure 4.13 FTIR spectra of glycolysed product (monomer) and PEG 

 

 

 

Figure 4.14 FTIR spectrums of PET and PEG 
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Table 4.1 Experimental values of responses and variables for glycolysis process. 

No Run Temperature, x1 

(℃) 

Time, 

x2 (hr) 

Catalyst 

Weight, x3 

(g) 

Amount of 

PEG, x4 (g) 

Yield , Y1 

(%) 

1 185 2 0.15 30 93.05 

2 195 2.5 0.1 40 96.14 

3 195 2 0.05 20 80.55 

4 205 2 0.15 30 94.55 

5 195 2 0.1 30 94.14 

6 195 2.5 0.1 20 93.61 

7 195 2 0.1 30 94.2 

8 185 2 0.1 20 86.64 

9 195 2.5 0.15 30 95.6 

10 205 2.5 0.1 30 95.41 

11 195 1.5 0.05 30 81 

12 195 1.5 0.1 20 91.29 

13 205 2 0.1 20 92.64 

14 185 1.5 0.1 30 91.59 

15 195 2.5 0.05 30 83.32 

16 205 2 0.05 30 82.35 

17 185 2 0.05 30 80.85 

18 195 1.5 0.15 30 93.2 

19 185 2 0.1 40 93.77 

20 195 2 0.15 20 92.75 

21 205 1.5 0.1 30 93.09 

22 195 2 0.15 40 95.28 

23 
24 
25 
26 

195 

195 

185 

205 

2 

1.5 

2.5 

2 

0.05 

0.1 

0.1 

0.1 

40 

40 

30 

40 

83.08 

93.82 

93.91 

95.07 

 

 

 

 

4.6  DEVELOPMENT OF REGRESSION MODEL EQUATION 
 

A polynomial regression equation was developed by using Three level factorial 

design to analyze the factor interactions by identifying the significant factors 

contributing to the regression model. The complete design matrix together with the 

response values obtained from the experimental works are given in Table 4.1. The 

yield of the glycolysis process was found to be 81 to 96.14%.  
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 According to the sequential model sum of squares, the models were selected 

based on the highest order polynomials where the additional terms were significant 

and the models were not aliased. For yield of the process, quadratic models was 

suggested by the software and selected due to higher order polynomial. The final 

empirical models in term of coded factor for the yield of the process (Y1) are shown 

in Eq. 2: 

 

Y1= 93.34 + 1.11x1 + 1.17x2 + 6.11x3 + 1.64x4 – 0.58x1[2] + 0.56x2[2] – 5.24x3[2]  -

0.36x4[2] - 1.18 x1 x4 + 0.020x2 x3                           (Eq 4.2) 

 

Positive sign in front of the terms indicates synergistic effect, whereas negative sign 

indicates antagonistic effect. The quality of the model developed was evaluated 

based on the correlation coefficient value. The R2 value for the equation was 0.9851. 

This indicated that 98.51% of the total variation in the yield of the glycolysis 

process. The closer the R2 value to unity, the better the model will give predicted 

values which are closer to the actual values for the response. The R2 of 0.9851 for 

Eq. 2 was considered relatively high, indicating that there was good agreement 

between the experimental and the predicted yield of glycolysis process. 
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Table 4.2 Analysis of variance (ANOVA) for response surface quadratic model for yield of 

glycolysis process 

Source Sum of 

Squares 

DF Mean 

Square 

F 

Value 

Prob > F  

       Model 712.022 14 50.85872 65.89067 < 0.0001 significant 

X1 14.74083 1 14.74083 19.09768 0.0006  

X2 16.33333 1 16.33333 21.16086 0.0004  

X3 447.4965 1 447.4965 579.7599 < 0.0001  

X4 32.2752 1 32.2752 41.81455 < 0.0001  

X1
2
 2.162035 1 2.162035 2.801053 0.1164  

X2
2
 1.9992 1 1.9992 2.59009 0.1298  

X3
2
 178.4321 1 178.4321 231.17 < 0.0001  

X4
2
 0.851581 1 0.851581 1.103277 0.3113  

X1X2 0 1 0 0 1.0000  

X1X3 0 1 0 0 1.0000  

X1X4 5.5225 1 5.5225 7.154746 0.0181  

X2X3 0.0016 1 0.0016 0.002073 0.9643  

X2X4 0 1 0 0 1.0000  

X3X4 0 1 0 0 1.0000  

Residua

l 

10.80611 14 0.771865    

Lack of 

Fit 

8.086833 10 0.808683 1.189555 0.4700 not 

significant 

Pure 

Error 

2.71928 4 0.67982    

 

 

Table 4.3 Summary of results in analyzing lack of fit (LOF) foryiled of glycolysis process 

Source Sum of 

Squares 

DF Square Value Prob > F 

Linear 203.7388648 14 14.55277606 21.40680777 0.0046 

2FI 8.086833333 10 0.808683333 1.189555078 0.4700 

Quadratic 1.628033333 2 0.814016667 1.197400292 0.3913 

Pure Error 2.71928 4 0.67982 

      
 

 

 

4.7  STATISTICAL ANALYSIS 
 

The result of the surface quadratic model in the form of analysis of variance 

(ANOVA) was given in Table 4.2 for the yield of glycolysis process. ANOVA is 

required to justify the significance and adequacy of the models. The mean squares 
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viding the sum of the squares of each of the varia

the error variance, by the respective degrees of freedom

less than 0.05, the model term are considered as sign

 the Table 4.2 the model F-value is 50.8587 and Prob. <

del was significant. In this case X1, X2, X3, X4, X3
2
, and X

model term X1
2
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2
, X4

2
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t to the response. From the statistical results obtained, it 

odels were adequate to predict the yield of the process
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4.8 INFLUENCE OF PROCESS VARIABLES ON THE STIMULATED 

RESPONSE 
 

The data tabulated in Table 4.2 shows that the catalyst plays an important role in 

term of the yield of the glycolysis process, where the F-value of that factor is 

447.4965 the largest among the factors. But the effect of time is comparatively 

insignificant (14.74083). Meanwhile the F-value for the amount of PEG used and the 

temperature is 32.2752 and 16.33333 respectively. The results obtained compromises 

the investigation of Chen .C.H, et al, where they concluded that the effect of 

glycolysis process parameters can be sequenced into: catalyst 

concentration>glycolysis temperature>glycolysis time. 

 

4.8.1 Comparison between influence of time and temperature  

 

Referring to the figure 4.16 increasing the temperature (while maintain the time at 

1.5hr) will increase the yield of the process up to 82.5%. At lower temperature 

(approximately below 180°C) the reaction seems to be very sluggish. This is due to 

the presents of thermodynamic equilibrium state between corresponding liquid states 

causing slow rate of release  partially depolymerised PET from solid phase into 

liquid phase (Pardal and Tersac, 2007).  Even though the reaction time is increased, 

the response towards the yield of the process is not satisfying. According to 

Katoch.S et al, when the temperature is raised (approximately above than 180°C) 

causing acceleration of non-polymerized or partially polymerized polyester from 

solid phase to the liquid phase. Meanwhile the temperature is maintained low 

(185℃) and the time of reaction is increased the yield obtained increased slowly up 

to 79.12%. The highest yield is obtained when the temperature is increased up to 

205℃ and reaction is conducted for 2.5hr.  
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

5.1  CONCLUSION 
 

The presented work includes Polyethylene Glycol is used to study the influence of 

process parameter towards the glycolysis process due to limited work done on the 

PEG as deploymerizing agent of PET. In particular, experimental work includes 

preparation of PET scrap including collecting and treating and glycolysis of treated 

PET. Then the glycolysed product is separated using cold distilled water by means of 

vacuum distillation. 

  

  Obtained product is then subjected to thermal and FTIR characterization. 

FTIR shows an intense dropping around 1700-1750cm-1 resembling the stretching 

of carbonyl group. Which confirm the formation of glycolysed product. From 

Thermogravimetric Analysis carried out the sample shows approximately 80% of 

mass loss around 390-430℃ which resembles the sample contain compound with 

long chain. The weight loss around 190-240℃ is just 7-8wt%. To support the 

characterization DSC analysis also has been conducted. It clearly shows the sample 
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has higher melting point compared to standard BHET melting point, confirms 

formation of compound with higher molecular chain. 

 

 For the optimization process the Research Surface Methodology is used 

visualize the results obtained upon the combined effect of process condition.  To 

gain a better understanding on the relationship between manipulated variables. The 

optimal condition of glycolysis time, temperature, amount of catalyst and amount of 

PEG were 205◦C, 2.49hr, 0.12g (2.4wt% of PET used) and 36.87g of PEG 

respectively. Where using this optimized condition the yield of the process can be 

reached up to 96.3%. The stimulated values were in good agreement with 

experimental value, revealing the constructed/stimulated model is completely 

reliable.  

 

 

 

5.2  RECOMMENDATION 
 

It is strongly recommended for future work that the study should be done in wide 

scope on certain experimental parameter such as type of catalyst. The catalyst used 

in this research is a conventional catalyst, where separation and refining process is 

quite complex. Since glycolysis of PEG with PET is an intermediate reaction to 

produce various types of polyurethanes and block copolymers, optimizing it with 

various kind of catalyst would be economically beneficial. Furthermore developing 

an eco-friendly catalyst towards glycolysis process, would be the real motive of 

recycling process which is to provide a unpolluted environment, major concern in 

this eco-friendly era.  
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 Rather than developing and optimizing an eco-friendly catalyst, the method 

research itself can be improved to get the accurate results. It is suggested the 

experiment can be conducted using pilot plant where the small experimental setup 

does not resembles the commercially available plants and optimization with obtained 

results would deviate from the actual. 

 

 Furthermore, in term of characterization, hydroxyl and acid  value can be 

adopted. Hydroxyl value denotes the hydroxyl terminal presents in the oligomers 

while acid value denotes for the carbonyl terminated oligomers. Thus, the degree of 

depolymerization can be determined.  
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APPENDIX A1 

EXPERIMENTAL RESULTS 

 

Run Temp, 

degree 

C 

Time, 

hr 

Mass of 

A ,g 

Mass 

of B ,g 

Conversion 

(%) 

Weight 

of 

catalyst,

g 

Fraction 

of PEG 

used to 

PET 

Yield 

(%) 

1 215 1 ½ 3.91 0.48 100 0.050 20/5 89.66 

2 205 1 ½ 3.90 0.47 100 0.050 20/5 89.50 

3 195 1 ½  3.89 0.44 95 0.050 20/5 89.35 

4 185 3 3.83 0.72 98 0.050 20/5 87.97 

5 185 2 ½ 3.80 0.68 96 0.050 20/5 87.05 

6 185 2 3.52 0.62 91 0.050 20/5 85.15 

7 185 1 ½  3.20 0.55 86 0.050 20/5 73.50 

8 185 1 0.95 1.02 43 0.050 20/5 45.78 

9 185 ½  0.39 0.60 20 0.050 20/5 8.72 

10 185 1 ½   3.72 0.51 95 0.100 20/5 85.44 

11 185 1 ½ 3.73 0.48 100 0.150 20/5 85.70 

12 185 1 ½ 3.28 0.76 100 0.200 20/5 75.20 

13 185 1 ½   0.87 0.95 48 0.025 20/5 19.82 

14 185 1 ½  1.09 0.06 54 0.050 10/5 25.03 

15 185 1 ½  3.99 1.20 97 0.050 30/5 91.64 

16 185 1 ½ 4.07 0.21 100 0.050 40/5 93.50 

17 185 1 ½ 4.08 0.25 100 0.050 50/5 93.66 

18 175 1 ½  0.53 0.76 55% 0.050 20/5 12.17 

19 185 2 4.05 0.09 100 0.150 30/5 93.05 

20 195 2 ½  4.18 - 100 0.100 40/5 96.14 

21 195 2 3.50 0.08 90 0.050 20/5 80.55 

22 205 2 4.12 - 100 0.150 30/5 94.55 

23 195 2 4.09 - 100 0.050 20/5 94.14 

24 195 2 ½ 3.77 0.09 95 0.100 20/5 86.64 

25 185 2 4.16 - 100 0.150 30/5 95.6 

26 205 2 ½ 4.15 - 100 0.100 30/5 95.41 

27 195 1 ½ 3.52 0.13 91 0.050 30/5 81.00 

28 195 1 ½ 3.97 0.08 100 0.100 20/5 91.29 

29 205 2 4.03 0.05 100 0.100 20/5 92.64 

30 185 1 ½  3.99 0.06 100 0.100 30/5 91.59 

31 195 2 ½  3.63 0.21 93 0.050 30/5 83.32 

32 205 2 3.59 0.13 93 0.100 30/5 82.35 

33 185 2 3.52 0.15 90 0.050 30/5 80.85 

34 195 1 ½ 4.06 0.05 100 0.150 30/5 93.2 

35 205 1 ½ 4.05 0.07 100 0.100 30/5 93.09 

36 195 2 4.14 - 100 0.150 40/5 95.28 

37 195 2 3.62 0.12 92 0.050 40/5 83.08 

38 195 1 ½ 4.08 0.08 100 0.100 40/5 93.82 

39 185 2  ½ 4.09 0.07 100 0.100 30/5 93.91 

40 205 2 4.14 - 100 0.100 40/5 95.07 
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APPENDIX A2 

WEGHT DISTRIBUTION 

 

Composition A T=185C =
(.*�

(.*�+�.,,
 

=85.3wt% 

Composition B T=185C=
�.,,

(.*�+�.,,
 

=14.7wt% 

Table A2.1:Distribution of the products vs reaction temperature (1atm, 1.5hr, with 0.05 g of 

catalyst and 20g PEG) 

Run Temperature Mass of 

A 

Mass of B Composition A 

(wt%) 

Composition B 

(wt%) 

1 175 0.53 0.76 41.1 58.9 

2 185 3.20 0.55 85.3 14.7 

3 195 3.89 0.44 89.8 10.2 

4 205 3.90 0.47 91.7 8.3 

5 215 3.91 0.48 93.3 6.7 

 

Table A2-2: Distribution of the products versus reaction time (1atm, 185℃, with 0.05 g of 

catalyst and 20g PEG) 

Run Time Mass of A Mass of B Composition A 

(wt%) 

Composition B 

(wt%) 

1 ½ 0.39 0.60 39.4 60.6 

2 1 0.95 1.02 48.2 51.8 

3 1 ½  3.20 0.55 85.3 14.7 

4 2 3.52 0.62 85.8 14.2 

5 2 ½ 3.80 0.68 86.3 13.7 

6 3 3.83 0.72 87.0 13.0 

 

 

Table A2-3: Distribution of the products versus catalyst amount (1atm, 1.5hr, 185C with 20g 

PEG) 

Run Catalyst 

amount 

Mass of A Mass of B Composition A 

(wt%) 

Composition B 

(wt%) 

1 0.025 0.87 0.95 47.8 52.2 

2 0.05 3.20 0.55 85.3 14.7 

3 0.1 3.72 0.51 87.9 12.1 

4 0.15 3.73 0.48 88.6 11.4 

 



 

 

 

ANA
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APPENDIX B1 

ANALYSIS RESULTS: DSC THERMOGRAMS 
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APPENDIX B2 

ANALYSIS RESULTS: TGA 
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APPENDIX B3 

ANALYSIS RESULTS: FTIR 
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APPENDIX C1 

RSM: LAYOUT DESIGN 

    

Factor 1 Factor 2 Factor 3 Factor 4 Response 

1 

Std Run A:Temperature 

deg C 

B:Time 

hr 

C:Catalyst 

Weight 

g 

D:Weight 

of PEG 

Yield 

 

19 1 185 2 0.15 30 93.05 

24 2 195 2.5 0.1 40 96.14 

5 3 195 2 0.05 20 80.55 

20 4 205 2 0.15 30 94.55 

26 5 195 2 0.1 30 94.14 

22 6 195 2.5 0.1 20 93.61 

28 7 195 2 0.1 30 93.18 

25 8 195 2 0.1 30 94.2 

9 9 185 2 0.1 20 86.64 

16 10 195 2.5 0.15 30 95.6 

4 11 205 2.5 0.1 30 95.41 

13 12 195 1.5 0.05 30 81 

21 13 195 1.5 0.1 20 91.29 

29 14 195 2 0.1 30 92.29 

10 15 205 2 0.1 20 92.64 

1 16 185 1.5 0.1 30 91.59 

14 17 195 2.5 0.05 30 83.32 

18 18 205 2 0.05 30 82.35 

17 19 185 2 0.05 30 80.85 

15 20 195 1.5 0.15 30 93.2 

11 21 185 2 0.1 40 93.77 

6 22 195 2 0.15 20 92.75 

2 23 205 1.5 0.1 30 93.09 

27 24 195 2 0.1 30 92.88 

8 25 195 2 0.15 40 95.28 

7 26 195 2 0.05 40 83.08 

23 27 195 1.5 0.1 40 93.82 

3 28 185 2.5 0.1 30 93.91 

12 29 205 2 0.1 40 95.07 
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APPENDIX C2 

RSM: FIT SUMMARY 

 

Response: Yield 

Table C2-1: Sequential Model Sum of Squares 

 Sum of  Mean F  

Source Squares DF Square Value Prob > F 

Mean 240194.502 1 240194.502   

Linear 510.8459 4 127.711475 14.4591138 < 0.0001 

2FI 5.5241 6 0.92068333 0.08026954 0.9975 

Quadratic 195.652031 4 48.9130079 63.3698805 < 0.0001 

Cubic 6.4588 8 0.80735 1.11427441 0.4605 

Residual 4.34731333 6 0.72455222   

Total 240917.33 29 8307.49415   

 I+"Sequential Model Sum of Squares"0+:  Select the highest order polynomial 

where the additional terms are significant and the model is not aliased. 

 

Table C2-2: Lack of Fit Tests 

 Sum of  Mean F  

Source Squares DF Square Value Prob > F 

Linear 209.262965 20 10.4631482 15.3910568 0.0084 

2FI 203.738865 14 14.5527761 21.4068078 0.0046 

Quadratic 8.08683333 10 0.80868333 1.18955508 0.4700 

Cubic 1.62803333 2 0.81401667 1.19740029 0.3913 

Pure 

Error 

2.71928 4 0.67982   

      I+"Lack of Fit Tests"0+:  Want the selected model to have insignificant lack-of-fit. 

 

Table C2-2: Model Summary Statistics 

 Std.  Adjusted Predicted  

Source Dev. R-Squared R-Squared R-Squared PRESS 

Linear 2.97196796 0.70673217 0.65785419 0.56086143 317.421715 

2FI 3.38672363 0.71437451 0.55569368 0.14461239 618.298239 

Quadratic 0.87855861 0.98505023 0.97010046 0.92968033 50.829035 

Cubic 0.85120633 0.99398569 0.97193321 0.66978918 238.685675 

 I+"Model Summary Statistics"0+:  Focus on the model maximizing the "Adjusted 

R-Squared" and the "Predicted R-Squared". 

 


