OPTIMIZATION ON ACRYLIC ACID PLANT BY USING

ASPEN PLUS

CHIEW YEE KET

UNIVERSITI MALAYSIA PAHANG

OPTIMIZATION ON ACRYLIC ACID PLANT BY USING ASPEN PLUS

CHIEW YEE KET

Thesis submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical and Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2013

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering (Chemical).

Signature	:	
Name of Supervisor	:	DR. ANWARUDDIN HISYAM
Position	:	LECTURER
Date	:	JANUARY 2013

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:	
Name	:	CHIEW YEE KET
ID Number	:	KA 09041
Date	:	JANUARY 2013

Special Dedication to my supervisor, my family members, my friends, my fellow colleague and all faculty members for all your care, support and believe in me.

ACKNOWLEDGEMENT

I am grateful and would like to express my sincere gratitude to my supervisor Dr. Anwaruddin Hisyam for his germinal ideas, invaluable guidance, continuous encouragement and constant support in making this research possible. I appreciate his consistent support from the first day I applied to Undergraduate Research Program (URP) to these concluding moments. I am truly grateful for his progressive vision about my training in science, his tolerance of my naive mistakes, and his commitment to my future career.

I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream and sacrifice throughout my life. I acknowledge the sincerity of my parents, who consistently encouraged me to carry on my higher studies in Malaysia. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals. Special thanks should be given to my beloved fellow friends and course mates. I would like to acknowledge their comments and suggestions, which was crucial for the successful completion of this research of study

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION	iii
STUDENT'S DECLARATION	iv
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii
ABSTRAK	XX
ABSTRACT	xxi

СНАРТ	ER 1	1
1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Research Objectives	4
1.4	Research Questions	4
1.5	Scope of Study	4
1.6	Expected Outcome	5
1.7	Significance of Study	5

СНАРТЕН	R 2	7
2.1 P	Products of Acrylic Acid Plant	7
2.1.1	Acrylic Acid	7
2.1.2	Acetic Acid	
2.1.3	Physical and Chemical Properties	
2.2 C	Current Industrial Process	9
2.2.1	Reaction Kinetics and Reactor Configuration	
2.2.2	Process Flow Diagram	
2.2.3	Process Description	

2.3	Simulation	. 18
2.3.1	Aspen Plus Simulator	. 18
2.3.2	2 Aspen Property Models	. 19
2.3.3	3 Equipments Selection	. 21
2.	3.3.1 Reactor	.21
2.	3.3.2 Separators	. 22
2.	3.3.3 Columns	. 23
2.4	Optimization Method in Aspen Plus	. 25
2.4.1	l Sensitivity Analysis	. 26
2.4.2	2 Optimization	. 27
2.4.3	3 Parameters for Optimization of Separation Units of Acrylic Acid	
Plan	t	. 28

C	HAPTER	3	
	3.1 Int	troduction	
	3.2 Ph	ase I: Steady State Simulation	
	3.2.1	Step 1: Constructing Flow Sheet of Acrylic Acid Plant	
	3.2.2	Step 2: Specifying Components	
	3.2.3	Step 3: Specifying Property Method	
	3.2.4	Step 4: Specifying Stream Conditions	
	3.2.5	Step 5: Specify Block Conditions	
	3.2.5	.1 Compressor	
	3.2.5	5.2 Mixer	
	3.2.5	Heat Exchanger	
	3.2.5	.4 Reactor	40
	3.2.5	5.5 Flash Drum	41
	3.2.5	.6 Absorption Unit	
	3.2.5	.7 Liquid-liquid Extractor	
	3.2.5	5.8 Distillation Column 1	
	3.2.5	.9 Distillation Column 2	
	3.2.6	Step 6: Running the Simulation	
	3.3 Se	nsitivity Analysis	
	3.3.1	Step 1: Creating Sensitivity Block	

	3.3.2	Step 2: Specify Measured/Sampled Flow Sheet Variables	. 53
	3.3.3	Step 3: Specify Manipulated/Varies Flow Sheet Variables	. 54
	3.3.4	Step 4: Specify Ranges for Manipulated/Varied Variables	. 55
	3.3.5	Step 5: Defining Tabulated Variables	. 56
	3.3.6	Step 6: Running the Simulation	. 58
	3.3.7	Information for Each Sensitivity Block	. 59
3.	.4 Op	timization	. 62
	3.4.1	Step 1: Creating the Optimization Problem	. 64
	3.4.2	Step 2: Identifying the Sampled Flow Sheet Variables	. 65
	3.4.3	Step 3: Specifying the Constraints and Entering the Objective	
	Function	n	. 66
	3.4.3	1 Specification of Constraints	. 66
	3.4.3	2 Step 1: Creating the Constraint	. 67
	3.4.3	3 Step 2: Identifying the Sampled Flow Sheet Variables	. 68
	3.4.3	4 Step 3: Specifying the Constraint Expression	. 70
	3.4.3	5 Information of Each Constraint Block	.71
	3.4.3	6 Selecting the Constraints	.73
	3.4.4	Step 4: Identifying the Manipulated Variable and Specifying the	
	Limits		.74
	3.4.5	Step 5: Entering Optional Fortran Statement	.75
	3.4.6	Step 6: Running the Simulation	.76
	3.4.7	Information for Each Optimization Block	.76
3.	5 Su	mmary	. 80

CHAPTER 4	81
4.1 Introduction	
4.2 Phase I: Steady State Simulation of Acrylic Acid Plant	
4.3 Optimization of Acrylic Acid Plant	
4.3.1 Reactor (R-301)	
4.3.1.1 Formulation of Optimization Problem (R-301)	
4.3.1.2 Result and Discussion (R-301)	
4.3.2 Flash Drum (T-301)	
4.3.2.1 Formulation of Optimization Problem (T-301)	
4.3.2.2 Result and Discussion (T-301)	

4.3	.3 Ab	osorption Tower (T-302)	91
2	4.3.3.1	Formulation of Optimization Problem (T-302)	91
2	4.3.3.2	Result and Discussion (T-302)	91
4.3	.4 Lic	quid-liquid Extractor (T-303)	94
2	4.3.4.1	Formulation of Optimization Problem (T-303)	94
2	4.3.4.2	Result and Discussion (T-303)	94
4.3	.5 Dis	stillation Column 1 (T-304)	97
2	4.3.5.1	Formulation of Optimization Problem (T-304)	97
2	4.3.5.2	Feed Stages Location Optimization (T-304)	97
2	4.3.5.3	Reflux Ratio Optimization (T-304)	99
2	4.3.5.4	Re-boiler Heat Duty Optimization (T-304)	101
4.3	.6 Di	stillation Column 2 (T-305)	104
2	4.3.6.1	Formulation of Optimization Problem (T-305)	104
2	4.3.6.2	Feed Stages Location Optimization (T-305)	104
2	4.3.6.3	Reflux Ratio Optimization (T-305)	106
2	4.3.6.4	Re-boiler Heat Duty Optimization (T-305)	108
4.4	Summ	nary	111
CHAPT	Γ ER 5		112
5.1	Introd	uction	112
5.2	Conclu	usions	112
5.3	Recon	nmendations	114
REFERE	NCFS		115
			115
APPEND	_ ~ _ ~ .		
		1	
APPEND	ICES A2	2	118
APPEND	ICES A2 ICES A3	2	118 119
APPEND APPEND APPEND	ICES A2 ICES A3 ICES A4	2 3 4	118 119 121
APPEND APPEND APPEND APPEND	ICES A2 ICES A3 ICES A4 ICES A4	2 3 4 5	118 119 121 122
APPEND APPEND APPEND APPEND APPEND	ICES A2 ICES A3 ICES A4 ICES A4 ICES A6	2 3 4 5 6	118 119 121 122 123
APPEND APPEND APPEND APPEND APPEND APPEND	ICES A2 ICES A3 ICES A4 ICES A3 ICES A3 ICES A3	2 3 4 5	118 119 121 122 123 125

APPENDICES A9	
APPENDICES A10	
APPENDICES A11	
APPENDICES A12	
APPENDICES A13	

LIST OF TABLES

	Title	Page
Table 2.1	Physical and Chemical Properties of Acrylic Acid and Acetic Acid	9
Table 2.2	Activation Energies and Pre-exponential Terms for Reaction Number of 6 to 8	11
Table 2.3	Flow Summary Table for Acrylic Acid Process	14
Table 2.4	Preliminary Equipment Summary for Acrylic Acid Process	15
Table 2.5	Recommended Property Methods for Chemicals	20
Table 2.6	Purpose of Reactor Models in Aspen Plus Software	21
Table 2.7	Purpose of Separator Models in Aspen Plus Software	22
Table 2.8	Purpose of Column Models in Aspen Plus Software	23
Table 2.9	Parameters for Optimization of Separation Units	28
Table 3.1	Name of Equipments	32
Table 3.2	Stream Condition of Stream 1, 3, 5, 11, and 16	37
Table 3.3	Design Variables for each Model	59
Table 3.4	Flow Sheet Variables of Each Sensitivity Block	59
Table 3.5	Manipulated Variable, Lower Limit, Upper Limit and Increment for Each Sensitivity Block	61
Table 3.6	Column Number, Tabulate Variables and Fortran Statement for Each Sensitivity Block	62
Table 3.7	Constraints of Each Model	71
Table 3.8	Flow Sheet Variables for Each Constraint	72

Table 3.9	Specification, Type of Constraint, and Tolerance for Each Constraint	73
Table 3.10	Parameters of Optimization for Each Model	77
Table 3.11	Flow Sheet Variables of Each Optimization Block	77
Table 3.12	Objective Function and Selected Constraints in Optimization	79
Table 3.13	Manipulated Variable and Range Limit for Each Optimization Block	79
Table 3.14	Fortran Statement for Each Optimization Block	80
Table 4.1	Simulation Data of Acrylic Acid Plant	82
Table 4.2	Sensitivity Analysis Data of Reactor (R-301)	85
Table 4.3	Sensitivity Analysis Data of Flash Drum (T-301)	88
Table 4.4	Sensitivity Analysis Data of Absorption Tower (T-302)	92
Table 4.5	Sensitivity Analysis Data of Liquid-liquid Extractor (T-303)	95
Table 4.6	Sensitivity Analysis Data of Feed Stages Location of Distillation Column 1 (T-304)	98
Table 4.7	Sensitivity Analysis Data of Reflux Ratio of Distillation Column 1 (T-304)	100
Table 4.8	Sensitivity Analysis Data of Re-boiler Heat Duty for Distillation Column 1 (T-304)	102
Table 4.9	Sensitivity Analysis Data of Feed Stages Location of Distillation Column 2 (T-305)	105
Table 4.10	Sensitivity Analysis Data of Reflux Ratio for Distillation Column 2 (T-305)	107
Table 4.11	Sensitivity Analysis Data of Re-boiler Heat Duty for Distillation Column 2 (T-305)	109

LIST OF FIGURES

	Title	Page
Figure 2.1	Preliminary Process Flow Diagram (PFD) for the Production of Acrylic Acid from Propylene	12
Figure 2.2	Process Flowsheet of Acrylic Acid Plant	13
Figure 3.1	General Procedures for Optimization	30
Figure 3.2	Brief Flow Chart on Steady State Simulation	31
Figure 3.3	Flow Sheet for the production of Acrylic Acid Plant in Aspen Plus	32
Figure 3.4	Find Dialog Box	33
Figure 3.5	Component List	34
Figure 3.6	Global Sheet in Properties	35
Figure 3.7	Properties Sheet of Liquid-liquid Extractor (T-303)	36
Figure 3.8	Specification Sheet of Stream 1	37
Figure 3.9	Specification Sheet of Compressor (C-301)	38
Figure 3.10	Flash Option Sheet of Mixer (M-303)	39
Figure 3.11	Specification Sheet of Heat Exchanger (H-302)	40
Figure 3.12	Specification Sheet of Reactor (R-301)	40
Figure 3.13	Reactions Sheet of Reactor (R-301)	41
Figure 3.14	Specification Sheet of Flash Drum (T-301)	41
Figure 3.15	Configuration Sheet of Absorption Column (T-302)	42
Figure 3.16	Specification Sheet of Tray in Absorption Column (T-302)	43
Figure 3.17	Diameter Sheet of Absorption Column (T-302)	43

Figure 3.18	Material Streams Sheet of Absorption Column (T-302)	44
Figure 3.19	Specification Sheet of Liquid-liquid Extractor (T-303)	45
Figure 3.20	Key Components Sheet of Liquid-liquid Extractor (T-303)	45
Figure 3.21	Streams Sheet of Liquid-liquid Extractor (T-303)	46
Figure 3.22	Pressure Sheet of Liquid-liquid Extractor (T-303)	46
Figure 3.23	Configuration Sheet of Packed Distillation Column (T-304)	47
Figure 3.24	Streams Sheet of Packed Distillation Column (T-304)	47
Figure 3.25	Pressure Sheet of Packed Distillation Column (T-304)	48
Figure 3.26	Configuration Sheet of Distillation Column (T-305)	49
Figure 3.27	Streams Sheet of Distillation Column (T-305)	49
Figure 3.28	Pressure Sheet of Distillation Column (T-305)	50
Figure 3.29	Brief Flow Chart on Sensitivity Analysis	51
Figure 3.30	Sensitivity Object Manager	52
Figure 3.31	Create New ID Dialog Box	52
Figure 3.32	Define Sheet in Sensitivity	53
Figure 3.33	Create New Variable Dialog Box	54
Figure 3.34	Variable Definition Sheet in Sensitivity Analysis	54
Figure 3.35	Manipulated Variable Field in Vary Sheet	55
Figure 3.36	Values Varied Variable Field in Vary Sheet	56
Figure 3.37	Tabulate Sheet in Sensitivity Analysis	57
Figure 3.38	Fortran Sheet in Sensitivity Analysis	57
Figure 3.39	Reinitialize Dialog Box	58
Figure 3.40	Confirmation of Reinitialize Dialog Box	58
Figure 3.41	Brief Flow Chart on Optimization	63
Figure 3.42	Constraint Object Manager	64

Figure 3.43	Create New ID Dialog Box	64
Figure 3.44	Define Sheet in Constraint	65
Figure 3.45	Create New Variable Dialog Box	66
Figure 3.46	Variable Definition Sheet	66
Figure 3.47	Brief Flow Chart of Specification of Constraints	67
Figure 3.48	Constraint Object Manager	68
Figure 3.49	Create New ID Dialog Box	68
Figure 3.50	Define Sheet in Constraint	69
Figure 3.51	Create New Variable Dialog Box	69
Figure 3.52	Variable Definition Sheet	70
Figure 3.53	Specification Sheet of Constraint	71
Figure 3.54	Objective & Constraints Sheet	74
Figure 3.55	Vary Sheet in Optimization	75
Figure 3.56	Fortran Sheet in Optimization	76
Figure 4.1	Flow Sheet for the production of Acrylic Acid Plant in Aspen Plus	82
Figure 4.2	Yield of Acrylic Acid versus Temperature of Reactor (R-301)	86
Figure 4.3	Optimization Data of Reactor (R-301)	86
Figure 4.4	Recovery of Acrylic Acid versus Pressure with Different Temperature at Flash Drum (T-301)	88
Figure 4.5	Recovery of Acetic Acid versus Pressure with Different Temperature at Flash Drum (T-301)	89
Figure 4.6	Optimization Data of Flash Drum with Constant Temperature (T-301)	89
Figure 4.7	Optimization Data of Flash Drum with Constant Pressure (T-301)	90
Figure 4.8	Recovery of Acids versus Molar Flow of Water of Absorption Tower (T-302)	92

Figure 4.9	Optimization Data of Absorption Tower (T-302)	93
Figure 4.10	Recovery of Acids versus Molar Flow Rate of Solvent of Liquid-liquid Extractor (T-303)	95
Figure 4.11	Optimization Data of Liquid-liquid Extractor (T-303)	96
Figure 4.12	Recovery of Acids and Solvent versus Feed Stage Location of Distillation Column 1 (T-304)	98
Figure 4.13	Recovery of Acids and Solvent versus Reflux Ratio of Distillation Column 1 (T-304)	100
Figure 4.14	Optimization Data of Distillation Column 1 with Reflux Ratio Optimization Parameter (T-304)	101
Figure 4.15	Recovery of Acids and Solvent versus Re-boiler Heat Duty of Distillation Column 1 (T-304)	103
Figure 4.16	Optimization Data of Distillation Column 1 with Re-boiler Heat Duty Optimization Parameter (T-304)	103
Figure 4.17	Recovery of Acids versus Feed Stage Location of Distillation Column 2 (T-305)	106
Figure 4.18	Recovery of Acids and Solvent versus Reflux Ratio of Distillation Column 2 (T-305)	107
Figure 4.19	Optimization Data of Distillation Column 2 with Reflux Ratio Optimization Parameter (T-305)	108
Figure 4.20	Purity of Acids versus Re-boiler Heat Duty of Distillation Column 2 (T-305)	110
Figure 4.21	Optimization Data of Distillation Column 2 with Re-boiler Heat Duty Optimization Parameter (T-305)	110

LIST OF ABBREVIATIONS

PROPY-01	_	Propylene
NITRO-01	_	Nitrogen
OXYGE-01	_	Oxygen
CARBO-01	_	Carbon Dioxide
WATER	_	Water
ACETI-01	_	Acetic Acid
ACRYL-01	_	Acrylic Acid
DIISO-01	_	Diisopropyl Ether
PROIN	_	Inlet of Propylene
PROOUT	_	Outlet of Propylene
ACRY	_	Mole Flow of Acrylic Acid
TACRY	_	Total Mole Flow of Acrylic Acid
ACET	_	Mole Flow of Acetic Acid
TACET	_	Total Mole of Acetic Acid
DIPE	_	Diisopropyl Ether
DIISO	_	Mole Flow of Diisopropyl Ether
TDIISO	_	Total Mole Flow of Diisopropyl Ether
TOTAL 1	_	Total Mole Flow of Stream 22
TOTAL 2	_	Total Mole Flow of Stream 21
Т	_	Temperature
Р	_	Pressure
WAT	_	Water
FS	_	Feed Stages Location
RR	_	Reflux Ratio
RD	_	Re-boiler Heat Duty
DIAM	_	Diameter
LENGTH	_	Length
PD	_	Pressure Drop

TUBE	—	Number of Tube
TEM	-	Temperature
Pres	-	Pressure
CD	-	Condenser Heat Duty
NS	—	Number of Stage
BR	—	Bottom Rate
СТ	-	Constant Temperature
СР	—	Constant Pressure
REACRY	—	Recovery of Acrylic Acid
REACET	—	Recovery of Acetic Acid
PUR 1	_	Purity of Acrylic Acid
PUR 2	-	Purity of Acetic Acid

PENGOPTIMUMAN PADA LOJI ASID AKRILIK DENGAN MENGGUNAKAN ASPEN PLUS

ABSTRAK

Pengoptimuman pada reacktor dan pemisah bahagian daripada loji asid akrilik telah diyiasatkan dalam pengajian ini. Untuk mendapatkan kadar pengeluaran yang lebih tinggi dan kualiti yang lebih baik bagi produk asid akrilik, Aspen Plus telah diggunakan untuk mensimulasikan dan mengoptimumkan loji asid akrilik tersebut. Unit operasi yang dilibatkan adalah reacktor system, wap pemulihan system dan pemulihan system cecair. Metodologi penyelidikan ini telah dipisahkan kepada tiga fasa, iaitu, pertama sekali mensimulasikan loji asid akrilik dalam keadaan yang mantap, kedua analisis sensitiviti, dan akhirnya adalah pengoptimuman. Berdasarkan keputusan yang telah dapat, loji asik akrilik telah berjaya mensimulasikan dalam Aspen Plus dan kadar pengeluaran akhir produk adalah diterimakan. Untuk bahagian yang pengoptimuman, suhu optimum reacktor adalah $315 \,^{\circ}$ untuk mendapatkan hasil maksimum asid akrilik, iaitu 0.77254. Untuk unit dram flash, optimum suhu dan tekanan adalah 25 °C and 4.84atm masing-masing. Untuk menara penyerapan dan cecair-cecair pemerah, optimum kadar aliran air dan pelarut adalah 100kmol/j dan 1350kmol/j masing-masing untuk mendapatkan lebih daripada 99% asid akrilik dan asid asetik. Untuk turus penyulingan kesatu, peringkat suapan lokasi optimum, nisbah refluks dan duti haba dibekalkan adalah nombor 8, 4.44308 dan 180000MJ/j masing-masing untuk memaksimumkan pemulihan asid dan pelarut. Untuk turus penyulingan kedua, peringkat suapan lokasi, nisbah refluks dan duti haba dibekalkan adalah nombor 23, 10.5 dan 3000MJ/j masing-masing untuk mendapatkan kesucian asid akrilik yang paling tinggi. Untuk keputusan keseluruhan, ia mendapati bahawa mengoptimumkan keadaan operasi unit akan mendapatkan produk yang berkualiti dan lebih banyak bahan boleh dipulihkan.

OPTIMIZATION ON ACRYLIC ACID PLANT BY USING ASPEN PLUS

ABSTRACT

In this research of study, optimization of reactor and separators sections on acrylic acid production plant was investigated. In order to obtain higher production rate and maintain desired quality of products, the Aspen Plus simulator is used to simulate and optimize on the acrylic acid plant. The units proceed with optimization consists of reactor system, vapour recovery system (adsorption tower, and flash drum) and liquid recovery system (liquid-liquid extractor, and distillation column). The research methodology as separated into three phases, which are steady state simulation, sensitivity analysis and optimization. Based on the result obtained, the acrylic acid production plant was simulated successfully in Aspen Plus flow sheet and the final production rate of products is acceptable. For the optimization, optimum temperature of reactor is $315 \, \text{C}$ in order to obtain the maximum yield of acrylic acid which is 0.77254. For the flash drum unit, optimum temperature and pressure are 25 °C and 4.84atm respectively. For the absorption tower and liquidliquid extractor, optimum molar flow rate of water and solvent are 100kmol/h and 1350kmol/h respectively in order to recover more than 99% of acrylic and acetic acid. For the distillation column 1, optimum feed stages location, reflux ratio and re-boiler heat duty are number of 8, 4.44308 and 180000MJ/h respectively in order to maximize recovery of acids and solvent. For the distillation column 2, optimum feed stages location, reflux ratio and re-boiler heat duty are number of 23, 10.5 and 3000MJ/h respectively in order to maximize purity of acrylic acid. For overall result, it was found that by optimizing the operating conditions of units, desired quality of products is improved and more materials is recovered.

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Acrylic acid becomes more important in our daily life due to its wide applications such as its use in the manufacturing of plastic, coating, paper coating, polishes paint formulations, leather finishing, polymers, textile industries and adhesive. Hence, production of acrylic acid is increasing from year to year in order to fulfill the human needs. Due to this reason, amount of production of acrylic acid in the acrylic plant is also increasing. At the same time, acrylic plant must be able to maintain the same desired quality of acrylic acid by optimizing operating conditions in reactor and separation sections.

In the industry, the complicated problems of chemical plant are not always solved by human due to the human errors and time constraints (Bernards & Overney, 2004). There are many types of simulation programs that are used in industry which depends on the application, desired simulation products and the field of industry. Aspen plus is a powerful tool for Chemical Engineering in various fields including oil and gas production, refining, chemical processing, environmental studies, and power generation (Bernards & Overney, 2004). Therefore, Aspen Plus simulator is chosen for this study.

In present work, the acrylic acid production plant is simulated and optimized by using Aspen Plus software. The plant has two major sections which consist of reactor and separation section. In the reactor section, propylene undergoes oxidation reactions to become acrylic and acetic acid. In the separation section, products undergo five separation units in order to obtain the desired products. These five main separation units consist of flash drum, absorption tower, liquid-liquid extractor, and two units of distillation columns. Separation efficiency of each separation unit depends on operation conditions which will directly affect the amount of loss of materials, operating cost, and the desired quality of the final products.

Optimization plays an important role in order to obtain the desired quality of acrylic and acetic acids. Before carrying out the optimization, steady state simulation of the acrylic acid plant must be first simulated. Therefore, reactor and separation sectors can be optimized in order to maximize the profits, reduce energy consumption, get higher processing rates, reduce maintenance cost, and have longer time between shutdowns. The optimization parameters consists of reflux ratio, feed stages location, temperature, pressure, re-boiler heat duty and flow rate of solvent that used in whole acrylic acid plant for optimization. Therefore, it is able to produce more amount of acrylic acid with desired quality in order to fulfill the demand in the market. Apart from that, it can provide a lot of insight before actual plant commissioning is done.

1.2 Problem Statement

Nowadays, the amount of acrylic acid production is become more from year to year due to its variety applications in order to fulfill human basic needs. Hence, due to this reason, the production of acrylic acid in acrylic plant must be increased also in order to meet the required demand. When the amount or capacity of production is increase in the acrylic plant, all the operating conditions of reactor and separation sections must be adjusted to another new optimum condition in order to maintain the desired purity products. Therefore, the acrylic acid plant has to precede optimization in order to overcome a large amount of acrylic acid production.

Moreover, vapor recovery system and liquid recovery system play an important role in recover or recycle back of the reactants and products such as propylene, acrylic acid, and acetic acid in order to prevent them being released into the environment, save raw material cost and increase more revenue. According to the Acrylic Acid MSDS (2005) and Acetic Acid MSDS (2005), acrylic acid and acetic acid are potentially hazardous material which will bring effect on living things' respiratory system, eyes, skin, or ingestion. Apart from that, loss of materials can cause the economic loss of that company and accidents incident may occurs because propylene is a flammable gas. Hence, optimization on this two recovery system can prevent the loss of hazardous materials to the environment, economic loss and improve safety in the acrylic acid plant.

1.3 Research Objectives

The objectives of this study are:

- I. To simulate a production of acrylic acid process.
- II. To optimize the operating conditions in reactor and separation sections of acrylic acid plant.

1.4 Research Questions

The research questions of this study are:

- I. How to simulate a production of acrylic acid process?
- II. How to optimize of operating conditions in reactor and separation sections of acrylic plant?

1.5 Scope of Study

The main objectives of this research are to optimize the reactor and separation sections in the production of acrylic acid process. In order to obtain the result, we have limited our research within a scope which consists of:

- I. Simulation of acrylic acid plant by using Aspen Plus software.
- II. Optimization parameter for plug flow reactor is only temperature.

III. Optimization parameters of the separation section are reflux ratio, feed tray location, pressure, temperature, molar flow rate of solvent and re-boiler duty only.

1.6 Expected Outcome

From this study, it is expected that by running the models and simulations on Aspen Plus software, each operating conditions and selection will be more understandable so that the optimized condition can be achieved for an acrylic acid plant. Besides that, all units such as plug flow reactor, flash drum, absorption unit, liquid-liquid extractor, two units of distillation columns in acrylic acid plant are expected to be optimized at the optimum conditions. Furthermore, an environmental friendly acrylic acid plant is expected to be achieved by reducing loss of hazardous materials to environment.

1.7 Significance of Study

The first significance is in the terms of publication. If this study were to be published, the findings can be read or researched again by others in order to simulate and optimize the acrylic plant again. The acetic acid, propylene and acrylic acid are hazardous materials which can harm all living things. However, this study is able to minimize the loss of hazardous materials to the environment so that the acrylic acid plant can become more environments friendly and have a higher safety aspect. Apart from that, this study is carried out so as to get a better design of acrylic acid plant with all separation units under optimum conditions. Furthermore, by conducting this study, a higher quality of desired products which include acrylic acid and acetic acid by optimizing the separation units in acrylic acid plant can be obtained. Lastly, this study is also able to maximize the profits, reduced energy consumption, higher processing rates, reduced maintenance cost, and longer time between shutdowns.

CHAPTER 2

LITERATURE REVIEW

2.1 Products of Acrylic Acid Plant

2.1.1 Acrylic Acid

The main product of the acrylic plant is acrylic acid which is a clear, colorless liquid at ambient temperature and pressure (Cascieri and Clary, 1993). It can be described as a pungent, rancid, irritating, acrid and sweet (Verschueren, 1996). One of the applications of acrylic acid is used as a starting material in the production of acrylic esters and as a monomer for polyacrylic and polymethacrylic acid and salts (Genium, 1999). Besides that, it is also used as a co-monomer for polymers used as flocculants and for polymers used in molding powder, construction units, decorative emblems and insignias (Genium, 1999). Moreover, acrylic acid is used in the manufacturing of plastics, in polymer solutions for coatings, in paint formulations for leather finishing, in paper coatings, in polishes and adhesives and in general finishes and binders (Genium, 1999). According to the Acrylic Acid MSDS (2005), acrylic acid is very hazardous when in contact with skin (permeator), corrosive to skin and eye contact, skin contact may produce burn, and irritation of respiratory tract.

2.1.2 Acetic Acid

Another product of acrylic plant is acetic acid. It is by-product which produced during oxidation of propylene process. Acetic acid is an organic compound with the chemical formula CH₃COOH. It is a colorless liquid and has a distinctive sour taste and pungent smell. It is used in manufacturing of drugs, dyes, plastics, food additives and insecticides (Malvda, 2007). Acetic acid is one of the simplest and most widely used carboxylic acids having many chemical and industrial applications. Total worldwide production of acetic acid is about 6.5 million tons per year; out of which about 5 million tones are produced by methanol carbonylation process and by bacterial fermentation and the remaining 1.5 million tons by recycling (Production Report, 2005). According to the Acetic Acid MSDS (2005), it is very hazardous in case of skin contact (irritant), of eye contact (irritant), and of inhalation. Besides that, it is classified as a weak acid, but concentrated acetic acid is corrosive and attacks the skin.

2.1.3 Physical and Chemical Properties

The physical and chemical properties of acrylic acid and acetic acid are summarized in Table 2.1.

Properties	Acrylic Acid	Acetic Acid
Molecular Weight	72.06 g/mol	60.05 g/mol
Physical State	Liquid	Liquid
Melting Point	12.3 °C	16.66 °C
Boiling Point	141 °C	117.9 °C
Specific Gravity (liquid)	1.05 (20 ℃)	1.049
Specific Gravity (gas)	2.5	2.07
Vapor Pressure	3.2mmHg (20 ℃)	15.7mbar
Solubility in Water	Miscible	Miscible
Solubility	Miscible in alcohol,	Miscible in diethyl
	benzene, chloroform, ether,	ether, acetone, alcohol,
	acetone, DMSO	glycerol, benzene
Pka	4.3	4.75
Henry's Law Constant	3.2×10^{-7}	9.3 x 10 ⁻² (25 ℃)
Octanol Water Partition	0.31 - 0.46	-
Coefficient (log Kow)		
Organic Carbon Partition	2.21 L/kg	-
Coefficient (K _{oc})		
Flash Point	54 °C	40 °C
Explosive Limits	2.4% to 8.04%	19.9%
Auto ignition Temperature	390 – 446 ℃	400 °C

Table 2.1Physical and Chemical Properties of Acrylic Acid and Acetic Acid
(Ahmed, 2002)

2.2 Current Industrial Process

There are several chemical pathways to produce acrylic acid, and one of the most common ways is via the partial oxidation of propylene. The chemical reaction mechanism for producing acrylic acid involved two step processes in which propylene is first oxidized to acrolein and then further oxidized to acrylic acid. Each chemical reaction step usually takes place over a separate catalyst and at different operating conditions. The chemical reaction is in the equation (1) and (2).

$$C_3H_6 + O_2 \rightarrow C_3H_4O + H_2O$$
 (1)
Acrolein

olem

$$C_3 H_6 O + \frac{1}{2} O_2 \rightarrow C_3 H_4 O_2$$
 (2)

Acrylic acid

However, there are some several major side reactions which may occur due to the oxidation of reactants and products. The major side reactions are given below in equation (3), (4) and (5).

$$C_3H_4O + \frac{7}{2}O_2 \rightarrow 3CO_2 + 2H_2O$$
 (3)

$$C_{3}H_{4}O + \frac{3}{2}O_{2} \rightarrow C_{2}H_{4}O_{2} + CO_{2}$$
(4)
Acetic Acid

$$C_3H_6 + \frac{9}{2}O_2 \rightarrow 3CO_2 + 3H_2O$$
 (5)

Therefore, the reactors have to be operated at suitable conditions with catalyst so that can maximized the production of acrylic acid (Richard et al., 1998, pp. 716-727).

2.2.1 Reaction Kinetics and Reactor Configuration

The reactions of oxidation propylene are all irreversible because the equilibrium lies far to the right hand side (Richard et al., 1998, p. 716). The reaction kinetics with the catalyst used in the acrylic plant process is given in the Table 2.2

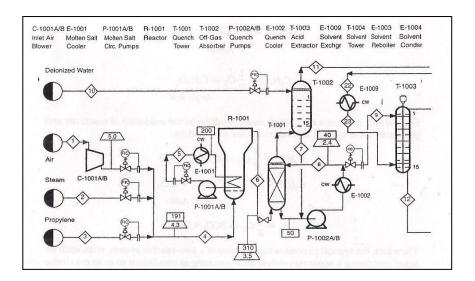
which follows the chemical equation (6), (7), and (8). The partial pressure of reactants and products are in kPa.

$$C_3H_6 + \frac{3}{2}O_2 \rightarrow C_3H_4O_2 + H_2O$$
 (6)

$$C_3H_6 + \frac{5}{2}O_2 \rightarrow C_2H_4O_2 + CO_2 + H_2O$$
 (7)

$$C_3H_6 + \frac{9}{2}O_2 \rightarrow 3CO_2 + 3H_2O$$
 (8)

where
$$-r_i = k_{0,i} \exp(-\frac{E_i}{RT}) P_{propylene} P_{oxygen}$$


Table 2.2Activation Energies and Pre-exponential Terms for Reaction Number
of 6 to 8 (Richard et al., 1998)

i	E _i (kcal/kmol)	k _{o,i} (kmol/m ³ reator//h/(kPa) ²
6	15,000	1.59×10^5
7	20,000	8.83 x 10 ⁵
8	25,000	$1.81 \ge 10^8$

According to the Richard et al. (1998), the kinetic presented in the Table 2.2 are valid in temperature range of 250 °C until 330 °C only. When the temperature is above 330 °C, the catalyst starts to coke up due to the carbon deposits on the surface of catalyst. However, when the temperature is below 250 °C, the rate of reaction will drop rapidly. Therefore, the optimum range of temperature for the reactor should be in the range of 250 °C until 330 °C.

2.2.2 Process Flow Diagram

According to the Richard et al. (1998), the process flow diagram of oxidation of propylene are given in the Figure 2.1 and Figure 2.2 which is used to model the acrylic acid plant in Aspen Plus flow sheet. However, waste treatment unit in the process flow diagram is not considered in the constructing the flow sheet.

Figure 2.1 Preliminary Process Flow Diagram (PFD) for the Production of Acrylic Acid from Propylene (Richard et al., 1998)

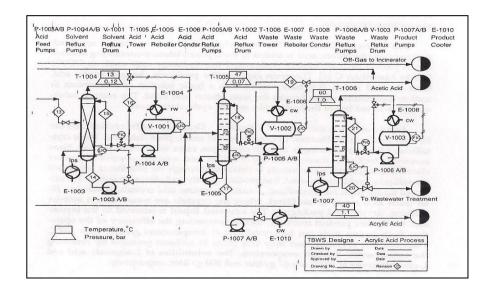


Figure 2.1 (Continued)

As another sources of process flow diagram, according to the Jamillah et al. (2000), their final process flow sheet of acrylic acid plant is shown in Figure 2.3. It is used as another reference of simulation model in Aspen Plus flow sheet. Apart from that, based on Richard (1998), the basic amount of production of acrylic acid is 50,000 metric tons per year of 99.9 mole % of acrylic acid product and the number of operating hours should be taken as 8000/yr. Besides that, the flow summary of each stream and preliminary equipment summary in acrylic acid plant are shown in the Table 2.3 and 2.4 (Richard et al., 1998).

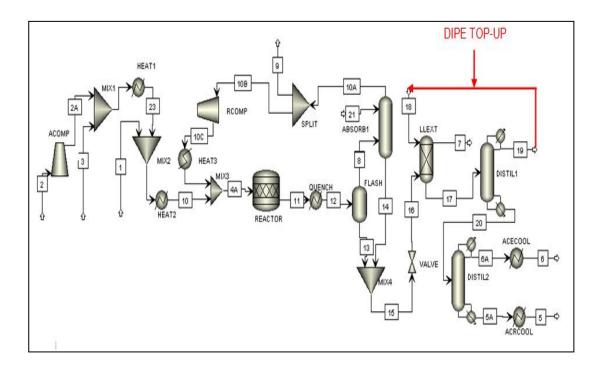


Figure 2.2 Process Flow sheet of Acrylic Acid Plant (Jamillah et al., 2000)

Stream Number	1	2	3	4	5	6	7	8
Temperature (°C)	25	159	25	191	250	310	63	40
Pressure (bar)	1.0	6.0	11.5	4.3	3.0	3.5	1.4	2.4
Vapor fraction	1.0	1.0	1.0	1.0	0.0	1.0	0.00	0.00
Mass flow (tone/h)	39.05	17.88	5.34	62.27	1075.0	62.27	3.08	1895
Mole flow (kmol/h)	1362.9	992.3	127.0	2482.2	0.00	2444.0	148.5	85200.0
Component mole flow (kmol/h)								
Propylene	0.00	0.00	127.0	127.0	0.00	14.7	0.00	0.00
Nitrogen	1056.7	0.00	0.00	1056.7	0.00	1056.7	0.00	0.00
Oxygen	280.9	0.00	0.00	280.9	0.00	51.9	0.00	0.00
Carbon Dioxide	0.00	0.00	0.00	0.00	0.00	60.5	0.00	0.00
Water	25.3	992.3	0.00	1017.6	0.00	1165.9	140.9	78870
Acetic Acid	0.00	0.00	0.00	0.00	0.00	6.54	0.65	415
Acrylic Acid	0.00	0.00	0.00	0.00	0.00	87.79	6.99	5915
Solvent(DIPE)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 2.3Flow Summary Table for Acrylic Acid Process (Richard et al., 1998)

Table 2.3(Continued)

	1							
Stream Number	9	10	11	12	13	14	15	16
Temperature (°C)	40	25	48	40	40	90	13	13
Pressure (bar)	2.4	5.0	1.0	2.4	2.4	0.19	0.12	3.0
Vapor fraction	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
Mass flow	27.46	2.54	37.35	20.87	143.0	6.63	155.3	136.4
(tone/h)								
Mole flow	1249.6	141.0	1335.4	1156.9	1591.2	93.19	1705.7	1498.0
(kmol/h)								
Component mole								
flow (kmol/h)								
Propylene	0.00	0.00	14.7	0.00	0.00	0.00	0.00	0.00
Nitrogen	0.00	0.00	1056.7	0.00	0.00	0.00	0.00	0.00
Oxygen	0.00	0.00	51.9	0.00	0.00	0.00	0.00	0.00
Carbon	0.00	0.00	60.5	0.00	0.00	0.00	0.00	0.00
Dioxide								
Water	1156.7	141.0	150.2	1156.6	198.8	0.30	226.0	198.5
Acetic Acid	6.08	0.00	0.46	0.03	6.08	6.08	0.00	0.00
Acrylic Acid	86.81	0.00	0.98	0.00	86.81	86.81	0.00	0.00
Solvent(DIPE)	0.00	0.00	0.00	0.30	1299.5	0.00	1479.7	1299.5

Stream Number	17	18	19	20	21	22	23
Temperature (°C)	89	47	47	102	60	13	40
Pressure (bar)	0.16	0.07	1.1	1.1	1.0	3.0	2.8
Vapor fraction	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mass flow (tone/h)	6.26	5.28	0.37	20.84	37.37	136.4	136.4
Mole flow (kmol/h)	86.85	90.49	6.34	1156.43	470.2	1498.5	1498.5
Component mole flow							
(kmol/h)							
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nitrogen	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oxygen	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Carbon Dioxide	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Water	0.00	4.28	0.30	1156.4	126.8	198.7	198.7
Acetic Acid	0.05	86.07	6.03	0.03	0.00	0.00	0.00
Acrylic Acid	86.80	0.14	0.01	0.00	0.00	0.00	0.00
Solvent(DIPE)	0.0	0.00	0.00	0.00	343.4	1299.8	1299.8

Table 2.4Preliminary Equipment Summary for Acrylic Acid Process
(Richard et al., 1998)

Equipments	T-1001	T-1002	T-1003	T-1004	T-1005	T-1006
MOC	Stainless	Stainless	Stainless	Stainless	Carbon	Stainless
	Steel	Steel	Steel	Steel	Steel	Steel
Diameter (m)	5.3	3.5	2.2	7.5	2.4	2.3
Height/	12	11	9.5	34	25	7.0
length (m)						
Orientation	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical
Internals	10m of	15 Sieve	15	31m of	36 Sieve	8 Sieve
	High-	Trays +	Perforated	High-	Plates	Plates
	efficiency	Demister	Plates +	efficiency	Stainless	Stainless
	Packing		Mixer	Structured	Steel	Steel
		Stainless	Stainless	Packing		
	Polyethyl	Steel	Steel	Stainless		
	ene			Steel		
Pressure	1.4	1.0	1.4	-1.0	-1.0	0
(barg)						

2.2.3 **Process Description**

Firstly, the raw materials which consist of air, steam, and propylene are mixed together before feed into reactor. The chemical reactions taken place on a single catalyst to convert the feed mixture into acrylic acid and by-products. After the reactants reacted in the reactor, the outlet stream of the reactor is at 310 °C and is in gaseous state. The outlet stream of reactor contains water and acidic compounds (acetic acid and acrylic acid) with dipoles, and non-ideal behavior would be exhibited (Jamillah et al., 2007, p.7). In order to avoid further oxidation reactions, the product stream is cooled down rapidly by quenching with a cool recycle stream of dilute aqueous acrylic acid in the flash drum (T-301).

The function of flash drum is used to separate out vapor and condensed liquid. The outlet stream of flash drum is fed to two general separation system which are vapor recovery system and liquid recovery system. The outlet vapor is fed to the vapor recovery system and the outlet condensed liquid is fed to the liquid recovery system.

In the acrylic acid plant, the separator that used as a vapor recovery system is the absorption unit. When the two containing phases are gas and a liquid, this operation is called as absorption (Christie, 2003, p. 625). Since some of the acetic acid and acrylic acid leaving from the flash drum are in gas phase, hence they are recovered back by using deionized water (liquid phase) as a solvent. This is because to acrylic acid and acetic acid has an infinite solubility in deionized water (Perry and Green, 1997). Due to the corrosive materials of acrylic acid, water and acetic acid,

16

design material for the absorption columns is by using stainless steel materials. According to the King (1980), sieve trays are chosen because have similar efficiency to bubble-trays and less 30% until 50% cost.

For the liquid recovery system, there are three units involved which are liquidliquid extractor, and two distillation columns. Firstly, liquid-liquid extractor, which is also called as acid extractor, has liquid inlet stream which contains three components. They are acrylic acid, acetic acid and water and it used diisopropyl ether (DIPE) as a solvent. As a description of liquid-liquid extraction, when the two contacting phases are liquids, where a solute or solutes are removed from one liquid phase to another liquid phase, the process is called liquid-liquid extraction (Christie, 2003, p. 626). Hence, liquid-liquid extractor is suitable to be used as a separation unit among acrylic acid, acetic acid and water. Besides that, diisopropyl ether is used as a solvent due it has high solubility for acrylic acid and acetic acid but low solubility for water (Richard et al., 1998, p. 717). Therefore, water is easily separated out from the mixture and then undergo wastewater treatment unit before release to the environment. However, acetic acid, acrylic acid and diisopropyl ether is fed into the first distillation column for further separation. Apart from diisopropyl ether, there are many other possible solvents that can be used to separate the acrylic acid such as ethyl acrylate, ethyl acetate, xylene, diisobutyl ketone, and methyl isobutyl ketone.

After that, the outlet stream of liquid-liquid extractor is fed into distillation column 1 in order to separate out the diisopropyl ether as the top product. It is recycled back to the liquid-liquid extractor and used as solvent again. However, the mixture of acrylic acid and acetic acid (bottom products) is fed to the second distillation column in order to obtain the desired products. The distillation column is chosen as the separation unit because volatile vapor phase and liquid phase that vaporizes are involved (Christie, 2003, p. 626). During the second distillation column, due to the low boiling point of acetic acid but high boiling point of acrylic acid, acetic acid becomes the vapor phase and acrylic acid becomes the liquid phase. Therefore, acetic acid is the top product but acrylic acid is the bottom product.

2.3 Simulation

A simulation is the operation of a model of a system. In the simulation, the model can be reconfigured and experimented with too expensive or impractical to do in the system it represents. On the other words, simulation is a tool to evaluate the performance of a system, existing or proposed, under different configurations of interest and over long periods of real time (Andradottir et al., 1997). The simulator that used in this study is Aspen Plus which is a component of Aspen Engineering SuiteTM (AES).

2.3.1 Aspen Plus Simulator

Aspen Plus is a powerful tool for Chemical Engineering because it runs a process simulation model by providing a comprehensive system of online prompts, hypertext help, and expert system guidance at every step (Aspen Plus: Getting Started Building and Running a Process Model, 2010). The process of simulation is applied in chemical engineering which consists of many chemical components such as mixed, separated, heated, cooled, and converted by unit operations. Besides that, Aspen Plus can solve the critical engineering and operating problems that arise throughout the lifecycle of a chemical process (Luyben, 2010). For example, design a new plant or processes, troubleshooting a process unit, and optimizing operations such as acrylic acid plant. There are some functions for using Aspen Plus Process Simulation:

- I. Predict the behavior of process by using basic engineering relationships, such as mass and energy balances, or chemical equilibrium.
- II. Simulate actual plant behavior when given reliable thermodynamics data, realistic operating conditions, and rigorous equipment models.
- III. Perform model analysis such as sensitivity analysis, case study, or constraints.
- IV. Perform optimization runs for equipments or processes.
- V. Design better plants and increase profitability in existing plants.

2.3.2 Aspen Property Models

One of the elements in the Aspen Plus Simulation is the base and property methods which is used to characterize the fluid behavior. The chosen base and property method is able to accurately model with particular stream conditions or characteristics. Due to the polar components in the acrylic acid plant which consists of water, acetic acid and acrylic acid, the system exhibited a high degree of non-ideal behavior. Besides that, according to Jamillah et al. (2007), the acetic acid-acrylic acid-water mixture is azeotropic in nature which is another reason for the non-ideal behavior. There are some recommended property methods for every chemical reaction processes which is given in the Table 2.5. Therefore, the chosen base method is NRTL-RK and the property models employed are UNIF-LL, UNIFAC and UNIF-DMD in the liquid-liquid extractor, absorber, and distillation columns respectively (Jamillah et al., 2007, p. 9).

Application	Recommended Property Methods
Azeotropic separation	WILSON, NRTL, UNIQUAC
Carboxylic acids	WILS-HOC, NRTL-HOC, UNIQ-HOC
Phenol plant	WILSON, NRTL, UNIQUAC
Liquid phase reactions	WILSON, NRTL, UNIQUAC
Ammonia plant	PENG-ROB,RK-SOAVE
Fluorochemicals	WILS-HF
Inorganic chemicals	ELECNRTL
Hydrofluoric acid	ENRTL-HF

Table 2.5Recommended Property Methods for Chemicals (Aspen Plus ®:
Aspen Plus User Guide, 2000)

According to Jamillah (2007), UNIFAC is used as a predictive model for the mixture's behavior in the event that the binary parameters for the system are not included in the Aspen databanks. Hence, it is very accurate in modeling the VLE data. Therefore, it is suitable to be applied for the absorption tower since the system involves the dissolution of the acidic gases in the water. Besides that, UNIF-LL is based on the previously described UNIFAC property method and is able to accurately model LLE data (Jamillah, 2007). This property is suitable in the liquid-liquid extraction column in order to get accurate modeling of the interaction between organic solvent and acidic solution. Furthermore, UNIF-DMD is also based on the UNIFAC method which contains more temperature dependent terms of the group-group interaction parameters (Jamillah, 2007). Hence, it is suitable for distillation

column and flash drum because both involve VLE and LLE interactions and separation is based on relative volatility.

2.3.3 Equipments Selection

2.3.3.1 Reactor

Aspen Plus provides seven models of reactors for chemical reactor simulation which are RStoic, RYield, REquil, RGibbs, RCSTR, RPlug, and RBatch. Each reactor models have their own purpose which is shown in the Table 2.6.

Table 2.6Purpose of Reactor Models in Aspen Plus Software

Model	Purposes			
RStoic	Conversion reactor with known stoichiometry			
RYield	Yield reactor with known product yields			
REquil	Two-phase chemical equilibrium reactor (stoichiometric)			
RGibbs	Multiphase chemical equilibrium reactor (non-stoichiometric)			
RCSTR	Continuous stirred tank reactor with known kinetics			
RPlug	Plug flow reactor with known kinetics			
RBatch	Batch or semi-batch reactor with known kinetics			

The heats of reaction are not required for reactor model because Aspen Plus calculates heats of reaction by using heat of formation. RStoic model is selected to be used as a reactor because the chemical stoichiometry of this oxidation of propylene in equation 6, 7, and 8 are known. Besides that, this model can specify the extent of each chemical reaction or conversion. Apart from that, RStoic can handle reactions that occur independently in a series of reactors and perform product selectivity and heat of reaction calculations (Aspen Plus [®]: Aspen Plus User Guide, 2000).

2.3.3.2 Separators

There are five different type of model of separation in Aspen Plus which are

Flash2, Flash3, Decanter, Sep and Sep2. The purpose of each separator is shown in

Table 2.7.

Table 2.7Purpose of Separator Models in Aspen Plus Software (Aspen Plus ®:
Aspen Plus User Guide, 2000)

Model	Purposes							
Flash2	Perform rigorous 2 (vapor-liquid) phase equilibrium calculations and							
	produces one vapor stream, one liquid outlet stream, and optional water							
	decant stream.							
Flash3	Perform rigorous 3 phase vapor-liquid-liquid equilibrium calculation and							
	to produce one vapor outlet stream and two liquid outlet streams.							
Decanter	Decanter models required sufficient residence time for separation of two							
	liquid phases but without a vapor phase.							
Sep	Sep combines inlet streams and separates the resulting stream into two or							
	more streams by according to splits specify for each components.							
Sep2	Sep2 combines inlet streams and separate the resulting stream into two							
	outlet streams. It is similar to Sep but offers a wider variety of							
	specifications which are purity and recovery.							

When the outlet stream comes out from the reactor, the products are at $310 \,^{\circ}$ C and gaseous phase. According to the Figure 2.1, the outlet of reactor is fed to the flash drum unit and the outlet vapor and liquid phases of flash drum are fed to the vapor recovery system and liquid recovery system respectively. Hence, Flash2 is selected as the flash drum unit because it produced one vapor outlet stream and one liquid outlet stream. Besides that, this unit can specify percentage of the liquid phase to be entrained in the vapor stream.

2.3.3.3 Columns

Columns in Aspen Plus software have nine types of models which are DSTWU, Distl, SCFrac, RadFrac, MultiFrac, PetroFrac, RateFrac, BetchFrac, and Extract. The purpose of each models of column is shown in Table 2.8.

Table 2.8Purpose of Column Models in Aspen Plus Software
(Aspen Plus [®]: Aspen Plus User Guide, 2000)

Model	Durnogog
-	Purposes
DSTWU	It designs calculation for a single-feed, two-product distillation column
	with a partial or total condenser. It can estimate reflux ratio by given the
	number of theoretical stages, number of theoretical stages by given the
	reflux ratio, optimum feed stage location, and condenser and re-boiler
	duties.
Distl	It is a shortcut multi-component distillation rating model and separate an
	inlet stream into two products. It required specifying number of
	theoretical stages, reflux ratio and overhead product rate.
SCFrac	It models petroleum refining towers and performs shortcut distillation
	calculation for columns with a single feed, one optional stripping steam
	stream, and any number of products.
RadFrac	It is a rigorous model for simulation all types of multistage vapor-liquid
	fractionation operations. It can simulate absorption, re-boiled absorption,
	stripping, re-boiled stripping, and extractive and azeotropic distillation. It
	is suitable for three phases' systems, narrow boiling or wide boiling
	systems, and systems exhibiting strong liquid phase non-ideality.
MultiFrac	It is a rigorous model for simulating multistage fractionation unit. It can
	models a complex configuration consisting of any number of column but
	each with any number of stages, any number of connections between
	columns or within column and arbitrary flow splitting or mixing of
	connecting streams.
PetroFac	It is a rigorous model designed for simulating complex vapor-liquid
i cuoi uc	fractionation operations in the petroleum refining industry. Typical
	operations include pre-flash tower, FCC main fractionators, delayed
	coke main fractionators, and vacuum lube fractionators.
RateFrac	It is a rate-based model for non-equilibrium separation. It simulates
Raterrat	single and interlinked columns involving vapor-liquid fractionation
	operations such as absorption, distillation and stripping. It can be used
	for systems with both a vapor and a liquid phase, nonreactive system,
	reactive system, and electrolyte systems.

Table 2.8(Continued)

BatchFrac	It is a rigorous model for simulating multistage batch distillation					
	columns. It can handle a wide variety of batch distillation problems					
	which include narrow-boiling, wide-boiling highly non-ideal, three					
	phase and reactive systems.					
Extract	It is a rigorous model for simulating liquid-liquid extractors. It can have					
	multiple feeds, heaters/coolers, and side-streams. In order to calculate					
	distribution coefficients, this model should specify which are activity					
	coefficient models, or equation of state capable of representing two					
	liquid phases.					

As mentioned before, the vapor outlet stream from the flash drum is fed to the vapor recovery system. The equipment that is selected is the absorption unit in order to recover back the acrylic acid and acetic acid before being released to the environment. In the Aspen Plus, there are two kinds of columns that can be used to simulate absorption unit which are RadFrac and RateFrac. However, ABSORBER in the RateFrac is chosen because it involving vapor-liquid fractionation operations and nonreactive system. RadFrac is not suitable because the system did not have three phases, narrow or wide boiling system and any strong liquid phase non-ideality are not present.

There are three separation units involved in the liquid recovery system which are the liquid-liquid extractor, and two distillation columns. For the liquid-liquid extractor, Extract is chosen because only one extractor is being used in Aspen Plus. For the other two distillation columns, Distl is chosen because it separated an inlet stream into two products (Luyben, 2006). Besides that, it just only required to specify number of theoretical stages, reflux ration and overhead product rate.

2.4 Optimization Method in Aspen Plus

In the Aspen Plus simulator, it contains the function of optimization in the model analysis tools in order to analyze the simulation process. The functions of model analysis tools include sensitivity analysis, optimization, constraint, data fit, and case study. For the optimization purpose, sensitivity analysis and optimization are selected to be use for optimization on acrylic acid plant. As a definition of optimization, it is the engineers work to improve the initial design of equipment and strive to enhance the operation of that equipment (Thomas and David, 2001, p. 4). Optimization can bring a lot of benefits and advantages for any plants because it can realize the largest production, greatest profit, minimum operating cost, and least energy usage. Furthermore, optimization can also lead to reduced maintenance costs, less equipment wear, and better staff utilization.

There are essentially two type of optimization. The first is termed as topological optimization and deals with the topology or arrangement of process equipment (Richard et al., 1998, p. 510). The second type is known as parametric optimization and it deals with the operating variables, such as temperature, pressure or reflux ratio for a given piece of equipment or process (Richard et al., 1998, p. 510). In this study, parametric optimization method is chosen to progress the optimization process on the acrylic acid plant.

2.4.1 Sensitivity Analysis

Sensitivity Analysis is a tool for determining how a process reacts by varying the key operating and design variables (Aspen Plus [®]: Aspen Plus User Guide, 2000). The changes made to a flow sheet input quantity in a sensitivity block do not affect the simulation and so, it runs independently of the base-case simulation. The results of Sensitivity Analysis are reported in a table on the Sensitivity Results Summary sheet. The first n columns of the table list the values of the variables that are varied, where n is the number of varied flow sheet variables entered on the Sensitivity Input Vary sheet. The remaining columns in the table contained the values of variables that were tabulated in the Tabulated sheet.

The function of sensitivity analysis is to vary one or more flow sheet variables and study the effect of that variation on other flow sheet variables. Hence, it is a valuable tool for performing the "what if" study for these variables but the flow sheet variables that are varied must be the inputs to the flow sheet. Besides that, it is used to verify if the solution to a design specification lies within the range of the manipulated variable. Apart from that, another main function is used to perform a simple process optimization for the process. Moreover, it is used to generate tables and plot of simulation results as functions of feed stream, block input, or other input variables in order to provide additional information to base-case results, but have no effect on the base-case simulation.

2.4.2 Optimization

The function of optimization in the model analysis tools is used to maximize or minimize a user-specified objective function by manipulating decision variables. Objective function is a mathematical function that provides the best values of the decision variables which will reach a minimum or a maximum (Richard et al., 1998, p. 510). Hence, it is goodness or measurement for the optimization. For optimization, when the optimum measurement is a profit, it should be maximize, but when optimum measurement is a cost, it should be minimize. The objective function can be any valid Fortan expression involving one or more flow sheet quantities.

Before using the function of optimization, constraints must be imposed in the model analysis tools. Constraints are limitations on the values of decision variables. As stated before, the definition of design variables is those independent variables where the engineer has some control (Richard et al., 1998, p. 509). Anyway, constraint is divided into two categories which are equality constraint and inequality constraint (Richard et al., 1998, p. 510). The equality constraints within an optimization are similar to design specifications and it can be any function of flow sheet variables computed using Fortran expressions or in-line Fortran statements.

According to the Aspen Plus Guide (2000), there are some recommended procedure for creating an optimization problem which are:

i. Start with a simulation because it is easier to detect flow sheet errors. Next, determine the reasonable specifications, a reasonable range of decision variables and get a good estimate for the tear streams.

- Perform sensitivity analysis before optimization in order to find appropriate decision variables and their ranges.
- iii. Evaluate the solution using sensitivity analysis in order to find out if the optimum is broad or narrow.

2.4.3 Parameters for Optimization of Separation Units of Acrylic Acid Plant

In optimizing a chemical process, the key decision variables have to be identified correctly and early in the optimization procedure. This is because it reduced the computational effort and time taken for optimizing the process (Soo et al, 1998). If the decision variables cannot be identified correctly, it will consume a lot of time to carry out an optimization and computational effort. The choice of decision variables is crucial to the efficiency of the optimization process. There are some important variables that must always be considered for most chemical process which include the operating conditions for reactor, single-pass conversion in the reactor, recovery of unused reactants, purge ratios for recycle streams, purity of products, reflux ratio and components recovery in columns, and finally, the operating pressure of separators (Richard et al., 1998, pp. 540-541). Therefore, optimized parameters that are used for acrylic acid plant are identified in the Table 2.9.

Table 2.9 Parameters for Optimization of Separation Units

Separation Units	Parameters for Optimization
Absorption tower	Number of stages and solvent flowrate
Liquid-liquid extractor	Number of stages and solvent flowrate
Distillation column 1	Reflux ratio, feed trays location, and reboiler duty
Distillation column 2	Reflux ratio, feed trays location, and reboiler duty

CHAPTER 3

METHODOLOGY

3.1 Introduction

The study is carried out by using Aspen Plus software to simulate and optimize the acrylic acid plant. The simulation is used to evaluate the performance of the acrylic acid plant and solved the critical engineering and operating problems. For the optimization, it is obtained the optimum conditions for each reactor and separation sections in the acrylic acid plant. Generally, the methodology is divided into three parts which are Phase I: Steady state simulation; Phase II: Sensitivity analysis; Phase III: Optimization. The first phase is described how to simulate a steady state of acrylic acid plant in the flow sheet. The second phase is described how to analysis the design variables for all the models by using Sensitivity Analysis. Lastly, the third phase is described how to use optimization to maximize or minimize a user-specified objective by manipulating decision variables.

Before start to optimize the acrylic acid plant, firstly, simulation of acrylic acid plant is started so that a reasonable range of decision variable is determined. Secondly, sensitivity analysis has performed before the optimization because it used to find appropriate decision variables and their ranges. After two previous steps are done, the optimization is carried out and relationship among four phases is shown in Figure 3.1.

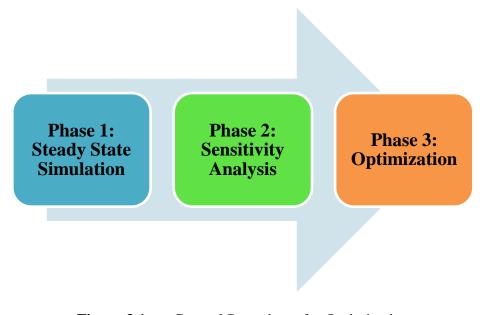


Figure 3.1General Procedures for Optimization

3.2 Phase I: Steady State Simulation

There are six steps to simulate a steady state of acrylic acid plant which are construct flow sheet, specify components, specify property method, specify stream's condition, specify block condition and run the simulation. A flow chart of steady state simulation is shown on Figure 3.2.

Figure 3.2 Brief Flow Chart on Steady State Simulation

3.2.1 Step 1: Constructing Flow Sheet of Acrylic Acid Plant

The Aspen Plus flow sheet is a section to displays the process flow sheet for the simulation. It includes group of blocks, pumps, heaters, or flow streams in order to simplify viewing if the simulation. According to the Figure 2.1, 2.2, and 2.3, a flow sheet of acrylic acid plant in aspen plus is simplified as Figure 3.3. The name for equipments is listed in the Table 3.1.

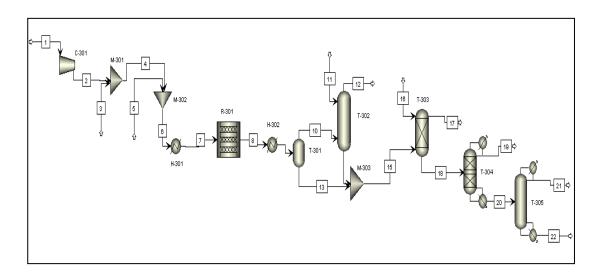


Figure 3.3 Flow Sheet for the production of Acrylic Acid Plant in Aspen Plus

Symbols	Name of Equipments
C-301	Inlet Gas Blower
H-301	Heat Exchanger 1
H-302	Heat Exchanger 2
M-301	Mixer 1
M-302	Mixer 2
M-303	Mixer 3
R-301	Plug Flow Reactor
T-301	Flash Drum
T-302	Absorption Tower
T-303	Liquid-liquid Extractor
T-304	Distillation Column 1
T-305	Distillation Column 2

Table 3.1Name of Equipments

3.2.2 Step 2: Specifying Components

In the acrylic acid plant, the chemical components involved in the reactor and separation sections are propylene, nitrogen, oxygen, carbon dioxide, water, acetic acid, acrylic acid, and diisopropyl-ether. All of these components are found in the Aspen Plus Databank. In order to select chemical components, firstly, from the Data menu, Components button is clicked. Find dialog box is used to enter the search criteria for these components such as component name or formula, component class, molecular weight, boiling point, or CAS number. Figure 3.4 shows that finding propylene component in the Find Dialog Box.

Name or Formula	Advanced				
					Find now
Component name or f	ormula : propylene	9			Close
Match only composite	onents beginning wi	th this string			
					New search
					Databank
	ent to add to list				Databank
Double click on compor		Databank	- MOV		
Component name	Formula	Databank	MW 42.0900	BP <k></k>	CAS no
Component name PROPYLENE	Formula C3H6-2	PURE11	42.0806	225.46	CAS no
Component name PROPYLENE DIPROPYLENE-GL	Formula C3H6-2 C6H14O3-D2	PURE11 PURE11	42.0806 134.175	225.46 504.95	CAS no ^ 115-07-1 25265-71-8
Component name PROPYLENE DIPROPYLENE GL TRIPROPYLENE G	Formula C3H6-2 C6H14D3-D2 C9H20D4	PURE11 PURE11 PURE11	42.0806 134.175 192.255	225.46 504.95 540.35	CAS no 115-07-1 25265-71-8 24800-44-0
Component name PROPYLENE DIPROPYLENE-GL TRIPROPYLENE-G PROPYLENE-0XIDE	Formula C3H6-2 C6H1403-D2 C9H2004 C3H60-4	PURE11 PURE11 PURE11 PURE11	42.0806 134.175 192.255 58.08	225.46 504.95 540.35 307.65	CAS no 115-07-1 25265-71-6 24800-44-0 75-56-9
Component name PROPYLENE DIPROPYLENE GL TRIPROPYLENE G PROPYLENE -0XIDE 1,3-PROPYLENE -0	Formula C3H6-2 C6H14O3-D2 C9H20D4 C3H6O-4 C3H6O-D0	PURE11 PURE11 PURE11 PURE11 PURE11	42.0806 134.175 192.255 58.08 58.08	225.46 504.95 540.35 307.65 321	CAS no 115-07-1 25265-71-5 24800-44-0 75-56-9 503-30-0
Component name PROPYLENE DIPROPYLENE-GL TRIPROPYLENE-G PROPYLENE-0XIDE 1.3-PROPYLENE-0 HEXAFLUOROPRO	Formula C3H6-2 C6H14O3-D2 C9H20D4 C3H6O-4 C3H6O-D0 C3F6	PURE11 PURE11 PURE11 PURE11 PURE11 PURE11 PURE11	42.0806 134.175 192.255 58.08 58.08 150.023	225.46 504.95 540.35 307.65 321 243.55	CAS no 115-07-1 25265-71-6 24800-44-C 75-56-9 503-30-0 116-15-4
Component name PROPYLENE DIPROPYLENE-GL TRIPROPYLENE-G PROPYLENE-OXIDE 1.3-PROPYLENE-OXIDE 1.3-PROPYLENE-OXIDE MEXAFLUOROPRO PROPYLENE-CARB	Formula C3H6-2 C6H1403-D2 C9H2004 C3H60-4 C3H60-D0 C3F6 C4H603-D1	PURE11 PURE11 PURE11 PURE11 PURE11 PURE11 PURE11	42.0806 134.175 192.255 58.08 58.08 150.023 102.09	225.46 504.95 540.35 307.65 321 243.55 514.85	CAS no 115-07-1 25265-71-E 24800-44-C 75-56-9 503-30-0 116-15-4 108-32-7
Component name PROPYLENE DIPROPYLENE GL TRIPROPYLENE GL PROPYLENE OXIDE 1.3-PROPYLENE O HEXAFLUOROPRO PROPYLENE CARB PROPYLENE LABININE	Formula C3H6-2 C9H1403-D2 C9H2004 C3H60-4 C3H60-D0 C3F6 C4H603-D1 C3H7N-D1	PURE11 PURE11 PURE11 PURE11 PURE11 PURE11 PURE11 PURE11	42.0806 134.175 192.255 58.08 58.08 150.023 102.09 57.0953	225.46 504.95 540.35 307.65 321 243.55 514.85 334	CAS no 115-07-1 25265-71-£ 24800-44-C 75-56-9 503-30-0 116-15-4 108-32-7 75-55-8
Component name PROPYLENE DIPROPYLENE-GL TRIPROPYLENE-GL PROPYLENE-O HEXAFLUOROPRO PROPYLENE-CARB PROPYLENE-GL DIPROPYLENE-GL	Formula C3H6-2 C9H1403-D2 C9H2004 C3H60-4 C3H60-D0 C3F6 C4H603-D1 C3H7N-D1	PURE11 PURE11 PURE11 PURE11 PURE11 PURE11 PURE11	42.0806 134.175 192.255 58.08 58.08 150.023 102.09	225.46 504.95 540.35 307.65 321 243.55 514.85	CAS no 115-07-1 25265-71-E 24800-44-C 75-56-9 503-30-0 116-15-4 108-32-7
Component name PROPYLENE DIPROPYLENE GL TRIPROPYLENE GL PROPYLENE OXIDE 1.3-PROPYLENE O HEXAFLUOROPRO PROPYLENE CARB PROPYLENE LABININE	Formula C3H6-2 C6H1403-D2 C9H2004 C3H60-4 C3H60-4 C3F6 C4H603-D1 C3H7N-D1 C10H2203-E1	PURE11 PURE11 PURE11 PURE11 PURE11 PURE11 PURE11 PURE11	42.0806 134.175 192.255 58.08 58.08 150.023 102.09 57.0953	225.46 504.95 540.35 307.65 321 243.55 514.85 334	CAS no 115-07-1 25265-71-£ 24800-44-C 75-56-9 503-30-0 116-15-4 108-32-7 75-55-8

Figure 3.4 Find Dialog Box

After the components searched by Find Dialog Box, then correct chemical components are selected from the list and Add button is clicked in order to add it to the components list. After all of these chemical components are selected, the components list is seen like Figure 3.5.

PRC)PY-01	Conventional	PROPYLENE	СЗН6-2
NITI	RO-01	Conventional	NITROGEN	N2
יאכ	'GE-01	Conventional	OXYGEN	02
CAR	RBO-01	Conventional	CARBON-DIOXIDE	CO2
	TER	Conventional		H2O
ACE	TI-01	Conventional	ACETIC-ACID	C2H4O2-1
	RYL-01	Conventional	ACRYLIC-ACID	C3H4O2-1
DIIS	0-01	Conventional	DIISOPROPYL-ETH	C6H14O-3

Figure 3.5 Component List

3.2.3 Step 3: Specifying Property Method

In Aspen Plus, the global property method for all property calculations, but some of the equipments used different property methods which are absorption unit, liuid-liquid extractor, distillation column 1 and distillation column 2. As mentioned previously, the chosen base method for whole simulation is NRTL-RK. In order to specify the global property method, the Properties from Data menu is clicked and then the property method is specified in the Property Method list. Once the property method is selected, the base method is automatically selected as same method. Figure 3.6 shows that the selection of property method in the Global sheet.

√Global	✓Global Flowsheet Sections Referenced							
	rty methods & r ss type:	nodels	•	Pr	operty method:	NRTL-RK	•	
Basein	nethod:	NRTL-RK	•	ΓĒ	Modify proper	y models		
Henry	components:		•	Va	apor EOS:	ESRK	-	
- Petro	leum calculati	on options—			Data set:	1	<u>-</u>	
Free-	water method:	STEAM-T/		Li	quid gamma:	GMRENON	-	
Wate	er solubility:	3	•		Data set:	1		
				Li	quid enthalpy:	HLMX30		
	rolyte calculati	on options-		Li	quid volume:	VLMX01	-	
Cherr	Chemistry ID:							
1 I U	Use true-components							
				1v.	neat of mixing			

Figure 3.6 Global Sheet in Properties

As mention early, the property method employed in the liquid-liquid extractor, absorber, and distillation columns are not same with the base method and they are UNIF-LL, UNIFAC and UNIF-DMD respectively. In order to specify property method for the certain equipment, firstly, the Block from the Data Menu is clicked and the related units are selected. Then, the Block Option is clicked and related property method is selected in the Property Method. Figure 3.7 shows that the Properties sheet of liquid-liquid extractor.

Properties	Simulation Options	Diagnostics EO Option	ns
- Property op	tions		
Property me	ethod:	JNIF-LL	•
Henry comp	oonents ID:		•
- Electrolytes	calculation options		
Chemistry II			_
Simulation a	approach:	True species	
- Petroleum o	calculation options		
		STEAM-TA	•
	pility method:	3 - Global method	

Figure 3.7 Properties Sheet of Liquid-liquid Extractor (T-303)

3.2.4 Step 4: Specifying Stream Conditions

For all material process, feed streams must be specified flow rate, composition and thermodynamic condition. In order to enter the specification for a stream, firstly, the Stream from the Data Menu is clicked. In the Streams Object Manager, the stream is selected and Edit is clicked. On the Specification sheet as shown in Figure 3.8, the thermodynamic condition of the streams are specified which include temperature, pressure and vapor fraction. Next, the stream composition is specified by using flow rate or flow fractions for each component. Table 3.2 shows that the streams conditions required to specify before running the simulation. All the stream number sequence is followed to the flow sheet in Figure 3.1.

✓Specifications	Flash Options	PSD	Component A	ttr. EO Options
Substream name:	MIXED	•] Re	f Temperature
State variables			omposition	
Temperature	•	N	tole-Flow 📃 🖡	kmol/hr 💌
25 0	-		Component	Value
Pressure	•		PROPY-01	0
	oar 🔻		NITRO-01	1056.7
			OXYGE-01	280.9
T . 10			CARBO-01	0
	vlole 🗾		WATER	25.3
k	kmol/hr 🗾 💌		ACETI-01	0
			ACRYL-01	0
Solvent:	T		DIISO-01	0
			Total:	1362.9

Figure 3.8 Specification Sheet of Stream 1

Stream Number	1	3	5	11	16
Temperature (°C)	25	159	25	25	40
Pressure (bar)	1.0	6.0	11.5	5.0	2.8
Vapor fraction	1.0	1.0	1.0	0.0	0.0
Component mole flow (kmol/h)					
Propylene	0.00	0.00	127.0	0.00	0.00
Nitrogen	1056.7	0.00	0.00	0.00	0.00
Oxygen	280.9	0.00	0.00	0.00	0.00
Carbon Dioxide	0.00	0.00	0.00	0.00	0.00
Water	25.3	992.3	0.00	141.0	198.7
Acetic Acid	0.00	0.00	0.00	0.00	0.00
Acrylic Acid	0.00	0.00	0.00	0.00	0.00
Solvent(DIPE)	0.00	0.00	0.00	0.00	1299.8

Table 3.2Stream Condition of Stream 1, 3, 5, 11, and 16

3.2.5 Step 5: Specify Block Conditions

The details block conditions must be specified according to the references before run the simulation. In the flow sheet of acrylic acid plant, there are totally twelve equipments which include reactor, flash drum, liquid-liquid extractor, two distillation column and their conditions is accordingly to the Table 2.4. However, some of equipments such as compressor, mixer, and heat exchanger are depend on the outlet stream conditions required.

3.2.5.1 Compressor

There are only one compressor unit in the flow sheet and it is used to increase the pressure of air inlet stream before fed to the reactor. In the Specification Sheet, type of positive displacement compressor model is selected and 5 bar of discharge pressure is specified. Figure 3.9 shows that how to specify the specifications sheet of the compressor.

Specifications	Calculatio	n Options	Power Loss	Convergence	In		
Compressor mode	el						
Type: Positive displacement							
Cutlet specification	on						
 Discharge pre 	ssure:	5	bar	•			
C Pressure char	nge:		atm	-			
C Pressure ratio	:						
C Brake horsep	ower:		kW	-			
C Use performan	nce curves	to determine	discharge condi	tions			
- Efficiencies							
Isentropic:	P	olytropic:	Me	chanical:			

Figure 3.9 Specification Sheet of Compressor (C-301)

3.2.5.2 Mixer

In the flow sheet, there are three units of mixers which used to combines inlet material streams into one outlet stream. All their specifications of the mixer are based on the outlet streams conditions required. Figure 3.10 shows that how to specify the Flash Option sheet of Mixer-303 (M-303).

✓Flash Options		
Mixer specification	18	
Pressure:	2.4 bar 💌	·
Valid phases:	Vapor-Liquid	-
Temperature estim	Maximum iteration Error tolerance:	

Figure 3.10 Flash Option Sheet of Mixer (M-303)

3.2.5.3 Heat Exchanger

There are two units of heat exchangers in the flow sheet which used to change the temperature and pressure among inlet and outlet streams. The specifications of heat exchanger are depends on outlet streams conditions. Valid phase for both heat exchangers is vapor-liquid only. Figure 3.11 shows that how to specify the specification sheet of Heat Exchanger-302 (H-302).

Specifications	Flash Options			
🗖 Flash specificati	ons			
Temperature		• 60	С	-
Pressure		• 1	bar	-
Yelid elsess		,		_
Valid phases Vapor-Liquid				
Vapor-Liquio	•			

Figure 3.11 Specification Sheet of Heat Exchanger (H-302)

3.2.5.4 Reactor

RStoi in Reactors is used as a model of reactor in acrylic acid plant. According to the Richard et al (1998), the reactor is carried out in 310 °C and 3bar and the chemical reaction is oxidation of propylene which followed to the equation 6, 7, and 8. Figure 3.12 and 3.13 show that how to specify the Specification Sheet and Reactions Sheet respectively in reactor.

Specifications	✓Reactions [(Combustion	Heat of Rea	iction	Selectivity	PSD	Component Attr.
Operating cond Pressure Temperature	itions	• 3 • 310	bar C	•			
Valid phases	<u>.</u>	•					

Figure 3.12 Specification Sheet of Reactor (R-301)

Specifications	· VReactions	Combustion	Heat of Reaction	Selectivity	PSD	Component Attr.	
Reactions-							
Bxn No.	Specification type	Stoichiomet	try				
1	Molar extent	PROPY-01	+ 1.5 OXYGE-01> 4	ACRYL-01 + WA	TER		
2	Molar extent	PROPY-01	+ 2.5 OXYGE-01> 4	ACETI-01 + CAR	BO-01 +	WATER	
3	Molar extent	PROPY-01	+ 4.5 OXYGE-01> 3	3 CARBO-01 + 3	WATER		
	New	E-b	Dutur				
_	New	Edit	Delete				
Reactions	occur in series						

Figure 3.13 Reactions Sheet of Reactor (R-301)

3.2.5.5 Flash Drum

The outlet stream or product stream of reactor is then fed into flash drum at $40 \,^{\circ}$ and 2.4bar. The Flash2 in Separators is selected to be the flash drum unit. The valid phase of vapor-liquid is selected for the flash drum because outlet consists of vapor and liquid phases. Figure 3.14 show that how to specify the Specification Sheet of flash drum unit.

Specifications	Flash Options	Entrainment		
Flash specification	ons			
Temperature	.	40	C 🔽	
Pressure	•	2.4	bar 💌	
Valid phases				
Vapor-Liquid	-			

Figure 3.14 Specification Sheet of Flash Drum (T-301)

3.2.5.6 Absorption Unit

The outlet vapor stream from flash drum is fed to the absorption unit in order to recovery the acrylic acid and acetic acid. The ABSORBER in the RateFrac is selected to be the absorption unit. According to the Richard et al (1998), it has fifteen number of segment but do not have any condenser and re-boiler. Figure 3.15 shows that how to specify the Configuration Sheet of absorption column. Besides that, tray type of absorber is sieve trays and column diameter is 3.5 meter. The Specification sheet and Diameter sheet are shown in Figure 3.16 and 3.17 respectively. Lastly, Figure 3.18 shows that how to specify the inlet outlet of material stream in Materials Streams Sheet.

Setup options		
Number of segments:	15 -	
Condenser:	None	
Reboiler:	None	
📕 Assume equilibrium sta	age	
Assume equilibrium state Operating specifications –	age	
	oge	
Operating specifications		

Figure 3.15 Configuration Sheet of Absorption Column (T-302)

Specifications	JDiameter Opti	onal Parameters 📔 I	Holdups	Interface R	loutines
Section informa		Ending segme	nt: 15		
Tray type Type: Number of pass	Sieve traj ses: 1	ys 💌			
Number of tray: Trays per set Total numb	egment:	1			

Figure 3.16 Specification Sheet of Tray in Absorption Column (T-302)

Specifications	√ Diameter	Optional Pa	arameters	Holdups	Interface R	loutines	
Column diamete	er						
Specify diar	neter:	3.5	meter	•			
C Use calcula	ited diameter						
Calculated dian	neter basis —						
Percent flooding]:	80	_				
Base segment:							
Diameter estima	ite:		meter	-			

Figure 3.17Diameter Sheet of Absorption Column (T-302)

eed streams						
Name	Column	Segment	Convention			
10	1	16	Above segment	-		
11	1	1	Above segment	-		
oduct streams						
Name	Column	Segment		Basis	Flow	Units
	Column	Segment	Phase Vapor Liquid	Basis Mole	Flow	Units kmol/hr

Figure 3.18 Material Streams Sheet of Absorption Column (T-302)

3.2.5.7 Liquid-liquid Extractor

The outlet streams of flash drum and absorption unit are combined together by mixer and then fed into liquid-liquid extractor in order to remove water by using diisopropyl-ether as a solvent. The model Icon 1 in the Extract is selected to be the liquid-liquid extractor. According to the Richard et al (1998), it contains fifteen number of stage in adiabatic thermal condition and operated in 1.4 barg. Figure 3.19 and Figure 3.22 shows that how to specify number of stage and pressure profile in the Specifications and Pressure sheets respectively. Moreover, key components required to specify in first and second liquid phases because it will influenced the composition of components in the product streams and Figure 3.20 shows how to specify the key components in liquid-liquid extractor. Next, location of feed, product streams, and liquid phases are specified accordingly to Figure 3.21.

✓Specs	Key Components	√ Streams	✓Pressure	Heat Streams
	puration er of stages: 15		 Thermal op Adiabat 	
				temperature profile heat duty profile
- Tempe	erature profile		Heat duty p	
	Stage Temperatur	e]	Stag	e Heat duty cal/sec
*			*	

Figure 3.19 Specification Sheet of Liquid-liquid Extractor (T-303)

Specs Key Components	Streams	✓ Pressure	Heat Streams
1st liquid phase Available components PROPY-01 NITRO-01 OXYGE-01 CARBO-01 WATER	> >> < < < <	Key compone DIISO-01 ACE TI-01 ACRYL-01	ents
2nd liquid phase Available components ACETI-01 ACRYL-01 DIISO-01	> >> < <	- Key compone PROPY-01 NITRO-01 OXYGE-01 CARBO-01 WATER	ents

Figure 3.20 Key Components Sheet of Liquid-liquid Extractor (T-303)

specs	Key Compone	ents <mark>√Stre</mark>	eams 🗸 Pressu	ure∣ HeatS	treams
Feed s	treams				
	Name	Stage	1		
▶ 16		1	1		
15		15	1		
Produc	ct streams				
Produc	ot streams Name	Stage	Phase	Flow	Units
Produce 17		Stage	Phase 2nd liquid	Flow	Units kmol/hr
		Stage 1 15		Flow	1

Figure 3.21 Streams Sheet of Liquid-liquid Extractor (T-303)

~	Spe	ecs 🗸 Key (Components	✓Streams ✓	Pressure	Heat Streams	
	– Pre	essure profile	a				
		produc produc	0				
		Stage	Pressure				
			barg 💌				
		1	1.4				
		민 🖻	1.4				
		11	1.4				
			1.4				
	1 V						
	*						

Figure 3.22 Pressure Sheet of Liquid-liquid Extractor (T-303)

3.2.5.8 Distillation Column 1

After the liquid-liquid extractor remove the excess water, one of the outlet stream is fed into distillation column 1 in order to remove and recycle back the diisopropyl-ether to the liquid-liquid extractor. The Icon2 in Distl is selected to be distillation column 1. In the column, the top product is diisopropyl-ether and bottom product is acrylic acid and acetic acid. According to Jamillah et al. (2007), the distillation column 1 has fifteen numbers of stages, one total condenser and one reboiler. Figure 3.23 shows that how to specify the Configuration Sheet of distillation column 1. Besides that, the feed stream in on stage number four and it operated at 0.1bar (Richard et al., 1998). The Stream Sheet and Pressure Sheet are shown in Figure 3.24 and Figure 3.25 respectively.

Setup options Number of stages: Condenser: Total Reboiler: Kettle Valid phases: Valid phases Valid phases
Condenser: Total Reboiler: Kettle Valid phases: Vapor-Liquid Convergence: Standard
Reboiler: Kettle Valid phases: Vapor-Liquid Convergence: Standard
Valid phases: Vapor-Liquid Convergence: Standard Operating specifications
Convergence: Standard
Operating specifications
Bottoms rate 💌 Mole 💌 93.19 kmol/hr 💌
Free water reflux ratio: Feed basis

Figure 3.23Configuration Sheet of Packed Distillation Column (T-304)

Name	1 01						
	Stage	Convention					
▶ 18	4	Above-Stage	-				
Product streams							
Product streams	Stage	Phase	Basis	Flow	Units	Flow ratio	Feed specs
	Stage	Phase Liquid	Basis	Flow	Units kmol/hr	Flow ratio	Feed specs

Configuration	sure ✓Condenser Reboiler 3-Phase
View: Top / Bottom	•
Top stage / Condenser pressure –	
Stage 1 / Condenser pressure:	0.1 🔹 🗸 🗸
Stage 2 pressure (optional) Stage 2 pressure: Condenser pressure drop:	atm 💌
Pressure drop for rest of column (o	ptional)
Stage pressure drop:	atm 💌
Column pressure drop:	atm 🔻

Figure 3.25 Pressure Sheet of Packed Distillation Column (T-304)

3.2.5.9 Distillation Column 2

Finally, the bottom product of packed distillation column is fed into second distillation column in order to obtain the desired products which are acrylic acid and acetic acid. The Icon1 in Distl is selected to be distillation column 2. According to Richard et al. (1998), the distillation column 2 has thirty-six numbers of stages, one total condenser and one re-boiler. Figure 3.26 show how to specify the Configuration Sheet of distillation column 2. Furthermore, the feed stream in on stage number twenty-three and it operate at -1.0barg. Figure 3.27 and 3.28 shows how to specify feed and product stream and pressure in the Stream Sheet and Pressure Sheet respectively.

Configuration Stream	ms VPressure VCondenser Reboiler 3-Phase
- Setup options	
Number of stages:	BE
Condenser:	Total 🗸
Reboiler:	Kettle
Valid phases:	Vapor-Liquid
Convergence:	Standard 🗨
- Operating specification	8
Reflux ratio	▼ Mole ▼ 10 ▼
Bottoms rate	▼ Mole ▼ 86.93 kmol/hr ▼
Free water reflux ratio:	Feed basis

Figure 3.26 Configuration Sheet of Distillation Column (T-305)

✓Configuration ✓Stream	ns √ Press	ure 🗸 🗸 Condense	er Reboiler	3-Phase			
Feed streams							
Name	Stage	Convention					
▶ 20	28 📑	On-Stage					
Deaduration							
Product streams Name	Stage	Phase	Basis	Flow	Units	Flow ratio	Feed specs
	Jiage		Dasis	FIUW	Units	11000100	
21	1	Liquid	Mole		kmol/hr		Feed basis
22	36	Liquid	Mole		kmol/hr		Feed basis
		•			-		

Figure 3.27Streams Sheet of Distillation Column (T-305)

1 barg 💌
1 barg 💌
1 barg 💌
atm 🗾
atm 🔽
)
atm 💌
atm 🔽

Figure 3.28 Pressure Sheet of Distillation Column (T-305)

3.2.6 Step 6: Running the Simulation

After all the previous steps are done, next step is run the simulation. Simulation is controlled by using the commands on the Run menu, the Simulation Run toolbar, or Control Panel. In order to run the simulation, from the Run menu, Run button is clicked.

3.3 Sensitivity Analysis

As mentioned previously, the optimization is involved two sections which are reactor and separation sections. Reactor section included optimized on plug flow reactor and separation section included flash drum, adsorption unit, liquid-liquid extractor, two distillation columns. Sensitivity analysis in Aspen Plus is used for determining parameters of design variables and to perform simple process optimization. A brief flow chart of Sensitivity Analysis is shown in Figure 3.29.

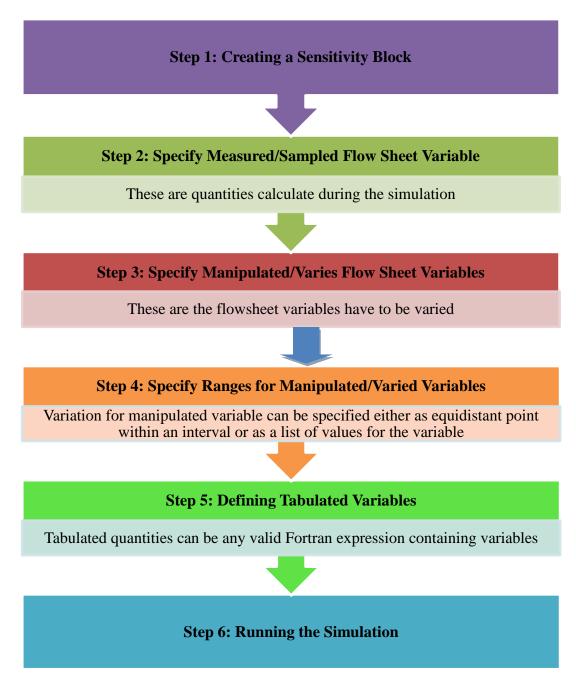


Figure 3.29Brief Flow Chart on Sensitivity Analysis

3.3.1 Step 1: Creating Sensitivity Block

In order to create a sensitivity block, firstly, from the Data Menu, Model Analysis Tools is clicked and then Sensitivity. On the Sensitivity Object Manager as shown in Figure 3.30, New button is clicked. In the Create New ID dialog box as shown in Figure 3.31, an ID is entered, and then OK button is clicked.

Object manager		
Name	Status	
New	Edit Delete	
Rename	Hide Reveal	

Figure 3.30 Sensitivity Object Manager

Create new ID	
Enter ID:	
S-1	
ОК	Cancel

Figure 3.31 Create New ID Dialog Box

3.3.2 Step 2: Specify Measured/Sampled Flow Sheet Variables

For each sensitivity block, flow sheet variables must be identify and assigned them variable name. These variables can either tabulate or use in Fortran expression to compute tabulated results. The Define Sheet as shown in Figure 3.32 is used to identify a flow sheet variable and assign the variable name. When completing a Define Sheet, the variables is specified on the Variable Definition dialog box.

Oefine	
Flowsheet variable Definition	
	<u>)</u>
New Edit Delete Move Up Move Down	

Figure 3.32 Define Sheet in Sensitivity

In order to identify the flow sheet variable in Define Sheet, firstly, a new variable is created by clicked the New button. A Create New Variable dialog box is seen as shown in Figure 3.33. In the dialog box, the name of the variable is entered in the Variable Name field and then OK button is clicked. Next, a Variable Definition Sheet with Category frame and Reference frame are seen as shown in Figure 3.34. In the Category frame, the option button is used to select the variable category. In the Reference frame, the variable type is selected from the list in the Type field. It will display the other fields necessary to complete the variable definition. Lastly, Close button is clicked in order to return to the Define Sheet.

Figure 3.33 Create New Variable Dialog Box

C Property C Reactions	Refe	erence Frame	
Close Close Access a component mole flow. Also specify Stream, Substream, and Component.			

Figure 3.34Variable Definition Sheet in Sensitivity Analysis

3.3.3 Step 3: Specify Manipulated/Varies Flow Sheet Variables

Vary Sheet as shown in Figure 3.35 is used to identify the flow sheet variables to vary in generating a table. The manipulated flow sheet variables can only vary block input variable, process feed stream variables, and other input variables. Besides that, it must specify the values, or a range of values, for the varied variables. In order to identify the manipulated variables, firstly, on the Sensitivity input form, the Vary Sheet is clicked. A manipulated variable field is seen as shown in the red box of Figure 3.35. In the Manipulated Variable field, a variable type is selected and it will take the remaining fields necessary to uniquely identify the flow sheet variable.

✓Define ♀Vary ✓Tabulate ✓Fortran Declarations Optional			
Variable number: 💽			
Manipulated variable	-Values for varied variable-		
Type: Mole-Flow 💌	C List of values		
Stream: 11 💌			
Substream: MIXED 💌	Overall range		
Component: WATER 💌	Lower:		
	Upper:		
Manipulated	#Point: Incr.		
Variable Field	- Report labels		
	Line 1: Line 2:		
	Line 3: Line 4:		

Figure 3.35Manipulated Variable Field in Vary Sheet

3.3.4 Step 4: Specify Ranges for Manipulated/Varied Variables

Values for varied variable field as shown in Figure 3.36 are used to specify the ranges for manipulated variables. There are four type of ranges can be specify which are 1) list of values, 2) lower limit, upper limit, and number of equally spaced point (#Points), 3) lower limits, upper limits, and increment between point (Incr) and 4) labeling the varied variables for the report and the Result Summary Sheet.

✓Define √Vary √Tabulate √	Fortran Declarations Optional
Variable number: 🔽 💌	
Manipulated variable Type: Mole-Flow Stream: 11 Substream: MIXED Component: WATER	Values for varied variable C List of values Varied Variable Field Lower: 50 Upper: 300
	#Point: Incr: 10 Report labels

Figure 3.36 Values Varied Variable Field in Vary Sheet

3.3.5 Step 5: Defining Tabulated Variables

Tabulate Sheet as shown in Figure 3.37 is used to define the results required to be analysis and supplied column headings. In order to tabulate variables, firstly, in the Sensitivity Input form, the Tabulate Sheet is clicked. In the Column Number field, a column number is entered. In the Tabulated Variable or Expression field, a variable name or Fortran expression is entered. The Fortran statements as shown in Figure 3.38 is used to compute tabulated results and the varied variable range. It is needed only if functions are too complex to enter on these sheets. In order to executable Fortran statements on the Fortran sheet, firstly, on the Sensitivity Input form, the Fortran sheet is clicked. Then, the Fortran statements is entered.

🗸 Defi	ne 🗸 Vary	✓Tabulate ✓Fortran Declarations Optional	
			7
	Column No.		
	1	REACRY	
	2	REACET	
_			
		Table Format	

 Figure 3.37
 Tabulate Sheet in Sensitivity Analysis

✓Define ✓Vary ✓Tabulate ✓Fortran Declarations Optional		
Enter executable Fortran statements		
REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100		_
<		~
	ow: 1	col: 1

Figure 3.38 Fortran Sheet in Sensitivity Analysis

3.3.6 Step 6: Running the Simulation

After all the procedures of sensitivity analysis are done, the flow sheet has to be reinitialized in order to prevent the Aspen Plus using the previous results to precede the simulation. To do this, from the Run menu, the Reinitialize button is clicked and a dialog box of reinitialize is seen as shown in Figure 3.39. On the dialog box, Ok button is clicked twice in order for confirmation of reinitialize dialog box as shown in Figure 3.40.

Reinit	×
Reinitialize calculations. Use when you do not want the next execution of the selected item to start with the previous results.	
Choose what you want to reinitialize :	
Simulation	
Select an item from the list or select ALL for all items :	
Selection	
Available Items	
	_
OK Cancel Help	

Figure 3.39 Reinitialize Dialog Box

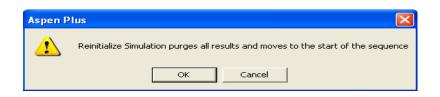


Figure 3.40 Confirmation of Reinitialize Dialog Box

3.3.7 Information for Each Sensitivity Block

The previous section is mention about the procedure how to carry out the sensitivity analysis in Aspen Plus software. In this acrylic acid plant, the sensitivity analysis is carried on each model which consists of reactor, flash drum, adsorption tower, liquid-liquid extractor, distillation column 1 and distillation column 2. There are totally eleven sensitivity analyses of the flow sheet. By using the sensitivity analysis, it determined the key operating or design variables of models and these design variables are shown in Table 3.3. All of these design variables are used as the manipulated variables respectively for each sensitivity block. In the Table 3.4, it shows that the flow sheet variables that used for each sensitivity block which is used in Fortran statement or tabulate variables.

Table 3.3Design Variables for each Model

Models	Design Variables
Reactor Temperature	
Flash drum	Temperature and pressure
Absorption tower	Water flow rate
Liquid-liquid extractor	Diisopropyl-ether flow rate
Packed distillation column	Feed stage, reflux ratio, and re-boiler duty
Distillation Column	Feed stage, reflux ratio, and re-boiler duty

Table 3.4Flow Sheet Variables of Each Sensitivity Block

Sensitivity Block	Flow Sheet Variables	Definition
R301-T	PROIN	Mole-Flow Stream=7 Substream=MIXED Component=PROPY-01
	ACRY	Mole-Flow Stream=8 Substream=MIXED Component=ACRY-01
T301-P/ T301-T	ACRY	Mole-Flow Stream=13 Substream=MIXED Component=ACRYL-01

Sensitivity Block	Flow Sheet	Definition
DIOCK	Variables	
		Mole-Flow Stream=9 Substream=MIXED
	TACRY	Component=ACRYL-01
	ACET	Mole-Flow Stream=13 Substream=MIXED
		Component=ACETI-01
	TACET	Mole-Flow Stream=9 Substream=MIXED
		Component=ACETI-01
T302-WAT	ACRY	Mole-Flow Stream=14 Substream=MIXED
		Component=ACRYL-01
	TACRY	Mole-Flow Stream=10 Substream=MIXED
		Component=ACRYL-01
	ACET	Mole-Flow Stream=14 Substream=MIXED
		Component=ACETI-01
	TACET	Mole-Flow Stream=10 Substream=MIXED
T202 DUGO	ACDX	Component=ACETI-01
T303-DIISO	ACRY	Mole-Flow Stream=18 Substream=MIXED
	TACDY	Component=ACRYL-01 Mole-Flow Stream=15 Substream=MIXED
	TACRY	
	ACET	Component=ACRYL-01 Mole-Flow Stream=18 Substream=MIXED
	ACEI	Component=ACETI-01
	TACET	Mole-Flow Stream=15 Substream=MIXED
	IACEI	Component=ACETI-01
T304-FS/	ACRY	Mole-Flow Stream=20 Substream=MIXED
T304-RR/	nen	Component=ACRYL-01
T304-RD		
	TACRY	Mole-Flow Stream=18 Substream=MIXED
		Component=ACRYL-01
	ACET	Mole-Flow Stream=20 Substream=MIXED
		Component=ACETI-01
	TACET	Mole-Flow Stream=18 Substream=MIXED
		Component=ACETI-01
	DIISO	Mole-Flow Stream=19 Substream=MIXED
		Component=DIISO-01
	TDIISO	Mole-Flow Stream=18 Substream=MIXED
		Component=DIISO-01
T305-FS/	ACRY	Mole-Flow Stream=22 Substream=MIXED
T305-RR/		Component=ACRYL-01
T305-RD		Stroom Vor Stroom-22 Substroom MIVED
	TOTAL1	Stream-Var Stream=22 Substream=MIXED
		Variable=MOLE-FLOW Mole Flow Streem=21 Substreem=MIXED
	ACET	Mole-Flow Stream=21 Substream=MIXED
	TOTAL2	Component=ACETI-01 Stream-Var Stream=21 Substream=MIXED
	101AL2	Variable=MOLE-FLOW

By using the sensitivity analysis, it found out the range of manipulated variables. The lower limit, upper limit and increment of manipulated variable for each sensitivity block are shown in Table 3.5. Each sensitivity block has their own tabulate variables to be monitored such as yield (reactor), recovery of acrylic acid, acetic acid and diisopropyl-ether (flash drum, absorption tower, liquid-liquid extractor, and distillation column 1) and purity of acrylic acid and acetic acid (distillation column 2). Fortran in sensitivity analysis is used to set the formula or statement for tabulate variable by using flow sheet variables. The column number, tabulate variables, and Fortran statement for each sensitivity block is shown in Table 3.6.

Table 3.5Manipulated Variables, Lower Limit, Upper Limit and Increment for
Each Sensitivity Block

Sensitivity Blok	Manipulated Variable	Lower Limit	Upper Limit	Increment
R301-T	Temperature	523K	638K	5
T301-P	Pressure	0.5atm	5.0atm	0.5
T301-T	Temperature	283K	328K	5
T302-WAT	Water Flow Rate	10kmol/hr	200kmol/hr	10
T303-DIISO	Diisopropyl- ether Flow Rate	50kmol/hr	1350kmol/hr	50
T304-FS	Feed Stage	1	10	1
T304-RR	Reflux Ratio	0.5	10	0.5
T304-RD	Re-boiler Duty	40000MJ/hr	300000MJ/hr	20000MJ/hr
T305-FS	Feed Stage	2	36	1
T305-RR	Reflux Ratio	1	15	1
T305-RD	Re-boiler Duty	200MJ/hr	3000MJ/hr	200MJ/hr

Sensitivity Block	Column Number	Tabulate Variables	Fortran Statement	
R301-T	1	YIELD	YIELD = ACRY/PROIN	
T301-P/	1	REACRY	REACRY=ACRY/TACRY*100	
T301-T	2	REACET	REACET=ACET/TACET*100	
T302-WAT	1	REACRY	REACRY=ACRY/TACRY*100	
1302-WAI	2	REACET	REACET=ACET/TACET*100	
T303-DIISO	1	REACRY	REACRY=ACRY/TACRY*100	
1303-D1130	2	REACET	REACET=ACET/TACET*100	
T304-FS/	1	REACRY	REACRY=ACRY/TACRY*100	
T304-RR/	2	REACET	REACET=ACET/TACET*100	
T304-RD	3	REDIISO	REDIISO=DIISO/TDIISO*100	
T305-FS/	1	PUR1	PUR1=ACRY/TOTAL1*100	
T305-RR/	2	PUR2	PUR2=ACET/TOTAL2*100	
T305-RD	-	10112		

Table 3.6Column Number, Tabulate Variables and Fortran Statement for Each
Sensitivity Block

3.4 **Optimization**

After the simulation is started and the sensitivity analysis is performed, optimization can be preceded and it has totally six steps in Aspen Plus. A brief flow chart on optimization is shown in Figure 3.41.

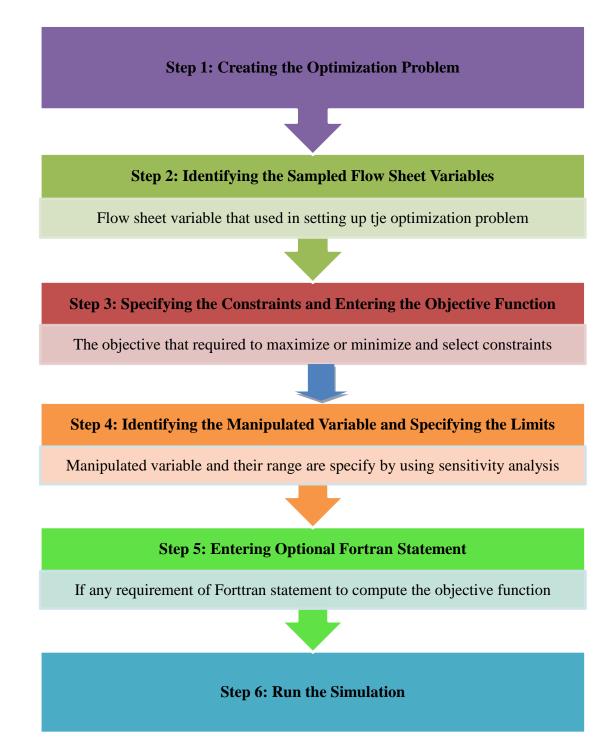


Figure 3.41 Brief Flow Chart on Optimization

3.4.1 Step 1: Creating the Optimization Problem

In order to create an optimization problem, firstly, from the Data menu, point to Model Analysis Tools and then Optimization button is clicked. In the Optimization Manager as shown in Figure 3.42, the New button is clicked. In the Create New ID dialog box as shown in Figure 3.43, an ID is entered and then Ok button is clicked.

Object manager			
Name		Status	
New	Edit	Delete	
Rename	Hide	Reveal	

Figure 3.42 Constraint Object Manager

Create new ID		\mathbf{X}
Enter ID:		
ОК	Cancel	

Figure 3.43 Create New ID Dialog Box

3.4.2 Step 2: Identifying the Sampled Flow Sheet Variables

Define sheet as shown in Figure 3.44 is used to identify a flow sheet variable and assign it a variable name. The variable is used for defining the objective function, specifying bounds for manipulated variables, or writing Fortran Statements. After completing a Define sheet, variables is specified on the Variable Definition dialog box. In order to create a new variable, firstly, the New button is clicked on the Define sheet. In the Create New Variable Dialog as shown in Figure 3.45, the name of the variable in the Variable Name field is entered. After clicked the Ok button, Category and Reference frame are seen in the Variable Definition dialog box as shown in Figure 3.46. In the Category frame, the option button is used to select the variable category. In the Reference frame, the variable type is selected from the list in the Type field. Lastly, Close button is clicked to return to the Define sheet.

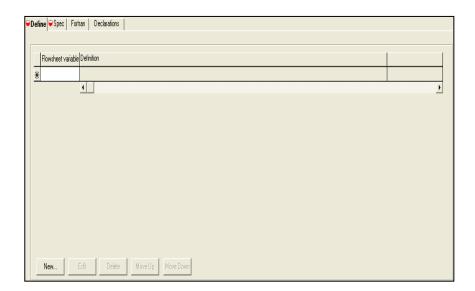


Figure 3.44 Define Sheet in Constraint

Figure 3.45 Create New Variable Dialog Box

Variable Definition Select a variable category and refere Variable name: VPROIN Category All Blocks Streams Category Model Utility Frame Property Reactions	ence Reference Type: Mole-Flow Stream: 7 Substream: MIXED Component: PROPY-01 Reference Frame
№	Close
Access a component mole flow. Also spec	acify Stream, Substream, and Component.

Figure 3.46 Variable Definition Sheet

3.4.3 Step 3: Specifying the Constraints and Entering the Objective Function

3.4.3.1 Specification of Constraints

Before running the optimization in Aspen Plus software, the equality or inequality of constraints has imposed or specified in the Model Analysis Tool. Equality constraints within an optimization are similar to design specifications and the constraints can be any function of flow sheet variables computed using Fortran statement or in-line Fortran statements. Besides that, the tolerance of the constraints must be specified. A brief flow chart of specification of constraints is shown in Figure 3.47.

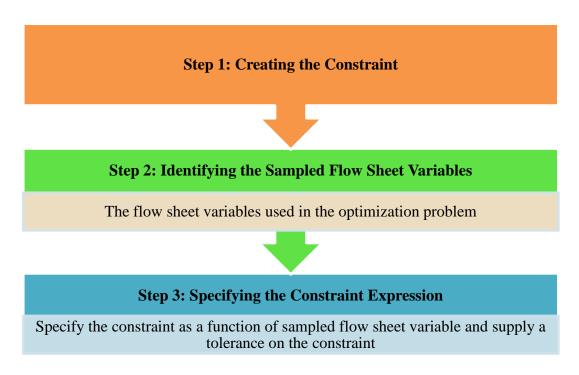


Figure 3.47 Brief Flow Chart of Specification of Constraints

3.4.3.2 Step 1: Creating the Constraint

In order to create the constraint, firstly, from the Data menu, point to Model Analysis Tools and the Constraint is clicked. In the Constraint Object Manager as shown in Figure 3.48, New button is clicked. In the Create New ID dialog Box as shown in Figure 3.49, an ID is entered and then Ok button is clicked.

– ОБје	ect manager			
	Name		Status	
			[]	
	New	Edit	Delete	
	Rename	Hide	Reveal	

Figure 3.48 Constraint Object Manager

Create new ID		×
Enter ID:		
ок	Cancel	

Figure 3.49 Create New ID Dialog Box

3.4.3.3 Step 2: Identifying the Sampled Flow Sheet Variables

Define sheet as shown in Figure 3.50 is used to identify a flow sheet variable and assign it a variable name. After completing a Define sheet, variables is specified on the Variable Definition dialog box. In order to create a new variable, firstly, the New button is clicked on the Define sheet. In the Create New Variable Dialog as shown in Figure 3.51, the name of the variable is entered in the Variable Name field. After clicked the Ok button, Category and Reference frame are seen in the Variable Definition dialog box as shown in Figure 3.52. In the Category frame, the option button is used to select the variable category. In the Reference frame, the variable type is selected from the list in the Type field. Lastly, Close button is clicked to return to the Define sheet.

©Define ©Spec Fottran Declarations	
Flowsheet variable Definition	1
*	
	Þ
New Edit Delete Move Up Move Down	

Figure 3.50 Define Sheet in Constraint

Create new variable		
Enter variable name:		
ОК	Cancel	

Figure 3.51 Create New Variable Dialog Box

Variable Definition		×
Select a variable category and refere Variable name: ✓ DIAM Category ④ All ○ Blocks ○ Streams Category ○ Model Utility ○ Property ○ Reactions	- Reference – Type: Block: Variable: Sentence:	Block-Var
N>	Clos	ie
Access a unit operation block variable.		

Figure 3.52 Variable Definition Sheet

3.4.3.4 Step 3: Specifying the Constraint Expression

The specification, type of constraints and tolerance had been specified in the Specification sheet. In order to specify the constraint, on the Constraint form, the Spec tab is clicked. A specification sheet is seen as shown in 3.53. In the specification fields, the variables that used in Constraint are entered and it can be the flow sheet variables or Fortran statements. Next, the type of constraints such as "equal to", "less than or equal to", or "greater than or equal to" is selected for the specification. On the Tolerance field, the constraint tolerance is entered as a constant or as a Fortran expression. If the constraint is a vector, the Vector Constraint box is checked, and the elements of the vector that should be used are specified.

✓Define ✓Spec Fortran Declarations
Constraint expressions Specification: DIAM
Equal to 3.6
Tolerance: 0.001
Vector constraint information This is a vector constraint First element: Last element:

Figure 3.53 Specification Sheet of Constraint

3.4.3.5 Information of Each Constraint Block

The previous section is mentioned about the procedure how to carry out the constraint in optimization. There are totally sixteen constraints in the models which include reactor, flash drum, absorption tower, liquid-liquid extractor, distillation column 1, and distillation column 2. The constraints for each model are shown in Table 3.7 and flow sheet variables for constraint blocks are shown in Table 3.8.

Table 3.7Constraints of Each Model

Models	Constraints	
Reactor	Diameter, length, pressure drop, and number of tube	
Flash Drum	Pressure, and temperature	
Absorption Tower	Condenser duty, number of stage, and re-boiler duty	
Liquid-liquid Extractor	Number of stage	
Packed Distillation Column	Bottom rate, feed stage, and number of stage	
Distillation Column	Bottom rate, feed stage, and number of stage	

Constraint Name	Flow Sheet Variables	Definition
R-DIAM	DIAM	Block-Var Block=R-301 Variable=DIAM Sentence=PARAM
R-LENGTH	LENGTH	Block-Var Block=R-301 Variable=LENGTH Sentence=PARAM
R-PD	PD	Block-Var Block=R-301 Variable=PDROP Sentence=PARAM
R-TUBE	TUBE	Block-Var Block=R-301 Variable=NTUBE Sentence=PARAM
T301-CT	TEM	Block-Var Block=T-301 Variable=TEMP Sentence=PARAM
Т301-СР	PRES	Block-Var Block=T-301 Variable=PRES Sentence=PARAM
T302-CD	CD	Block-Var Block=T-302 Variable=COND-DUTY Sentence=RESULTS ID1=1
T302-NS	NS	Block-Var Block=T-302 Variable=CC-NSEGMENT Sentence=COL-CONFIG ID1=1
T302-RD	RD	Block-Var Block=T-302 Variable=REB-DUTY Sentence=RESULTS ID1=1
T303-NS	NS	Block-Var Block=T-303 Variable=NSTAGE Sentence=PARAM
T304-BR	BR	Block-Var Block=T-304 Variable=MOLE-B Sentence=COL-SPECS
T304-FS	FS	Block-Var Block=T-304 Variable=FEED-STAGE Sentence=FEEDS ID1=18
T304-NS	NS	Block-Var Block=T-304 Variable=NSTAGE Sentence=PARAM
T305-BR	BR	Block-Var Block=T-305 Variable=MOLE-B Sentence=COL-SPECS
T305-FS	FS	Block-Var Block=T-304 Variable=FEED-STAGE Sentence=FEEDS ID1=18
T305-NS	NS	Block-Var Block=T-305 Variable=NSTAGE Sentence=PARAM

Table 3.8Flow Sheet Variables for Each Constraint

Table 3.9 shows that the specification, type of Constraint, and tolerance for each constraint block. Lastly, the constraint blocks had been ensured to be selected on the Optimization Objective and Constraint sheet in order to carry out the optimization.

Constraint Name	Specification	Type of Constraint	Tolerance	
R-DIAM	DIAM	Equal to 3.6	0.001	
R-LENGTH	LENGTH	Equal to 10	0.001	
R-PD	PD	Equal to 0	0.001	
R-TUBE	TUBE	Equal to 420	0.001	
T301-CT	TEM	Equal to 313.15	0.001	
T301-CP	PRES	Equal to 2.36	0.001	
T302-CD	CD	Equal to 0	0.001	
T302-NS	NS	Equal to 15	0.001	
T302-RD	RD	Equal to 0	0.001	
T303-NS	NS	Equal to 15	0.001	
T304-BR	BR	Equal to 96	0.001	
T304-FS	FS	Equal to 4	0.001	
T304-NS	NS	Equal to 15	0.001	
T305-BR	BR	Equal to 90	0.001	
T305-FS	FS	Equal to 23	0.001	
T305-NS	NS	Equal to 36	0.001	

Table 3.9 Specifications, Type of Constraint, and Tolerance for Each Constraint

3.4.3.6 Selecting the Constraints

If any constraints are associated with the optimization, defined them after specified the Objective Function because it is influenced the result of optimization. In order to enter the objective function for the optimization problem, firstly, on the optimization form, the Objective & Constraints tab is clicked. The Objective & Constraints sheet is seen as shown in Figure 3.54. In the Objective Function field, either Maximize or Minimize is selected and the targeted variable or Fortran expression is entered. Each of the models had different Objective Function. Next, the constraints are selected that to be associated with the optimization by using the arrow buttons to move them from the available Constraints list to the Selected Constraints list.

✓Define ✓Objective & Co	onstraints 🗸 Vary Fortran Declarations
Objective function Maximize Minimize	PROOUT)/PROIN
Constraints associated with Available constraints T301-CT T302-CD T302-NS T302-RD T303-NS T304-BR T304-FS T304-FS T304-NS T305-BR T305-FS T305-NS	th the optimization Selected constraints R-MAPRO R-LENGTH R-DIAM R-PD R-MIPRO R-TUBE R-NITRO

Figure 3.54 Objective & Constraints Sheet

3.4.4 Step 4: Identifying the Manipulated Variable and Specifying the Limits

The Vary sheet in the optimization is used to identify the manipulated variables and specify their limits. The limits for manipulated variable can be constants or function of flow sheet variables. In order to identify the manipulated variable and specify the limits, on the Optimization form, the Vary tab is clicked. The Vary sheet is seen as shown in the Figure 3.55. In the Variable Number field, the down arrow is clicked and then <new> is selected. In the type field, a variable type is selected and the remaining field is filled. In the Manipulated Variable Limits field, the lower and upper limits are entered by a constant value or Fortran expression. The decision variables for the report and Results form are labeled by using the Line 1 to Line 4 fields. The step size and maximum step size is entered in the Steps Size Parameters field.

✓Define ✓Objective & Constraints	√Vary Fortran Declarations
Variable number: Variable number: Manipulated variable Type: Block-Var Image: State St	Manipulated variable limits
Block: R-301 Variable: SPEC-TEMP Sentence: T-SPEC ID1: 1	Upper: 603 Report labels
	Step size parameters Step size: Maximum step size:

Figure 3.55 Vary Sheet in Optimization

3.4.5 Step 5: Entering Optional Fortran Statement

The Fortran statement is used to compute the optimization objective terms or manipulated variable limits. In order to enter executable Fortran statements on the Fortran sheet, firstly, on the Optimization form, the Fortran tab is clicked. The Fortran sheet is seen as shown in Figure 3.56 and then the Fortran statements is entered for each optimization block.

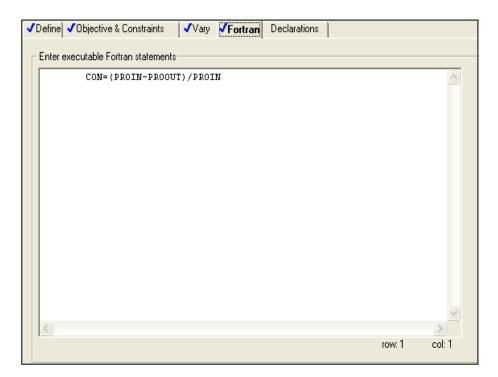


Figure 3.56 Fortran Sheet in Optimization

3.4.6 Step 6: Running the Simulation

After all the procedures of optimization are done, the same procedures for running the simulation in sensitivity section were used. In order to reinitialize the flow sheet, from the Run menu, the Reinitialize is clicked and a dialog box is seen as shown in Figure 3.39. On the dialog box, Ok button is clicked twice for confirmation of reinitialize dialog box as shown in Figure 3.40.

3.4.7 Information for Each Optimization Block

The previous section is mentioned about the procedures how to carry out the optimization in Aspen Plus software. There are totally nine optimization blocks in

the flow sheet. The optimization is carry on each models which are reactor, flash drum, absorption tower, liquid-liquid extractor, distillation column 1 and distillation column 2. The optimization parameters for each model are shown in Table 3.10 and flow sheet variables for each optimization blocks are shown in Table 3.11.

Table 3.10Parameters of Optimization for Each Model

Models	Parameters	
Reactor	Temperature	
Flash drum	Temperature and pressure	
Absorption tower	Water flow rate	
Liquid-liquid extractor	Diisopropyl-ether flow rate	
Packed distillation column	Feed stage, reflux ratio, and re-boiler duty	
Distillation Column	Feed stage, reflux ratio, and re-boiler duty	

Table 3.11Flow Sheet Variables of Each Optimization Block

Sensitivity Block	Flow Sheet Variables	Definition		
R301-T	PROIN	Mole-Flow Stream=7 Substream=MIXED Component=PROPY-01		
	ACRY	Mole-Flow Stream=8 Substream=MIXED Component=ACRY-01		
T301-PRE/ T301-TEM	ACRY	Mole-Flow Stream=13 Substream=MIXED Component=ACRYL-01		
	TACRY	Mole-Flow Stream=9 Substream=MIXED Component=ACRYL-01		
ACET TACET		Mole-Flow Stream=13 Substream=MIXED Component=ACETI-01		
		Mole-Flow Stream=9 Substream=MIXED Component=ACETI-01		
T302-WAT	ACRY	Mole-Flow Stream=14 Substream=MIXED Component=ACRYL-01		
	TACRY	Mole-Flow Stream=10 Substream=MIXED Component=ACRYL-01		
	ACET	Mole-Flow Stream=14 Substream=MIXED Component=ACETI-01		
	TACET	Mole-Flow Stream=10 Substream=MIXED Component=ACETI-01		

Sensitivity Block	Flow Sheet Variables	Definition
T303-	ACRY	Mole-Flow Stream=18 Substream=MIXED
DIISO		Component=ACRYL-01
	TACRY	Mole-Flow Stream=15 Substream=MIXED
		Component=ACRYL-01
	ACET	Mole-Flow Stream=18 Substream=MIXED
		Component=ACETI-01
	TACET	Mole-Flow Stream=15 Substream=MIXED
		Component=ACETI-01
T304-RR/	ACRY	Mole-Flow Stream=20 Substream=MIXED
T304-RD		Component=ACRYL-01
	TACRY	Mole-Flow Stream=18 Substream=MIXED
		Component=ACRYL-01
	ACET	Mole-Flow Stream=20 Substream=MIXED
		Component=ACETI-01
	TACET	Mole-Flow Stream=18 Substream=MIXED
		Component=ACETI-01
	DIISO	Mole-Flow Stream=19 Substream=MIXED
		Component=DIISO-01
	TDIISO	Mole-Flow Stream=18 Substream=MIXED
		Component=DIISO-01
T305-RR/	ACRY	Mole-Flow Stream=22 Substream=MIXED
T305-RD		Component=ACRYL-01
	TOTAL1	Stream-Var Stream=22 Substream=MIXED
		Variable=MOLE-FLOW
	ACET	Mole-Flow Stream=21 Substream=MIXED
		Component=ACETI-01
	TOTAL2	Stream-Var Stream=21 Substream=MIXED
		Variable=MOLE-FLOW

Table 3.11(Continued)

The Objective Function and Constraints of each optimization blocks are shown in the Table 3.12. Each manipulated variables and range of limits of optimization blocks are specified by the sensitivity analysis. Table 3.13 shows that the manipulated variables, lower limit and upper limit for each optimization block. Fortran in optimization is used to setting the formula or statement of yield, recovery and purity of the desired products. Fortran statement for each optimization block are shown in the Table 3.14.

Optimization Block	Objective Function	Selected Constraints
R301-T	Maximize: YIELD	R-LENGTH, R-DIAM, R-PD, R-TUBE
T301-PRE	Maximize: REACRY+REACET	T301-CT
T301-TEM	Maximize: REACRY+REACET	Т301-СР
T302-WAT	Maximize: REACRY+REACET	T302-CD, T302-RD, T302-NS
T303-DIS	Maximize: REACRY+REACET	T303-NS
T304-RR	Maximize: REACRY+REACET	T304-NS, T304-BR, T304-FS
T304-RD	Maximize: REACRY+REACET	T304-NS, T304-BR, T304-FS
T305-RR	Maximize: PUR1+PUR2	T305-NS, T305-BR, T305-FS
T305-RD	Maximize: PUR1+PUR2	T305-NS, T305-BR, T305-FS

 Table 3.12
 Objective Function and Selected Constraints in Optimization

Table 3.13Manipulated Variable and Range Limit for Each Optimization Block

Sensitivity Blok	Manipulated Variable	Lower Limit	Upper Limit	
R301-T	Temperature	523K	638K	
T301-P	Pressure	1.0atm	5.0atm	
Т301-Т	Temperature	283K	328K	
T302-WAT	Water Flow Rate	50kmol/hr	200kmol/hr	
T303-DIISO	Diisopropyl- ether Flow Rate	500kmol/hr	1350kmol/hr	
T304-RR	Reflux Ratio	0.5	10	
T304-RD	Re-boiler Duty	40000MJ/hr	300000MJ/hr	
T305-RR	Reflux Ratio	10	15	
T305-RD	Re-boiler Duty	50MJ/hr	3000MJ/hr	

Optimization Block	Fortran Statement
R301-T	YIELD = ACRY/PROIN
T301-P/	REACRY=ACRY/TACRY*100
T301-T	REACET=ACET/TACET*100
T302-WAT	REACRY=ACRY/TACRY*100
1302-WAI	REACET=ACET/TACET*100
T303-DIISO	REACRY=ACRY/TACRY*100
	REACET=ACET/TACET*100
T304-RR/	REACRY=ACRY/TACRY*100
T304-RR/	REACET=ACET/TACET*100
	REDIISO=DIISO/TDIISO*100
T305-RR/	PUR1=ACRY/TOTAL1*100
T305-RD	PUR2=ACET/TOTAL2*100

Table 3.14Fortran Statement for Each Optimization Block

3.5 Summary

This study is carried out on the optimization on acrylic acid plant by using the Aspen Plus software. The methodology is divided into three main phases: Steady state simulation of acrylic acid plant; Sensitivity analysis; Optimization. The optimum conditions for each units or models are obtained, hence desired quality of the products is achieved.

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, which is on results and discussions, all the simulation and optimization results were tabulated and analyzed. This chapter was divided into two main phases which are Phase I: steady state simulation and Phase II: Optimization. In Phase I, the results of simulation were tabulated. In Phase II, it was detailed out into formulation of optimization problem, data analysis, discussion and optimum condition decision.

4.2 Phase I: Steady State Simulation of Acrylic Acid Plant

In this study, the acrylic acid plant was simulated by using Aspen Plus and the flow sheet is shown in Figure 4.1. After simulation was performed, the simulation data is shown in Table 4.1.

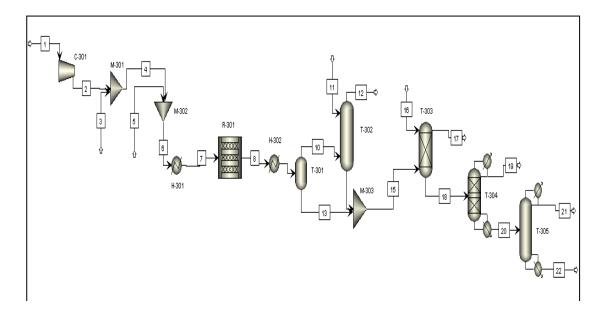


Figure 4.1 Flow Sheet for the production of Acrylic Acid Plant in Aspen Plus

	1	2	3	4	5	6
Temperature, °C	25.00	285.42	159.00	225.79	25.00	201.05
Pressure, bar	1.00	5.00	6.00	5.00	11.50	5.00
Mole Flow kmol/h						
PROPY-01	0.00	0.00	0.00	0.00	127.00	127.00
NITRO-01	1056.70	1056.70	0.00	1056.70	0.00	1056.70
OXYGE-01	280.90	280.90	0.00	280.90	0.00	280.90
CARBO-01	0.00	0.00	0.00	0.00	0.00	0.00
WATER	25.30	25.30	992.30	1017.60	0.00	1017.60
ACETI-01	0.00	0.00	0.00	0.00	0.00	0.00
ACRYL-01	0.00	0.00	0.00	0.00	0.00	0.00
DIISO-01	0.00	0.00	0.00	0.00	0.00	0.00
Total Flow, kmol/h	1362.90	1362.90	992.30	2355.20	127.00	2482.20

Table 4.1Simulation Data of Acrylic Acid Plant

	7	8	9	10	11	12
Temperature, °C	310.00	310.00	40.00	40.00	25.00	27.76
Pressure, bar	4.30	4.01	1.01	2.40	5.07	1.00
Mole Flow kmol/h						
PROPY-01	127.00	14.23	14.23	11.37	0.00	11.26
NITRO-01	1056.70	1056.70	1056.70	1051.19	0.00	1051.07
OXYGE-01	280.90	51.58	51.58	50.90	0.00	50.89
CARBO-01	0.00	60.17	60.17	55.79	0.00	55.69
WATER	1017.60	1166.12	1166.12	35.34	141.00	45.19
ACETI-01	0.00	6.54	6.54	0.09	0.00	0.00
ACRYL-01	0.00	88.35	88.35	1.40	0.00	0.00
DIISO-01	0.00	0.00	0.00	0.00	0.00	0.00
Total Flow, kmol/h	2482.20	2443.69	2443.69	1206.08	141.00	1214.10

Table 4.1(Continued)

Table 4.1	(Continued)
	()

	13	14	15	16	17	18
Temperature, °C	40.00	27.93	38.76	40.00	41.08	40.74
Pressure, bar	2.40	1.00	2.40	2.80	2.41	2.41
Mole Flow kmol/h						
PROPY-01	2.86	0.11	2.97	0.00	0.01	2.96
NITRO-01	5.51	0.12	5.63	0.00	0.01	5.62
OXYGE-01	0.68	0.01	0.69	0.00	0.00	0.69
CARBO-01	4.38	0.09	4.48	0.00	0.01	4.47
WATER	1130.78	131.16	1261.93	198.70	1327.61	133.02
ACETI-01	6.45	0.09	6.54	0.00	0.02	6.53
ACRYL-01	86.95	1.40	88.35	0.00	0.00	88.35
DIISO-01	0.00	0.00	0.00	1299.80	4.02	1295.78
Total Flow, kmol/h	1237.61	132.98	1370.59	1498.50	1331.68	1537.41

	19	20	21	22
Temperature, °C	35.22	64.28	40.56	78.83
Pressure, bar	0.10	0.10	0.10	0.10
Mole Flow kmol/h				
PROPY-01	2.96	0.00	0.00	0.00
NITRO-01	5.62	0.00	0.00	0.00
OXYGE-01	0.69	0.00	0.00	0.00
CARBO-01	4.47	0.00	0.00	0.00
WATER	133.02	0.00	0.00	0.00
ACETI-01	0.09	6.44	6.41	0.03
ACRYL-01	0.11	88.24	0.27	87.97
DIISO-01	1294.46	1.32	1.32	0.00
Total Flow, kmol/h	1441.41	96.00	8.00	88.00

Table 4.1(Continued)

One of the objectives of this study is to simulate a production of acrylic acid process. Hence, comparison between reference data and simulation results is not being considered. The final production rate of acrylic acid and acetic acid is mostly similar with the reference values, hence this simulation of acrylic acid production process is acceptable.

4.3 Optimization of Acrylic Acid Plant

4.3.1 Reactor (R-301)

4.3.1.1 Formulation of Optimization Problem (R-301)

Reactor is the heart of a chemical process plant. A favorable operating condition of reactor can maximize the yield of desired components and hence reduce the purification costs. Since oxidation of propylene is parallel chemical reactions, therefore yield of acrylic acid and total conversion of propylene is influenced by the operating conditions. The optimization objective for the reactor is to obtain an optimum temperature to maximize the yield of acrylic acid. Therefore, temperature of reactor is taken as the manipulated variable while yield of acrylic acid as a measured variable. The constant variables present are pressure and inlet mole fraction of propylene.

4.3.1.2 Result and Discussion (R-301)

The result of sensitivity analysis of reactor is shown in Table 4.2. Figure 4.2 shows the graph of yield of acrylic acid versus the temperature of reactor. Figure 4.3 shows the optimization data of the reactor.

Temperature, °C	Yield, Y	Temperature, °C	Yield, Y
250	0.156834	310	0.693368
255	0.17982	315	0.772839
260	0.205646	320	0.761588
265	0.234596	325	0.750139
270	0.266972	330	0.738526
275	0.303101	335	0.726631
280	0.34333	340	0.710126
285	0.388031	345	0.687386
290	0.4376	350	0.66512
295	0.492457	355	0.643503
300	0.553051	360	0.621816
305	0.619854	365	0.600895

Table 4.2Sensitivity Analysis Data of Reactor (R-301)

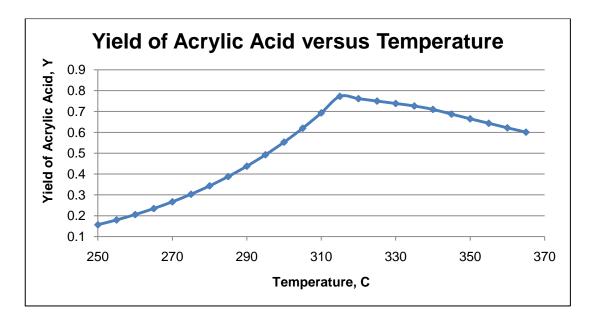


Figure 4.2 Yield of Acrylic Acid versus Temperature of Reactor (R-301)

OPTIMIZATION: R301
SAMPLED VARIABLES: PROIN : PROPY-01MOLEFLOW IN STREAM 7 SUBSTREAM MIXED ACRY : ACRYL-01MOLEFLOW IN STREAM 8 SUBSTREAM MIXED
FORTRAN STATEMENTS: YIELD=ACRY/PROIN
OBJECTIVE FUNCTION: MAXIMIZE YIELD FINAL OBJECTIVE FUNCTION VALUE = 0.77254
CONSTRAINTS: R-MAPRO R-LENGTH R-DIAM R-PD R-MIPRO R-TUBE R-NITRO
MANIPULATED VARIABLES: VARY : SENTENCE=T-SPEC VARIABLE=TEMP ID1=1 IN UOS BLOCK R-301 LOWER LIMIT = 523.000 K UPPER LIMIT = 683.000 K FINAL VALUE = 588.150 K
VALUES OF ACCESSED FORTRAN VARIABLES: VARIABLE VALUE AT START FINAL VALUE UNITS OF LOOP
PROIN 127.000 127.000 KMOL/HR ACRY 98.1130 95.2408 KMOL/HR D ASPEN PLUS PLAT: WIN32 VER: 11.1 12/28/2012 PAGE 10 ACRYLIC ACID PLANT FLOWSHEET SECTION

Figure 4.3 Optimization Data of Reactor (R-301)

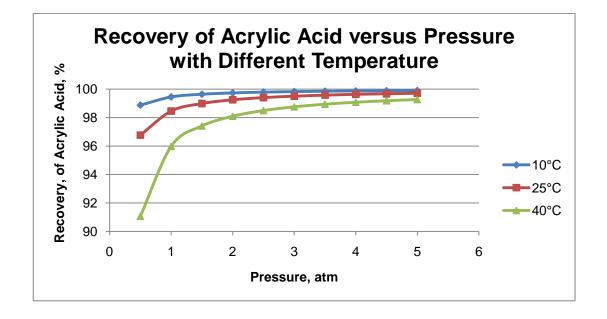
After sensitivity analysis was carried out, the suitable range of temperature is varied from 250 $^{\circ}$ C to 365 $^{\circ}$ C. From the Figure 4.2, the yield of acrylic acid depends on the operating temperature of reactor. As the temperature increased, the yield of acrylic acid is also increased but when the temperature is more than 315 $^{\circ}$ C, the yield

starts to decreased linearly. Hence, the optimum temperature for maximum yield of acrylic acid is around 315 °C. From Figure 4.3, in order to obtain the maximum yield of acrylic acid (0.77254), the final value of temperature is at 588.15K or 315 °C. Therefore, 315 °C is the optimum temperature for the reactor.

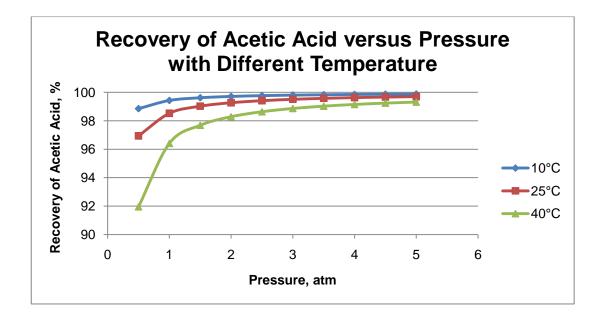
4.3.2 Flash Drum (T-301)

4.3.2.1 Formulation of Optimization Problem (T-301)

The function of flash drum is to separate gases or vapor phase and acids in liquid phase. The liquid form of acids is separated out at the bottom outlet stream of flash drum and the separation efficiency depends on the operating pressure and temperature. Hence, optimization objective of flash drum is to maximize the recovery of acrylic acid and acetic acid at a minimum cost of operating conditions. Therefore, temperature and pressure of reactor are the manipulated variables, whereas, percentage of recovery of acrylic acid and acetic acid as the measured variables. The constant variables present are feed flow rate and size of flash drum.


4.3.2.2 Result and Discussion (T-301)

The result of sensitivity analysis for flash drum is shown in Table 4.3. The Figure 4.4 and Figure 4.5 show the graphs of recovery of acrylic acid and acetic acid


versus operating pressure with different temperature respectively. Figure 4.6 and 4.7 show the optimization data of flash drum with different optimization parameters.

Pressure,	10	${}^{\mathbb{C}}$	25	${}^{\mathbb{C}}$	40	${}^{\mathbb{C}}$
atm	REACRY	REACET	REACRY	REACET	REACRY	REACET
0.5	98.88	98.86	96.77	96.94	91.07	91.96
1	99.46	99.43	98.46	98.53	95.98	96.42
1.5	99.64	99.62	98.99	99.03	97.42	97.69
2	99.74	99.72	99.25	99.27	98.10	98.29
2.5	99.79	99.77	99.41	99.42	98.50	98.64
3	99.83	99.81	99.51	99.51	98.76	98.87
3.5	99.85	99.83	99.58	99.58	98.95	99.03
4	99.87	99.85	99.64	99.63	99.08	99.15
4.5	99.89	99.87	99.68	99.67	99.19	99.24
5	99.90	99.88	99.71	99.70	99.27	99.32

Table 4.3Sensitivity Analysis Data of Flash Drum (T-301)

Figure 4.4 Recovery of Acrylic Acid versus Pressure with Different Temperature at Flash Drum (T-301)

Figure 4.5 Recovery of Acetic Acid versus Pressure with Different Temperature at Flash Drum (T-301)

OPTIMIZATI	ON: T301-PRE		
SAMPLED ACRY ACET TACRY TACET	VARIABLES: : ACRYL-01MOLEFLOW II : ACETI-01MOLEFLOW II : ACRYL-01MOLEFLOW II : ACETI-01MOLEFLOW II	N STREAM 13 SUBSTRE N STREAM 13 SUBSTRE N STREAM 9 SUBSTREA N STREAM 9 SUBSTREA	AM MIXED AM MIXED M MIXED M MIXED
	STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100		
MAXIMI	E FUNCTION: ZE REACRY+REACET OBJECTIVE FUNCTION VALU	E = 198.505	i
CONSTRAI	NTS: T301-CT		
VARY LOWER UPPER	TED VARIABLES: : SENTENCE=PARAM VAR: LIMIT = 101,325. LIMIT = 506,625. VALUE = 490,207.	IABLE=PRES IN UOS E	BLOCK T-301 N/SQM N/SQM N/SQM
	F ACCESSED FORTRAN VARI LE VALUE AT START OF LOOP		UNITS
ACRY ACET TACRY TACET	6.14580	84.5995 6.19265 85.2586 6.23768	 KMOL/HR KMOL/HR KMOL/HR KMOL/HR

Figure 4.6 Optimization Data of Flash Drum with Constant Temperature (T-301)

OPTIMIZATION: T301-TEM
SAMPLED VARIABLES: ACRY : ACRYL-01MOLEFLOW IN STREAM 13 SUBSTREAM MIXED TACRY : ACRYL-01MOLEFLOW IN STREAM 9 SUBSTREAM MIXED ACET : ACETI-01MOLEFLOW IN STREAM 13 SUBSTREAM MIXED TACET : ACETI-01MOLEFLOW IN STREAM 9 SUBSTREAM MIXED
FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100
OBJECTIVE FUNCTION: MAXIMIZE REACRY+REACET FINAL OBJECTIVE FUNCTION VALUE = 199.530
CONSTRAINTS: T301-CP
MANIPULATED VARIABLES: VARY : SENTENCE=PARAM VARIABLE=TEMP IN UOS BLOCK T-301 LOWER LIMIT = 283.000 K UPPER LIMIT = 323.000 K FINAL VALUE = 283.000 K
VALUES OF ACCESSED FORTRAN VARIABLES: VARIABLE VALUE AT START FINAL VALUE UNITS OF LOOP
ACRY 85.0665 85.0608 KMOL/HR TACRY 85.2586 85.2586 KMOL/HR ACET 6.22241 6.22201 KMOL/HR TACET 6.23768 6.23768 KMOL/HR

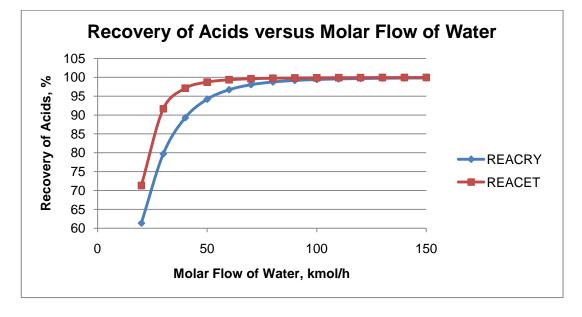
Figure 4.7 Optimization Data of Flash Drum with Constant Pressure (T-301)

After sensitivity analysis were conducted, the suitable range for pressure is varied from 0.5atm to 5atm and the suitable range of temperature is varied from $10 \,^{\circ}$ C to $40 \,^{\circ}$ C. From the Figure 4.4 and 4.5, the recovery of acids depends on the operating pressure and temperature of the flash drum. As the operating pressure increased, recovery of both acids also increased. However, as the temperature increased, the recovery of both acids decreased.

Hence, the optimum condition must be kept in high pressure but low temperature. For the optimum conditions for flash drum, the pressure must be above 1 atm in order to obtain more than 99% recovery of acids. From the Figure 4.6 and 4.7, in order to obtain maximum recovery of acrylic acid and acetic acid, optimum pressure and temperature are 490207N/SQM or 4.84atm and 283K or $10 \,^{\circ}$ C respectively. However, temperature at 25 $^{\circ}$ C is recommended because it is at room temperature which did not require any additional energy. Therefore, optimum pressure and temperature are 4.84atm and 25 $^{\circ}$ C respectively.

4.3.3 Absorption Tower (T-302)

4.3.3.1 Formulation of Optimization Problem (T-302)


The function of absorption tower is to recover back acrylic acid and acetic acid from the upper outlet stream of flash drum by using water as the solvent. Hence, optimization objective for absorption tower is to maximize the percentage recovery of acrylic acid and acetic acid with a minimum molar flow rate of water. Therefore, molar flow rate of water as the manipulated variable while recovery of acrylic acid and acetic acid as the measured variables. The constant variables present are pressure, temperature, and the number of trays in absorption tower.

4.3.3.2 Result and Discussion (T-302)

The result of sensitivity analysis for absorption tower is shown in Table 4.4. Figure 4.8 shows the graph of recovery of acrylic acid and acetic acid versus molar flow rate of water. Besides that, Figure 4.9 shows the optimization data of absorption tower.

Mole Flow Rate of	Recovery of	Recovery of
Water, kmol/hr	Acrylic Acid	Acetic Acid
20	61.33859	71.30993
30	79.70255	91.65829
40	89.27758	97.09286
50	94.17557	98.73016
60	96.70046	99.34117
70	98.03455	99.61382
80	98.75695	99.75049
90	99.16839	99.8265
100	99.41531	99.87233
110	99.57098	99.90178
120	99.67359	99.92172
130	99.74392	99.9358
140	99.79381	99.94611
150	99.82992	99.95381

Table 4.4Sensitivity Analysis Data of Absorption Tower (T-302)

Figure 4.8 Recovery of Acids versus Molar Flow of Water of Absorption Tower (T-302)

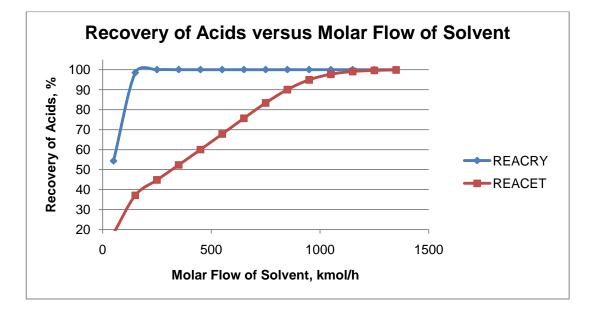
OPTIMIZATION: T302-WA	Т			
SAMPLED VARIABLES: WAT : WATER M ACRY : ACRYL-(TACRY : ACRYL-(ACET : ACETI-(TACET : ACETI-(01MOLEELOW IN STR	REAM 14 SUBSTREA	M MIXED	
FORTRAN STATEMENTS: REACRY=ACRY, REACET=ACET,				
OBJECTIVE FUNCTION: MAXIMIZE REACET+RE FINAL OBJECTIVE FU		199.713		
CONSTRAINTS: T302-CI	D T302-RD T30	02-NS		
MANIPULATED VARIABLE D ASPEN PLUS PLAT: W	IN32 VER: 11. ACRYLIC	.1 ACID PLANT ET SECTION	12/28/2012	PAGE 11
OPTIMIZATION: T302-WAT (CONTINUED) VARY : WATER MOLEFLOW IN STREAM 11 SUBSTREAM MIXED LOWER LIMIT = 0.013889 KMOL/SEC UPPER LIMIT = 0.055556 KMOL/SEC FINAL VALUE = 0.027778 KMOL/SEC				
	UE AT START OF LOOP		UNITS	
WAT 1(ACRY 0.0 TACRY 0.0 ACET 0.4 TACET 0.4	00.000 657626 659101 449998E-01 450283E-01	100.000 0.657626 0.659101 0.449998E-01 0.4450283E-01	KMOL/HR KMOL/HR KMOL/HR KMOL/HR KMOL/HR	

Figure 4.9 Optimization Data of Absorption Tower (T-302)

After sensitivity analysis, the suitable range of water flow rate is from 20 kmol/h to 150 kmol/h. From Figure 4.8, the recovery of acrylic acid and acetic acid depends on the molar flow rate of water. As the molar flow rate of water increased, the recovery of the acids also increased. However, recovery of acrylic acid required more flow rate of water to separate it out from the mixture. Since acrylic acid is the desired product, hence the optimum condition is based on the recovery of acrylic acid. Therefore, the recommend optimum molar water flow rate must be above 90 kmol/h. From the Figure 4.9, it shows that in order to maximize the recovery of acrylic acid and acetic acid, optimum molar flow rate of water is 0.027778 kmol/sec or 100kmol/h.

4.3.4 Liquid-liquid Extractor (T-303)

4.3.4.1 Formulation of Optimization Problem (T-303)


The function of liquid-liquid extractor is to separate out the acrylic acid and acetic acid from the water by using diisopropyl ether (DIPE) as the solvent. The optimization objective is to maximize the recovery of acrylic acid and acetic acid with a minimum molar flow rate of solvent. Hence, molar flow rate of solvent as the manipulated variable and recovery of acrylic acid and acetic acid as the measured variables. The constant variables are pressure, temperature, the number of trays and feed location into absorption tower.

4.3.4.2 Result and Discussion (T-303)

The result of sensitivity analysis of liquid-liquid extractor is shown in Table 4.5. The Figure 4.10 shows the graph of recovery of acrylic acid and acetic acid versus molar flow rate of water. Besides that, Figure 4.11 shows the optimization data of liquid-liquid extractor.

Recovery of	Recovery of
Acrylic Acid	Acetic Acid
54.33891	17.99589
98.44178	37.08619
99.96867	44.80824
99.99943	52.32332
99.99998	59.99881
100	67.79101
100	75.6926
100	83.34827
100	90.02937
100	94.89823
100	97.71632
100	99.05802
100	99.62319
100	99.84587
	Acrylic Acid 54.33891 98.44178 99.96867 99.99943 99.99998 100 100 100 100 100 100 100 100 100

Table 4.5Sensitivity Analysis Data of Liquid-liquid Extractor (T-303)

Figure 4.10 Recovery of Acids versus Molar Flow Rate of Solvent of Liquidliquid Extractor (T-303)

OPTIMIZATION: "	F303-DIS			
SAMPLED VARI				
	ACRYL-01MOLEFLOW			
ACET :	ACRYL-01MOLEFLOW	IN STREAM	18 SUBSTRE	AM MIXED
TACET :	ACETI-01MOLEFLOW ACETI-01MOLEFLOW	IN STREAM	15 SUBSTRE	AM MIXED
	RY=ACRY/TACRY*100			
REACI	ET=ACET/TACET*100			
	NCTION: EACRY+REACET ETIVE FUNCTION VAL	_UE =	199.845	i
CONSTRAINTS:	T303-NS			
MANIPULATED Y VARY :	/ARIABLES: DIISO-01MOLEFLOW	TN STREAM	16 SUBSTRE	AM MIXED
LOWER LIMI	г = 0.13	3889	10 0000100	KMOL/SEC
UPPER LIMI FINAL VALU	Г = 0.37 Е = 0.37	7500 7500		KMOL/SEC KMOL/SEC
VALUES OF ACC	ESSED FORTRAN VAR	RIABLES:		
VARIABLE			AL VALUE	UNITS
 ACRY	85.2580		.2580	KMOL/HR
TACRY	85.2580	85	.2580	KMOL/HR
ACET TACET	4.40616 6.23767		22803 23767	KMOL/HR KMOL/HR
TACET	0.23767	0.	23707	KMOL/HR

Figure 4.11 Optimization Data of Liquid-liquid Extractor (T-303)

After analysis by sensitivity method, the range of manipulated variable or molar flow rate of solvent is from 50 kmol/h to 1350 kmol/h. From Figure 4.10, the recovery of acrylic acid and acetic acid depends on the molar flow rate of solvent. As the molar flow of solvent increased, the recovery of acids also increased. However, the recovery percentage for both acids is different. For the acrylic acid, minimum molar flow rate of solvent required is around 250 kmol/h. However, for the acetic acid is around 1250 kmol/h. Therefore, the recommend optimum solvent molar flow rate must be more than 1250 kmol/h in order to achieve more than 99% recovery of acetic acid. From the Figure 4.11, in order to obtain maximum recovery of acrylic acid and acetic acid, the molar flow rate of solvent is 0.37500kmol/sec or 1350kmol/h.

4.3.5 Distillation Column 1 (T-304)

4.3.5.1 Formulation of Optimization Problem (T-304)

The function of the distillation column 1 is to separate out the solvent or diisopropyl ether from the acids mixture. At distillation column, solvent is retrieved at the top while acids are presents at the bottom stream. The optimization objectives of the first distillation column are to maximize separation efficiency of solvent and maximized recovery percentage of acrylic acid and acetic acid. During optimization, the pressure and distillate rate is kept constant at 0.1atm and 1362.58kmol/h respectively. The optimization parameters are feed stages location, reflux ratio, and re-boiler heat duty.

4.3.5.2 Feed Stages Location Optimization (T-304)

For feed stages location optimization, the manipulated variable present is the location of the feed stages while number of stages, reflux ratio, and distillate rate are the constant variables. The number of stages and reflux ratio are kept fixed at 15 stages and 3 respectively. The feed trays location is varied from trays number 1 to number 15. The result of sensitivity analysis of feed stages location of distillation column 1 is shown in Table 4.6. The Figure 4.12 shows the graph of recovery of acrylic acid, acetic acid and solvent versus feed stages location of the distillation column 1.

Easd Stages	Recovery of	Recovery of	Recovery of
Feed Stages	Acrylic Acid	Acetic Acid	Diisopropyl Ether
1	73.11562	70.11368	97.92958
2	96.94891	92.19902	99.6658
3	99.41613	96.87779	99.85758
4	99.88053	98.6732	99.89828
5	99.97533	99.42949	99.90856
6	99.99489	99.75332	99.91152
7	99.99894	99.89281	99.9125
8	99.99978	99.95253	99.91286
9	99.99995	99.97796	99.913
10	99.99999	99.98854	99.91307
11	100	99.99252	99.91319
12	100	99.99347	99.91374
13	100	99.99293	99.91695
14	100	99.99131	99.93712
15	100	99.9844	99.95369

Table 4.6Sensitivity Analysis Data of Feed Stages Location of Distillation
Column 1 (T-304)

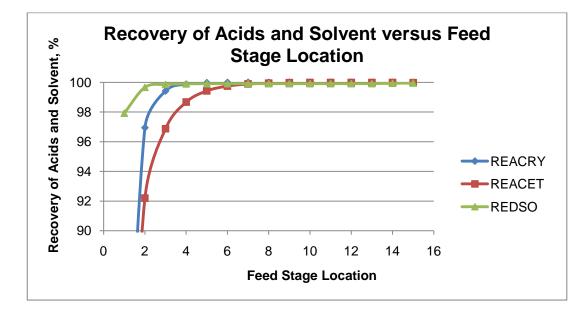
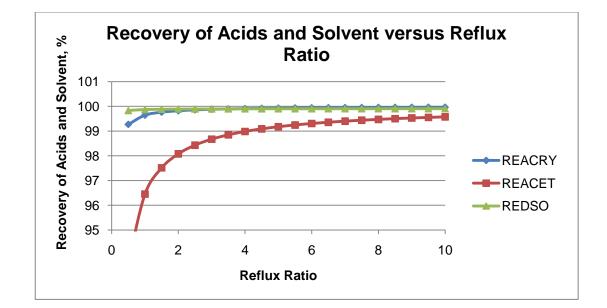


Figure 4.12Recovery of Acids and Solvent versus Feed Stage Location of
Distillation Column 1 (T-304)

From Figure 4.12, the recovery of acrylic acid, acetic acid and solvent depends on the feed stages location. As the feed stage location located at a higher


position, the percentage of recovery also increased but the saturated point is reached when feed stages location is almost at the 8th stage. Therefore, for the optimum condition, the location at the feed stage is at the 8th stage so as to obtain more than 99.9% of recovery.

4.3.5.3 Reflux Ratio Optimization (T-304)

For the reflux ratio optimization, reflux ratio is the manipulated variable but number of stages, feed stages location and distillate rate are constant variables. The number of stages and feed stages location are kept fixed at 15 stages and at the 8th stage respectively. After sensitivity analysis was carried out, the range of reflux ratio to be manipulated is varied from 0.5 to 10. The result of sensitivity analysis of reflux ratio of distillation column 1 is shown in Table 4.7. Figure 4.13 shows the graph of percentage recovery of acrylic acid, acetic acid and solvent versus reflux ratio of distillation column 1. Besides that, Figure 4.14 shows the optimization data of distillation column 1 with reflux ratio as optimization parameter.

Reflux	Pacovary of	Pocovory of	Pacovary of
	Recovery of	Recovery of	Recovery of
Ratio	Acrylic Acid	Acetic Acid	Diisopropyl Ether
0.5	99.27205	93.71747	99.831841
1	99.64451	96.45311	99.871012
1.5	99.7636	97.51386	99.884473
2	99.8222	98.07899	99.891314
2.5	99.8572	98.43156	99.895476
3	99.88054	98.67323	99.898284
3.5	99.89724	98.84955	99.900311
4	99.9098	98.98402	99.901844
4.5	99.91958	99.09001	99.903045
5	99.92745	99.17594	99.904015
5.5	99.93391	99.24683	99.904812
6	99.9393	99.30639	99.905479
6.5	99.94387	99.35716	99.906047
7	99.9478	99.40096	99.906535
7.5	99.95121	99.43914	99.90696
8	99.9542	99.47272	99.907333
8.5	99.95685	99.50248	99.907663
9	99.9592	99.52904	99.907957
9.5	99.96131	99.5529	99.908221
10	99.96321	99.57444	99.90846

Table 4.7Sensitivity Analysis Data of Reflux Ratio of Distillation Column 1
(T-304)

Figure 4.13 Recovery of Acids and Solvent versus Reflux Ratio of Distillation Column 1 (T-304)

OPTIMIZATION: T304-RR	
SAMPLED VARIABLES: D ASPEN PLUS PLAT: WIN32 VER: 11.1 12/28/2012 PAGE ACRYLIC ACID PLANT FLOWSHEET SECTION	12
OPTIMIZATION: T304-RR (CONTINUED) ACRY : ACRYL-01MOLEFLOW IN STREAM 20 SUBSTREAM MIXED TACRY : ACRYL-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED ACET : ACETI-01MOLEFLOW IN STREAM 20 SUBSTREAM MIXED TACET : ACETI-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED DIISO : DIISO-01MOLEFLOW IN STREAM 19 SUBSTREAM MIXED TDIISO : DIISO-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED	
FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100 RED=DIISO/TDIISO*100	
OBJECTIVE FUNCTION: MAXIMIZE REACET+REACRY+RED FINAL OBJECTIVE FUNCTION VALUE = 298.775	
CONSTRAINTS: T304-NS T304-BR T304-FS	
MANIPULATED VARIABLES: VARY : SENTENCE=COL-SPECS VARIABLE=MOLE-RR IN UOS BLOCK T-304 LOWER LIMIT = 0.50000 UPPER LIMIT = 10.00000 FINAL VALUE = 4.44308	
VALUES OF ACCESSED FORTRAN VARIABLES: VARIABLE VALUE AT START FINAL VALUE UNITS OF LOOP	
ACRY 0.236085E-01 0.236659E-01 KMOL/SEC TACRY 0.236828E-01 0.236828E-01 KMOL/SEC ACET 0.167503E-02 0.171600E-02 KMOL/SEC TACET 0.173001E-02 0.372498 0.372596 KMOL/SEC DIISO 0.373881 0.373881 KMOL/SEC	

Figure 4.14 Optimization Data of Distillation Column 1 with Reflux Ratio Optimization Parameter (T-304)

From the Figure 4.13, the recovery of acrylic acid, acetic acid and solvent depends on reflux ratio. As the reflux ratio increased, the recovery of acids and solvent also increased. For the optimum condition, reflux ratio must be more than 5 in order to get more than 99% recovery of acids and solvent. However, From the Figure 4.14, in order to get maximum recovery of acids and solvent, optimum reflux ratio is 4.44308.

4.3.5.4 Re-boiler Heat Duty Optimization (T-304)

For the re-boiler heat duty optimization, re-boiler heat duty is the manipulated variable but number of stages, feed stages location, distillate rate, and reflux ratio are constant variables. The number of stages, reflux ratio and feed stages location are kept fixed at 15 stages, reflux ratio of 3 and the feed location is at the 8th

stage respectively. After sensitivity analysis, the suitable range of re-boiler heat duty is varied from 40000MJ/h to 300000MJ/h. The result of sensitivity analysis of reboiler heat duty of distillation column 1 is shown in Table 4.8. Figure 4.15 shows the graph of recovery of acrylic acid, acetic acid and solvent versus re-boiler heat duty of distillation column 1. Moreover, Figure 4.16 shows the optimization data of distillation column 1 with re-boiler heat duty as optimization parameter.

Re-boiler	Recovery of	Recovery of	Recovery of
Duty, MJ/h	Acrylic Acid	Acetic Acid	Diisopropyl Ether
40000	91.08283	76.991117	99.18925
60000	98.73016	90.761728	99.78001
80000	99.37097	94.372839	99.84189
100000	99.5843	95.956771	99.86441
120000	99.6889	96.835863	99.87597
140000	99.75092	97.395637	99.88301
160000	99.79199	97.783918	99.88777
180000	99.82124	98.069524	99.8912
200000	99.84316	98.288688	99.8938
220000	99.8602	98.46238	99.89584
240000	99.87386	98.60354	99.89748
260000	99.88505	98.720602	99.89883
280000	99.89439	98.8193	99.89996
300000	99.90231	98.903677	99.90093

Table 4.8Sensitivity Analysis Data of Re-boiler Heat Duty for Distillation
Column 1 (T-304)

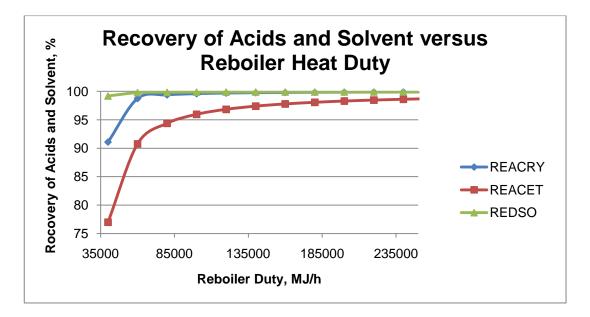


Figure 4.15 Recovery of Acids and Solvent versus Re-boiler Heat Duty of Distillation Column 1 (T-304)

OPTIMIZATION: T304-RD
SAMPLED VARIABLES:
D ASPEN PLUS PLAT: WIN32 VER: 11.1 ACRYLIC ACID PLANT 12/28/2012 PAGE 12
FLOWSHEET SECTION
OPTIMIZATION: T304-RD (CONTINUED) ACRY : ACRYL-OIMOLEFLOW IN STREAM 20 SUBSTREAM MIXED TACRY : ACRYL-OIMOLEFLOW IN STREAM 18 SUBSTREAM MIXED ACET : ACETI-OIMOLEFLOW IN STREAM 18 SUBSTREAM MIXED TACET : ACETI-OIMOLEFLOW IN STREAM 18 SUBSTREAM MIXED DIISO : DIISO-OIMOLEFLOW IN STREAM 18 SUBSTREAM MIXED TDIISO : DIISO-OIMOLEFLOW IN STREAM 18 SUBSTREAM MIXED
FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100 RED=DIISO/TDIISO*100
OBJECTIVE FUNCTION: MAXIMIZE REACET+REACRY+RED FINAL OBJECTIVE FUNCTION VALUE = 298.407
CONSTRAINTS: T304-NS T304-BR T304-FS
MANIPULATED VARIABLES: VARY LOWER LIMIT = 9,722,230. UOWER LIMIT = 0.833333+08 UPPER LIMIT = 0.833333+08 FINAL VALUE = 0.833333+08 WATT
VALUES OF ACCESSED FORTRAN VARIABLES: VARIABLE VALUE AT START FINAL VALUE UNITS OF LOOP
ACRY 0.235761E-01 0.236585E-01 KMOL/SEC TACRY 0.236828E-01 0.236828E-01 KMOL/SEC ACET 0.165544E-02 0.171023E-02 KMOL/SEC TACET 0.173001E-02 0.173001E-02 KMOL/SEC DIISO 0.372446 0.372583 KMOL/SEC
TDIISO 0.373881 0.373881 KMOL/SEC

Figure 4.16 Optimization Data of Distillation Column 1 with Re-boiler Heat Duty Optimization Parameter (T-304)

From the Figure 4.15, the recovery of acrylic acid, acetic acid and solvent are depends on the re-boiler heat duty supply. As the re-boiler heat duty is increased, the recovery of acids and solvent also increased. For the optimum re-boiler heat duty, it

must be supply around 200000MJ/h to the distillation column to achieve at least 99% of recovery. From the Figure 4.16, in order to maximize recovery of acids and solvent, optimum re-boiler heat duty is 0.833333E8 watt or 300000MJ/h. However, as more re-boiler heat duty supply, more operating cost required. In order to save operation cost, 180000MJ/h is recommended.

4.3.6 Distillation Column 2 (T-305)

4.3.6.1 Formulation of Optimization Problem (T-305)

The function of distillation column 2 is to separate out the desired product (acrylic acid) and the by product (acetic acid). Since acetic acid has lower boiling point than acrylic acid, hence top product is acetic acid whereas the bottom product is acrylic acid. The optimization objective for distillation column 2 is to maximize the purity of both acrylic acid and acetic acid by varying the optimization parameters which are feed stages location, reflux ratio and re-boiler heat duty. During the optimization, constant variables present are pressure, distillate rate and number of stage which kept constant at 0.1atm, 8kmol/h and 36 stages respectively.

4.3.6.2 Feed Stages Location Optimization (T-305)

For feed stages location optimization, feed stages location is the manipulated variable but the number of stages, reflux ratio, and distillate rate are constant

variables. The number of stages and reflux ratio are kept fixed at 36 stages and 12 respectively. The feed stages location is varied from stage number 2 to 36 in order to observe all variation of purity of acids. The result of sensitivity analysis of feed stages location for distillation column 2 is shown in Table 4.9. The Figure 4.17 shows the graph of recovery of acrylic acid and acetic acid versus feed stage location of distillation column 2.

Feed Stages Location	Purity of Acrylic Acid	Purity of Acetic Acid	Feed Stages Location	Purity of Acrylic Acid	Purity of Acetic Acid
2	97.2164389	48.05287	20	99.9883407	78.54379
3	98.5367982	62.57683	21	99.9838279	78.49415
4	99.3338823	71.34475	22	99.9775811	78.42544
5	99.7446985	75.86373	23	99.9689456	78.33045
6	99.9252014	77.84926	24	99.9570122	78.19918
7	99.9910821	78.57395	25	99.9405463	78.01806
8	99.9984437	78.65493	26	99.9178473	77.76837
9	99.9991439	78.66263	27	99.8865746	77.42437
10	99.9992927	78.66427	28	99.8434897	76.95043
11	99.9992495	78.66379	29	99.7840539	76.29664
12	99.9990793	78.66192	30	99.7018042	75.3919
13	99.9987864	78.6587	31	99.5873644	74.13314
14	99.9983507	78.6539	32	99.4263772	72.36277
15	99.9977287	78.64706	33	99.1958706	69.83065
16	99.9968557	78.63746	34	98.8556865	66.11265
17	99.9956386	78.62407	35	98.3230014	60.42069
18	99.9939464	78.60546	36	97.3695729	51.10874
19	99.9915977	78.57962			

Table 4.9Sensitivity Analysis Data of Feed Stages Location of Distillation
Column 2 (T-305)

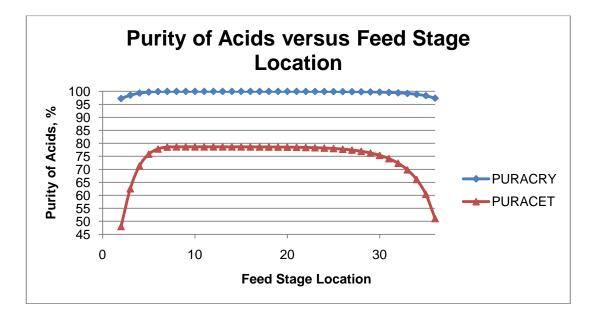
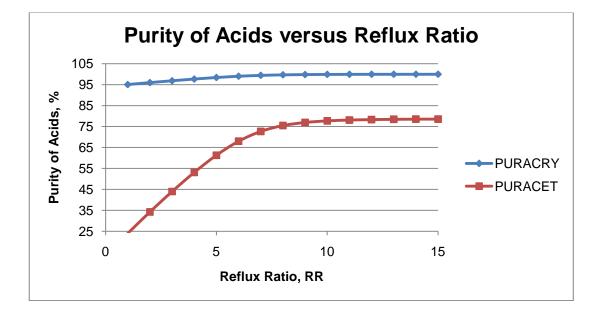


Figure 4.17 Recovery of Acids versus Feed Stage Location of Distillation Column 2 (T-305)


From the Figure 4.17, the purity of acrylic acid and acetic acid depends on feed stages location. For the optimum feed stages location, feed stage must be between stages of 8th to 25th in order to obtain maximum purity of acids. Hence, according to the reference of previous chapter, 23th feed stage location is chosen as the optimum stage for distillation column 2.

4.3.6.3 Reflux Ratio Optimization (T-305)

For the reflux ratio optimization, reflux ratio is the manipulated variable but number of stages, feed stages location and distillate rate are constant variables. The number of stages and feed stages location are kept fixed at 36 stages and 23th stage respectively. After sensitivity analysis, the suitable range of reflux ratio to be manipulated is varied from 1 to 15. The result of sensitivity analysis of reflux ratio for distillation column 2 is shown in Table 4.10. Figure 4.18 shows the graph of recovery of acrylic acid and acetic acid versus the reflux ratio of distillation column 2. Besides that, Figure 4.19 shows the optimization data of distillation column 2 with reflux ratio as the optimization parameter.

Reflux Ratio,	Purity of	Purity of
RR	Acrylic Acid	Acetic Acid
1	95.02708	23.96998
2	95.95845	34.21501
3	96.84466	43.96334
4	97.67569	53.10468
5	98.42036	61.296
6	99.0279	67.97892
7	99.45494	72.67644
8	99.70905	75.47159
9	99.84396	76.95562
10	99.91327	77.71807
11	99.94934	78.1148
12	99.96897	78.33068
13	99.98014	78.45359
14	99.98679	78.5267
15	99.9909	78.57196

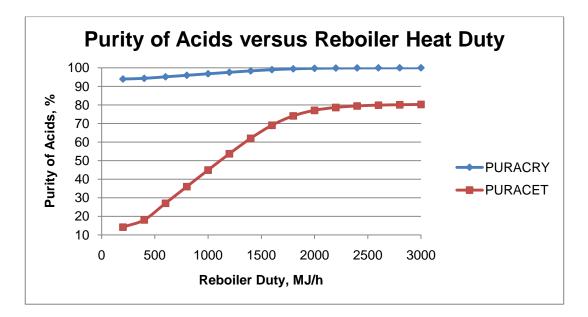
Table 4.10	Sensitivity Analysis Data of Reflux Ratio for Distillation Column 2
	(T-305)

Figure 4.18 Recovery of Acids and Solvent versus Reflux Ratio of Distillation Column 2 (T-305)

OPTIMIZATION: T305-RR				
SAMPLED VARIABLES: ACRY : ACRYL-OIMOLEFLOW IN STREAM 22 SUBSTREAM MIXED TOTALL : TOTAL MOLEFLOW IN STREAM 22 SUBSTREAM MIXED ACET : ACETI-OIMOLEFLOW IN STREAM 21 SUBSTREAM MIXED TOTAL2 : TOTAL MOLEFLOW IN STREAM 21 SUBSTREAM MIXED				
FORTRAN STATEMENTS: PUR1=ACRY/TOTAL1*100 PUR2=ACET/TOTAL2*100	PUR1=ACRY/TOTAL1*100			
OBJECTIVE FUNCTION: MAXIMIZE PUR1+PUR2 FINAL OBJECTIVE FUNCTION VALUE = 177.842				
CONSTRAINTS: T305-BR T305-FS T305-NS D ASPEN PLUS PLAT: WIN32 VER: 11.1 12/28/2012 PAGE 13 ACRYLIC ACID PLANT FLOWSHEET SECTION				
OPTIMIZATION: T305-RR (CONTINU	OPTIMIZATION: T305-RR (CONTINUED)			
MANIPULATED VARIABLES: VARY : SENTENCE=COL-SP LOWER LIMIT = 10. UPPER LIMIT = 15. FINAL VALUE = 10.	0000 0000	IN UOS BLOCK T-305		
VALUES OF ACCESSED FORTRAN V VARIABLE VALUE AT STA OF LOOP		UNITS		
ACRY 0.236659E-0 TOTAL1 0.250000E-0 ACET 0.381857E-0 TOTAL2 0.166667E-0	3 0.381857E-03	 KMOL/SEC KMOL/SEC KMOL/SEC		

Figure 4.19 Optimization Data of Distillation Column 2 with Reflux Ratio Optimization Parameter (T-305)

From Figure 4.18, the purity of acrylic acid and acetic acid depends on reflux ratio. As the reflux ratio is increased, the purity of acids is also increased. For the optimum reflux ratio, it must be above 9 in order to achieve maximum purity of acids respectively. From Figure 4.19, it shows that the optimum reflux ratio of distillation column 2 is 10.5.


4.3.6.4 Re-boiler Heat Duty Optimization (T-305)

For the re-boiler heat duty optimization, re-boiler heat duty is the manipulated variable but number of stages, feed stages location, distillate rate, and reflux ratio are constant variables. The number of stages, reflux ratio and feed stages location are kept fixed at 15 stages, 3 and the 8th stage respectively. After sensitivity analysis, the suitable range of re-boiler heat duty is varied from 40000 MJ/h to 300000MJ/h. The result of sensitivity analysis of re-boiler heat duty of distillation

column 2 is shown in Table 4.11. Figure 4.20 shows that the graph of purity of acrylic acid and acetic acid versus re-boiler heat duty of distillation column 2. Besides that, Figure 4.21 shows the optimization data of distillation column 2 with re-boiler heat duty as the optimization parameter.

Re-boiler Duty,	Purity of Acrylic	Purity of Acetic
MJ/h	Acid, %	Acid, %
200	93.9580	14.1543
400	94.3240	18.0517
600	95.1382	27.0038
800	95.9523	35.9584
1000	96.7641	44.8884
1200	97.5634	53.6804
1400	98.3175	61.9762
1600	98.9601	69.0442
1800	99.4192	74.0950
2000	99.6899	77.0728
2200	99.8321	78.6371
2400	99.9055	79.4438
2600	99.9439	79.8662
2800	99.9651	80.0996
3000	99.9774	80.2345

Table 4.11Sensitivity Analysis Data of Re-boiler Heat Duty for Distillation
Column 2 (T-305)

Figure 4.20 Purity of Acids versus Re-boiler Heat Duty of Distillation Column 2 (T-305)

OPTIMIZATION: T305-RD				
ACRY : ACR TOTAL1 : TOT	SAMPLED VARIABLES: ACRY : ACRYL-01MOLEFLOW IN STREAM 22 SUBSTREAM MIXED TOTAL1 : TOTAL MOLEFLOW IN STREAM 22 SUBSTREAM MIXED ACET : ACETI-01MOLEFLOW IN STREAM 21 SUBSTREAM MIXED TOTAL2 : TOTAL MOLEFLOW IN STREAM 21 SUBSTREAM MIXED			
	TS: /TOTAL1*100 /TOTAL2*100			
MAXIMIZE PUR1+	OBJECTIVE FUNCTION: MAXIMIZE PUR1+PUR2 FINAL OBJECTIVE FUNCTION VALUE = 180.212			
CONSTRAINTS: T30 D ASPEN PLUS PLAT	ACRYLIC		12/28/2012	PAGE 13
OPTIMIZATION: T305	OPTIMIZATION: T305-RD (CONTINUED)			
MANIPULATED VARIABLES: VARY : SENTENCE=COL-SPECS VARIABLE=QN IN UOS BLOCK T-305 LOWER LIMIT = 55,556.0 WATT UPPER LIMIT = 833,340. WATT FINAL VALUE = 833,340. WATT				
	ED FORTRAN VARIABL VALUE AT START OF LOOP		UNITS	
ACRY TOTAL1 ACET TOTAL2	0.236659E-01 0.250000E-01 0.381857E-03 0.166667E-02	0.236659E-01 0.250000E-01 0.381857E-03 0.166667E-02	 KMOL/SEC KMOL/SEC KMOL/SEC KMOL/SEC	

Figure 4.21 Optimization Data of Distillation Column 2 with Re-boiler Heat Duty Optimization Parameter (T-305)

From Figure 4.20, it shows that as the re-boiler heat duty increased, the purity of acrylic acid and acetic acid are also increased but reached a saturated point at around 2000MJ/h. For the optimum condition, the re-boiler heat duty must be

greater than 2000MJ/h in order to obtain maximum purity of both acids respectively. From Figure 4.21, the optimum re-boiler heat duty is 833340 watt or 3000MJ/h.

4.4 Summary

This chapter provides an overview of the descriptive optimization analysis which includes all the reactor and separation units that used to produce the acrylic acid. For the best optimum conditions to be carried out, maximum profit with the minimum operating cost is very important. After overall optimization, the optimum conditions for each unit are obtained in order to obtain maximum production of acrylic acid and desired quality of products.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

In this study, the main objective is to optimize the operating conditions in the reactor and separators sections of acrylic plant. Besides that, this research is also to simulate the production of acrylic acid process. By conducting this study, the results outcomes had been discussed in the previous chapter which involved simulation and optimization of the acrylic acid plant. In this chapter, the whole study was concluded based on the research founding.

5.2 Conclusions

In the simulation section, the production of acrylic acid process was successful simulated by using Aspen Plus. The basic components of acrylic acid plant are reactors and separators sections. According to the Nirlipt (2010), the cost of materials and products are usually much larger than the costs of energy or capital in a typical chemical process. Hence, the process must be designed and optimized well so as to not waste feed stocks or lose products (Lubyen, 2010). After optimization, optimum conditions of reactor and separators sections are obtained.

The flow sheet and simulation of acrylic acid production process is successful constructed and simulated. The results of simulation are acceptable because the final production rate of acrylic acid and acetic acid is mostly similar with the references values. The reactor section is optimized by an equilibrium based approach. The optimum value of temperature is 315 °C in order to obtain the maximum yield of acrylic acid which is 0.77254. For the flash drum unit, optimum temperature and pressure are obtained at 25 °C and 4.84atm respectively. Although the temperature to obtain maximum recovery of acrylic and acetic acid is 10 °C, however, 25 °C is recommended because at room temperature, additional energy is not required.

For the absorption tower and liquid-liquid extractor, optimum molar flow rate of water and solvent are obtained. From the sensitivity analysis, the minimum molar flow rate of water and solvent are 90kmol/h and 250kmol/h respectively. From the optimization process, the optimum values were obtained which are 100kmol/h and 1350kmol/h respectively in order to recover more than 99% of acrylic and acetic acid.

The two distillation columns in acrylic acid plant depend on a large number of variables. Each manipulated variable is optimized by keeping the other variables as constant. After an optimum value of a variable is obtained, the other manipulated variables are optimized by using that data. For the distillation column 1, the optimum feed stages location is at number eight while the reflux ratio is 4.44308. The re-boiler heat duty is optimized to be 180000MJ/h. For the distillation column 2, the optimum feed stages location is found to be in the range of 8 to 25 while the reflux ratio is 10.5. The re-boiler heat duty is optimized to be 3000MJ/h.

5.3 **Recommendations**

During conducting sensitivity analysis and optimization, some cases took place which affects and deviates the results of optimization. There are few recommendations being suggested in order to prevent these incidents. Firstly, for the sensitivity analysis, the range of manipulated variables should be specified well until the saturation point of measure variables is observed. This situation is testified from the feed stage location of distillation column 1. Besides that, the range of limits in the optimization must be around the point of optimum condition in order to prevent deviation of optimum conditions.

In this study, optimization parameters involved for this acrylic acid plant are number of stages, solvent flow rate, reflux ratio, feed trays location and reboiler heat duty. They are not only the parameters that can be used for optimization. For the future works, the operating and design cost can be consider for optimization parameters. One of the purposes of optimization is to improve and enhance the operation condition so that can realize the maximum profit. The profit usually based on revenue, raw material cost, operating cost, separation unit cost and heat exchanger network cost. Therefore, this shows that operating and design cost are another good optimization parameters in order to optimize the acrylic acid plant.

REFERENCES

Acetic Acid MSDS. (2005). Material Safety Data Sheet. Texas: Sciencelab.com, Inc.

Acetic Acid. (2003). Physical Properties of Acetic Acid. BP p.l.c.

Acrylic Acid. (2005). Material Safety Data Sheet. Texas: Sciencelab.com, Inc.

- Ahmed, I. (2002). Assessment report on Acrylic Acid for Developing an Ambient Air Quality Guideline. Alberta Environment. Doi: 0-7785-2254-7
- Andradottir, S., Healy, K.J., Withers, D.H., and Nelson, B.L. (1997). *Introduction to Modeling and Simulation*. University of New York at Binghanton: Department of Systems Science and Industrial Engineering.

Aspen Plus [®]: Aspen Plus User Guide. (2000). Aspen Technology, Inc.

- Aspen Plus: Getting Started Building and Running a Process Model. Aspen Technology, Inc.
- Cascieri, T., and Clary, J. (1993). Acrylic Acid Health Effects Assessment, in Health Effect Assessments of the Basic Acrylates, Tyler, T.R., Murphy, S.R., and Hunt, E.K. (eds.), CRC Press, Boca Raton, FL.
- Christie, J.G. (2003). *Transport Process and Separation Process Principles (4th ed.)*. New Jersey: Prentice Hall Professional Technical Reference.
- Genium Publishing Corporation (Genium). (1999). Genium's Handbook of Safety, Health and Environmental Data for Common Hazardous Substances. McGraw Hill, New York, NY.
- Jamillah, D., Luke, E., Norwind, K., Oluwatoyin, O., Jason, S., Basel, S., and Zhu, Z.C. (2007). Process Design Project: Process Design of an Acrylic Acid Plant. (Doctoral dissertation).

King, C.J. (1980). Separation Processes (2nd e.d.). USA: McGraw-Hill.

- Luyben, W.L. (2006). *Distillation Design and Control Using Aspen Simulation*. New York: Wiley.
- Luyben, W.L. (2010). *Design and Control of the Cumene Process*. Industrial Engineering and Chemistry Research, 49, 719-734.
- Malveda, M. (2007). Acetic acid. CEH Report 602.5000, SRI International.
- Nirlipt, M. (2010). *Design and Simulation of Cumene Plant Using Aspen Plus*. (Doctoral dissertation).

Perry, R.H., and Green, D.W. (1997). *Perry's Chemical Engineer's Handbook (7th e.d.). USA: McGraw-Hill.*

Production Report. (2005). Chemical Engineering News, 67-76.

- Richard, T., Richard, C.B., Wallace, B.W., and Joseph, A.S. (1998). *Analysis, Synthesis, and Design of Chemical Processes*. New Jersey: Prentice Hall PTR.
- Soo, H.C., Jae, W.K., and Vasilios, M. (1999). A Stochastic Approach to Global Optimization of Chemical Processes. *Journal of Computers & Chemical Engineering*, 23, 1351-1356.
- Thomas, F.E., and David, M.H. (2001). *Optimization of Chemical Processes* (2nd *e.d.*). New York: McGraw-Hill.
- Verschueren, K. (2001). *Handbook of Environmental Data on Organic Chemicals,* (4th ed.). Wiley Interscience, John Wiley & Sons, New York, NY.

APPENDICES A1

SENSITIVITY BLOCK: R301-T

SAMPLED VARIABLES:

PROIN : PROPY-01MOLEFLOW IN STREAM 7 SUBSTREAM MIXED ACRY : ACRYL-01MOLEFLOW IN STREAM 8 SUBSTREAM MIXED

VARIED VARIABLES:

VARY 1: SENTENCE=T-SPEC VARIABLE=TEMP ID1=1 IN UOS BLOCK R-301 LOWER LIMIT = 523.0000 K UPPER LIMIT = 638.0000 K INCREMENT = 5.0000

FORTRAN STATEMENTS: YIELD=ACRY/PROIN

TABULATED VARIABLES: COLUMN 2: YIELD

! VARY 1 ! YIELD !			
! R-301 !	!		
! 1 !	!		
! T-SPEC !	!		
! TEMP !	!		
! K !	!		
1 1	!		
!======	===!======!		
! 523.0000 !			
! 528.0000 !			
! 533.0000 !			
! 538.0000 !	0.2346 !		
! 543.0000 !	0.2670 !		
!+			
! 548.0000 !	0.3031 !		
! 548.0000 ! ! 553.0000 ! ! 558.0000 !	0.3433 !		
! 558.0000 !	0.3880 !		
! 563.0000 !			
! 568.0000 !			
!+			
! 573.0000 !			
! 578.0000 !			
! 583.0000 !	0.6934 !		
!w 588.0000	0.7728 !		
	0.7616 !		
!+			
!w 598.0000	0.7501 !		
!w 603.0000	0.7385 !		
!w 608.0000			
!w 613.0000			
!w 618.0000 !			
!w 623.0000			
!w 628.0000			
W 033.0000			
!w 633.0000 !w 638.0000 ! 583.1500 !	0.0009 !		
: 565.1500 !	0.0937 !		

w WARNINGS OCCURRED FOR VALUES IN THIS ROW. SEE THE HISTORY FILE FOR DETAILS.

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

PROIN	127.0	00	KMOL/HR
ACRY	88.35	17	KMOL/HR

APPENDICES A2

SENSITIVITY BLOCK: T301-P WITH TEMPERATURE 10 °C

SAMPLE	D VARIABLES:
ACRY	: ACRYL-01MOLEFLOW IN STREAM 13 SUBSTREAM MIXED
TACRY	: ACRYL-01MOLEFLOW IN STREAM 9 SUBSTREAM MIXED
ACET	: ACETI-01MOLEFLOW IN STREAM 13 SUBSTREAM MIXED
TACET	: ACETI-01MOLEFLOW IN STREAM 9 SUBSTREAM MIXED

VARIED VARIABLES:

VARY 1: SENTENCE=PARAM VARIABLE=PRES IN UOS BLOCK T-301 LOWER LIMIT = 5.0663+04 N/SQM UPPER LIMIT = 1.0133+06 N/SQM INCREMENT = 5.0663+04

FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100

TABULATED VARIABLES: COLUMN 2: REACRY COLUMN 3: REACET

! VARY 1 ! REACRY ! REACET ! ! T-301 ! ! ! ! PARAM ! ! ! PRES ! ! ! ! ! ! 1 ! ! N/SQM ! ! ! ! ! ! ! !=====!=====!======! ! 5.0663+04 ! 98.8815 ! 98.8561 ! ! 1.0133+05 ! 99.4559 ! 99.4334 ! ! 1.5199+05 ! 99.6430 ! 99.6216 ! ! 2.0265+05 ! 99.7355 ! 99.7151 ! ! 2.5331+05 ! 99.7907 ! 99.7709 ! !-----! ! 3.0398+05 ! 99.8272 ! 99.8080 ! ! 3.5464+05 ! 99.8531 ! 99.8345 ! ! 4.0530+05 ! 99.8724 ! 99.8543 ! ! 4.5596+05 ! 99.8874 ! 99.8697 !

! 5.0663+05 !	99.8993 !	99.8820 !
!+	+	!
! 5.5729+05 !	99.9090 !	99.8921 !
! 6.0795+05 !	99.9170 !	99.9005 !
! 6.5861+05 !	99.9238 !	99.9076 !
! 7.0928+05 !	99.9296 !	99.9137 !
! 7.5994+05 !	99.9346 !	99.9190 !
!+	+	!
! 8.1060+05 !	99.9389 !	99.9236 !
! 8.6126+05 !	99.9427 !	99.9277 !
! 9.1192+05 !	99.9461 !	99.9313 !
! 9.6259+05 !	99.9491 !	99.9346 !
! 1.0133+06 !	99.9518 !	99.9375 !
!+	+	!
! 2.4000+05 !	99.7785 !	99.7585 !
	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	<i>;;;;;eee</i> .

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS:

VARIADLE		VALUE	UNITS
	ACRY	88.1560	KMOL/HR
	TACRY	88.3517	KMOL/HR
	ACET	6.52543	KMOL/HR
	TACET	6.54122	KMOL/HR

APPENDICES A3

SENSITIVITY BLOCK: T301-P WITH TEMPERATURE 25 °C

SAMPLED VARIABLES:

ACRY: ACRYL-01MOLEFLOW IN STREAM 13 SUBSTREAM MIXEDTACRY: ACRYL-01MOLEFLOW IN STREAM 9 SUBSTREAM MIXEDACET: ACETI-01MOLEFLOW IN STREAM 13 SUBSTREAM MIXEDTACET: ACETI-01MOLEFLOW IN STREAM 9 SUBSTREAM MIXED

VARIED VARIABLES:

VARY 1: SENTENCE=PARAM VARIABLE=PRES IN UOS BLOCK T-301 LOWER LIMIT = 5.0663+04 N/SQM UPPER LIMIT = 1.0133+06 N/SQM INCREMENT = 5.0663+04

FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100

TABULATED VARIABLES: COLUMN 2: REACRY COLUMN 3: REACET

! VARY 1 ! REACRY ! REACET !

! T-301 !	!	!
! PARAM !	!	!
PRES !	!	!
!!	!!	
! N/SQM !	!	!
!!	!!	
!======	==!=====	=====!=====!
! 5.0663+04 !		
! 1.0133+05 !		
! 1.5199+05 !		
! 2.0265+05 !		
! 2.5331+05 !	99.4088 !	99.4172 !
!+		
! 3.0398+05 !	99.5111 !	99.5130 !
! 3.5464+05 !	99.5837 !	99.5811 !
! 4.0530+05 !	99.6378 !	99.6320 !
! 4.5596+05 !		
! 5.0663+05 !	99.7130 !	99.7029 !
!+	+	!
! 5.5729+05 !	99.7401 !	99.7287 !
! 6.0795+05 !		
! 6.5861+05 !	99.7816 !	99.7682 !
! 7.0928+05 !	99.7978!	99.7837 !
! 7.5994+05 !	99.8118 !	99.7971 !
!+	+	!
! 8.1060+05 !	99.8240 !	99.8088 !
! 8.6126+05 !	99.8348 !	99.8192 !
! 9.1192+05 !	99.8443 !	99.8283 !
! 9.6259+05 !	99.8528 !	99.8366 !
! 1.0133+06 !	99.8604 !	99.8439 !
!+		
! 2.4000+05 !	99.3745 !	99.3853 !

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

		-
ACRY	87.7991	KMOL/HR
TACRY	88.3517	KMOL/HR
ACET	6.50101	KMOL/HR
TACET	6.54122	KMOL/HR

APPENDICES A4

SENSITIVITY BLOCK: T301-P WITH TEMPERATURE 40 °C

SAMPLED VARIABLES: ACRY : ACRYL-01MOLEFLOW IN STREAM 13 SUBSTREAM MIXED TACRY : ACRYL-01MOLEFLOW IN STREAM 9 SUBSTREAM MIXED ACET : ACETI-01MOLEFLOW IN STREAM 13 SUBSTREAM MIXED TACET : ACETI-01MOLEFLOW IN STREAM 9 SUBSTREAM MIXED
VARIED VARIABLES: VARY 1: SENTENCE=PARAM VARIABLE=PRES IN UOS BLOCK T-301 LOWER LIMIT = 5.0663+04 N/SQM UPPER LIMIT = 1.0133+06 N/SQM INCREMENT = 5.0663+04
FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100
TABULATED VARIABLES: COLUMN 2: REACRY COLUMN 3: REACET
! VARY 1 ! REACRY ! REACET ! ! T-301 ! ! ! ! PARAM ! ! ! ! PRES ! ! ! ! N/SQM ! ! ! ! ! ! !
! 5.0663+04 ! 91.0684 ! 91.9588 ! ! 1.0133+05 ! 95.9835 ! 96.4157 ! ! 1.5199+05 ! 97.4168 ! 97.6856 ! ! 2.0265+05 ! 98.0996 ! 98.2866 ! ! 2.5331+05 ! 98.4989 ! 98.6371 !
!! ! 3.0398+05 ! 98.7607 ! 98.8667 ! ! 3.5464+05 ! 98.9454 ! 99.0287 ! ! 4.0530+05 ! 99.0827 ! 99.1492 ! ! 4.5596+05 ! 99.1886 ! 99.2423 ! ! 5.0663+05 ! 99.2728 ! 99.3163 !
!! ! 5.5729+05 ! 99.3413 ! 99.3767 ! ! 6.0795+05 ! 99.3980 ! 99.4268 ! ! 6.5861+05 ! 99.4459 ! 99.4690 ! ! 7.0928+05 ! 99.4867 ! 99.5052 ! ! 7.5994+05 ! 99.5219 ! 99.5364 !
!! ! 8.1060+05 ! 99.5526 ! 99.5637 ! ! 8.6126+05 ! 99.5796 ! 99.5877 ! ! 9.1192+05 ! 99.6035 ! 99.6090 ! ! 9.6259+05 ! 99.6248 ! 99.6281 ! ! 1.0133+06 ! 99.6439 ! 99.6452 !

! 2.4000+05 ! 98.4110 ! 98.5601 !

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

ACRY	86.9478	8 KMOL/HR
TACRY	88.351	7 KMOL/HR
ACET	6.44703	KMOL/HR
TACET	6.5412	2 KMOL/HR

APPENDICES A5

SENSITIVITY BLOCK: T301-P WITH TEMPERATURE 55 °C

SAMPLED VARIABLES:

ACRY	: ACRYL-01MOLEFLOW IN STREAM 13 SUBSTREAM MIXED
TACRY	: ACRYL-01MOLEFLOW IN STREAM 9 SUBSTREAM MIXED
ACET	: ACETI-01MOLEFLOW IN STREAM 13 SUBSTREAM MIXED
TACET	: ACETI-01MOLEFLOW IN STREAM 9 SUBSTREAM MIXED

VARIED VARIABLES:

VARY 1: SENTENCE=PARAM VARIABLE=PRES IN UOS BLOCK T-301 LOWER LIMIT = 5.0663+04 N/SQM UPPER LIMIT = 1.0133+06 N/SQM INCREMENT = 5.0663+04

FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100

TABULATED VARIABLES: COLUMN 2: REACRY COLUMN 3: REACET

! VARY 1 ! REACRY ! REACET ! ! ! ! ! ! T-301 ! ! ! ! PARAM ! ! ! PRES ! ! ! ! ! ! ! ! N/SQM ! ! ! ! ! ! !=====!=====!=====!=====! ! 5.0663+04 ! 73.3789 ! 75.9433 ! ! 1.0133+05 ! 89.8532 ! 91.3257 ! ! 1.5199+05 ! 93.7360 ! 94.6891 ! ! 2.0265+05 ! 95.4750 ! 96.1637 ! ! 2.5331+05 ! 96.4605 ! 96.9917 ! !-----! ! 3.0398+05 ! 97.0951 ! 97.5220 !

! 3.5464+05 !	97.5377 !	97.8907 !
! 4.0530+05 !	97.8638 !	98.1618 !
! 4.5596+05 !	98.1139 !	98.3696 !
! 5.0663+05 !	98.3118 !	98.5339 !
!+	+	!
! 5.5729+05 !	98.4722 !	98.6671 !
! 6.0795+05 !	98.6048 !	98.7772 !
! 6.5861+05 !	98.7162 !	98.8698 !
! 7.0928+05 !	98.8111 !	98.9487 !
! 7.5994+05 !	98.8928 !	99.0167!
! 7.5994+05 ! !+	,,	99.0167!
!+	+	!
!+ ! 8.1060+05 !	,,	
!+ ! 8.1060+05 ! ! 8.6126+05 !	98.9640 ! 99.0265 !	99.0760 ! 99.1282 !
!+ ! 8.1060+05 ! ! 8.6126+05 ! ! 9.1192+05 !	98.9640 ! 99.0265 ! 99.0819 !	99.0760 ! 99.1282 ! 99.1743 !
!+ ! 8.1060+05 ! ! 8.6126+05 ! ! 9.1192+05 ! ! 9.6259+05 !	98.9640 ! 99.0265 ! 99.0819 ! 99.1312 !	99.0760 ! 99.1282 ! 99.1743 ! 99.2155 !
!+ ! 8.1060+05 ! ! 8.6126+05 ! ! 9.1192+05 ! ! 9.6259+05 ! ! 1.0133+06 !	98.9640 ! 99.0265 ! 99.0819 ! 99.1312 ! 99.1754 !	99.0760 ! 99.1282 ! 99.1743 !
!+ ! 8.1060+05 ! ! 8.6126+05 ! ! 9.1192+05 ! ! 9.6259+05 !	98.9640 ! 99.0265 ! 99.0819 ! 99.1312 !	99.0760 ! 99.1282 ! 99.1743 ! 99.2155 ! 99.2525 !

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

		-
ACRY	85.0343	KMOL/HR
TACRY	88.3517	KMOL/HR
ACET	6.33266	KMOL/HR
TACET	6.54122	KMOL/HR

APPENDICES A6

SENSITIVITY BLOCK: T302-WAT

SAMPLED VARIABLES:

WATER: WATER MOLEFLOW IN STREAM 11 SUBSTREAM MIXEDACRY: ACRYL-01MOLEFLOW IN STREAM 14 SUBSTREAM MIXEDTACRY: ACRYL-01MOLEFLOW IN STREAM 10 SUBSTREAM MIXEDACET: ACETI-01MOLEFLOW IN STREAM 14 SUBSTREAM MIXEDTACET: ACETI-01MOLEFLOW IN STREAM 10 SUBSTREAM MIXED

VARIED VARIABLES:

VARY 1: WATER MOLEFLOW IN STREAM 11 SUBSTREAM MIXED LOWER LIMIT = 2.7778-03 KMOL/SEC

UPPER LIMIT = 5.5556-02 KMOL/SEC INCREMENT = 2.7778-03

FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100

TABULATED VARIABLES: COLUMN 2: REACRY COLUMN 3: REACET

! VARY 1 ! REACRY ! REACET ! ! 11 ! ! !

 ! MIXED !
 !
 !

 ! MIXED !
 !
 !

 ! WATER MO !
 !
 !

 ! LEFLOW !
 !
 !

 ! KMOL/SEC !
 !
 !

 !
 !
 !

 ! ! !=====!=====!=====!=====!=====! !e 2.7778-03 ! 18.6288 ! 8.7869 ! ! 5.5556-03 ! 61.3414 ! 71.3113 ! ! 8.3333-03 ! 79.7039 ! 91.6587 ! ! 1.1111-02 ! 89.2782 ! 97.0930 ! ! 1.3889-02 ! 94.1759 ! 98.7302 ! !-----! ! 1.6667-02 ! 96.7006 ! 99.3412 ! ! 1.9444-02 ! 98.0346 ! 99.6138 ! ! 2.2222-02 ! 98.7570 ! 99.7505 ! ! 2.5000-02 ! 99.1684 ! 99.8265 ! ! 2.7778-02 ! 99.4153 ! 99.8723 ! !-----! ! 3.0556-02 ! 99.5710 ! 99.9018 ! ! 3.3333-02 ! 99.6736 ! 99.9217 ! ! 3.6111-02 ! 99.7439 ! 99.9358 ! ! 3.8889-02 ! 99.7938 ! 99.9461 ! ! 4.1667-02 ! 99.8299 ! 99.9538 ! !-----! ! 4.4444-02 ! 99.8574 ! 99.9598 ! ! 4.7222-02 ! 99.8784 ! 99.9646 ! ! 5.0000-02 ! 99.8949 ! 99.9684 ! ! 5.2778-02 ! 99.9080 ! 99.9715 ! ! 5.5556-02 ! 99.9186 ! 99.9741 ! !-----! ! 3.9167-02 ! 99.7980 ! 99.9470 ! _____

e ERRORS OCCURRED FOR VALUES IN THIS ROW. SEE THE HISTORY FILE FOR DETAILS.

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

WATER	141.000	KMOL/HR
ACRY	1.40109	KMOL/HR
TACRY	1.40393	KMOL/HR
ACET	0.941394E-0	1 KMOL/HR
TACET	0.941894E-	01 KMOL/HR

APPENDICES A7

SENSITIVITY BLOCK: T303-DSO

SAMPLED VARIABLES: ACRY : ACRYL-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED TACRY : ACRYL-01MOLEFLOW IN STREAM 15 SUBSTREAM MIXED ACET : ACETI-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED TACET : ACETI-01MOLEFLOW IN STREAM 15 SUBSTREAM MIXED VARIED VARIABLES: VARY 1: DIISO-01MOLEFLOW IN STREAM 16 SUBSTREAM MIXED LOWER LIMIT = 1.3889-02 KMOL/SEC UPPER LIMIT = 0.5556 KMOL/SEC
INCREMENT = 1.3889-02 FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100
TABULATED VARIABLES: COLUMN 2: REACRY COLUMN 3: REACET
<pre>! VARY 1 ! REACRY ! REACET ! ! 16 ! ! ! ! MIXED ! ! ! ! DIISO-01 ! ! ! ! MOLEFLOW ! ! ! ! MOLEFLOW ! ! ! ! KMOL/SEC ! ! ! ! ! ! ! !=======================</pre>
! 2.7778-02 ! 93.3571 ! 32.2667 ! ! 4.1667-02 ! 98.4433 ! 37.0910 ! ! 5.5556-02 ! 99.7452 ! 41.0906 ! ! 6.9444-02 ! 99.9686 ! 44.7944 !
! 8.3333-02 ! 99.9961 ! 48.5211 ! ! 9.7222-02 ! 99.9994 ! 52.3072 ! ! 0.1111 ! 99.9999 ! 56.1125 ! ! 0.1250 ! 100.0000 ! 59.9945 ! ! 0.1389 ! 100.0000 ! 63.8515 !
!
!

!	0.2917 !	100.0000 !	97.7181 !
!	0.3056 !	100.0000 !	98.5352 !
!	0.3194 !	100.0000 !	99.0519 !
!	0.3333 !	100.0000 !	99.4017 !
!	0.3472 !	100.0000 !	99.6168 !
!	+-	+	!
!	0.3611 !	100.0000 !	99.7569 !
!	0.3750 !	100.0000 !	99.8452 !
!	0.3889 !	100.0000 !	99.9025 !
!	0.4028 !	100.0000 !	99.9360 !
!	0.4167 !	100.0000 !	99.9586 !
!	+-	+	!
!	0.4306 !	100.0000 !	99.9729 !
!	0.4444 !	100.0000 !	99.9821 !
!	0.4583 !	100.0000 !	99.9881 !
!	0.4722 !	100.0000 !	99.9919 !
!	0.4861 !	100.0000 !	99.9946 !
!	+-	+	!
!	0.5000 !	100.0000 !	99.9962 !
!	0.5139 !	100.0000 !	99.9975!
!	0.5278 !	100.0000 !	99.9982!
!	0.5417 !	100.0000 !	99.9987!
!	0.5556 !	100.0000 !	99.9991 !
!	+-	+	!
!	0.3611 !	100.0000 !	99.7603 !

e ERRORS OCCURRED FOR VALUES IN THIS ROW. SEE THE HISTORY FILE FOR DETAILS.

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

		-
ACRY	88.3489	KMOL/HR
TACRY	88.3489	KMOL/HR
ACET	6.52549	KMOL/HR
TACET	6.54117	KMOL/HR

APPENDICES A8

SENSITIVITY BLOCK: T304-FS

SAMPLED VARIABLES: ACRY : ACRYL-01MOLEFLOW IN STREAM 20 SUBSTREAM MIXED ACET : ACETI-01MOLEFLOW IN STREAM 20 SUBSTREAM MIXED DSO : DIISO-01MOLEFLOW IN STREAM 19 SUBSTREAM MIXED TACRY : ACRYL-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED TACET : ACETI-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED TDSO : DIISO-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED			
VARIED VARIABLES: VARY 1: SENTENCE=FEEDS VARIABLE=STAGE ID1=18 IN UOS BLOCK T-304 LOWER LIMIT = 1.0000 UPPER LIMIT = 15.0000 INCREMENT = 1.0000			
FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100 REDSO=DSO/TDSO*100			
TABULATED VARIABLES: COLUMN 2: REACRY COLUMN 3: REACET COLUMN 4: REDSO			
! VARY 1 ! REACRY ! REACET ! REDSO ! ! T-304 ! ! ! ! ! 18 ! ! ! ! ! 18 ! ! ! ! ! FEEDS ! ! ! ! ! STAGE ! ! ! ! ! ! ! ! !			
!======!====!====! ! 1.0000 ! 73.1152 ! 70.1137 ! 97.9296 ! ! 2.0000 ! 96.9489 ! 92.1990 ! 99.6658 ! ! 3.0000 ! 99.4161 ! 96.8779 ! 99.8576 ! ! 4.0000 ! 99.8805 ! 98.6732 ! 99.8983 ! ! 5.0000 ! 99.9753 ! 99.4295 ! 99.9086 !			
!++! ! 6.0000 ! 99.9949 ! 99.7533 ! 99.9115 ! ! 7.0000 ! 99.9989 ! 99.8928 ! 99.9125 ! ! 8.0000 ! 99.99988 ! 99.9525 ! 99.9129 ! ! 9.0000 ! 100.0000 ! 99.9780 ! 99.9130 ! ! 10.0000 ! 100.0000 ! 99.9885 ! 99.9131 !			
! 11.0000 ! 100.0000 ! 99.9925 ! 99.9132 ! ! 12.0000 ! 100.0000 ! 99.9935 ! 99.9137 ! ! 13.0000 ! 100.0000 ! 99.9929 ! 99.9170 ! ! 14.0000 ! 100.0000 ! 99.9913 ! 99.9371 ! ! 15.0000 ! 100.0000 ! 99.9844 ! 99.9537 !			
! 4.0000 ! 99.8805 ! 98.6732 ! 99.8983 !			

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

ACRY	88.2434	KMOL/HR
ACET	6.43897	KMOL/HR
DSO	1294.45	KMOL/HR
TACRY	88.3489	KMOL/HR
TACET	6.52549	KMOL/HR
TDSO	1295.77	KMOL/HR

APPENDICES A9

SENSITIVITY BLOCK: T304-RD

SAMPLED VARIABLES:

ACRY : ACRYL-01MOLEFLOW IN STREAM 20 SUBSTREAM MIXED
ACET : ACETI-01MOLEFLOW IN STREAM 20 SUBSTREAM MIXED
DSO : DIISO-01MOLEFLOW IN STREAM 19 SUBSTREAM MIXED
TACRY : ACRYL-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED
TACET : ACETI-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED
TDSO : DIISO-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED

VARIED VARIABLES:

VARY 1: SENTENCE=COL-SPECS VARIABLE=QN IN UOS BLOCK T-304 LOWER LIMIT = 1.1111+07 WATT UPPER LIMIT = 8.3333+07 WATT INCREMENT = 5.5556+06

FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100 REDSO=DSO/TDSO*100

TABULATED VARIABLES: COLUMN 2: REACRY COLUMN 3: REACET COLUMN 4: REDSO

! 3.3333+07 !	99.6889!	96.8359 !	99.8759!
!+	+	+	!
! 3.8889+07 !	99.7509 !	97.3956 !	99.8830 !
! 4.4444+07 !	99.7920 !	97.7839!	99.8877!
! 5.0000+07 !	99.8212 !	98.0695 !	99.8912 !
! 5.5556+07 !	99.8432 !	98.2887 !	99.8937 !
! 6.1111+07 !	99.8602 !	98.4624 !	99.8958 !
!+	+	+	!
! 6.6667+07 !	99.8739 !	98.6035 !	99.8974 !
! 7.2222+07 !	99.8850 !	98.7206 !	99.8988 !
! 7.7778+07 !	99.8943 !	98.8193 !	99.8999 !
! 8.3333+07 !	99.9023 !	98.9038 !	99.9009 !

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

ACRY	0.2440	02E-01	KMOL/SEC
ACET	0.6598	49E-03	KMOL/SEC
DSO	0.35993	87 K	MOL/SEC
TACRY	0.245	414E-01	KMOL/SEC
TACET	0.1812	264E-02	KMOL/SEC
TDSO	0.3599	37 K	MOL/SEC

APPENDICES A10

SENSITIVITY BLOCK: T304-RR

SAMPLED VARIABLES:

ACRY: ACRYL-01MOLEFLOW IN STREAM 20 SUBSTREAM MIXEDACET: ACETI-01MOLEFLOW IN STREAM 20 SUBSTREAM MIXEDDSO: DIISO-01MOLEFLOW IN STREAM 19 SUBSTREAM MIXEDTACRY: ACRYL-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXEDTACET: ACETI-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXEDTDSO: DIISO-01MOLEFLOW IN STREAM 18 SUBSTREAM MIXED

VARIED VARIABLES:

VARY 1: SENTENCE=COL-SPECS VARIABLE=MOLE-RR IN UOS BLOCK T-304 LOWER LIMIT = 0.5000

UPPER LIMIT = 10.0000 INCREMENT = 0.5000

FORTRAN STATEMENTS: REACRY=ACRY/TACRY*100 REACET=ACET/TACET*100 REDSO=DSO/TDSO*100

TABULATED VARIABLES: COLUMN 2: REACRY COLUMN 3: REACET COLUMN 4: REDSO

COL-SPEC	!!	!	!	
MOLE-RR		!	!	
!	!	!!		
!	!	!!		
!	!	!!		
	===!=====	=====!=		!======
0.5000 !	99.2721 !	93.7175 !	99.8319 !	
1.0000 !	99.6445 !	96.4531 !	99.8711 !	
1.5000 !	99.7636 !	97.5139 !	99.8845 !	
2.0000 !	99.8222 !	98.0790 !	99.8914 !	
2.5000 !	99.8572 !	98.4316 !	99.8955 !	
+	+	+	!	
3.0000 !	99.8805 !	98.6732 !	99.8983 !	
3.5000 !	99.8972 !	98.8496!	99.9003 !	
4.0000 !	99.9098 !	98.9840 !	99.9019 !	
4.5000 !	99.9196 !	99.0900 !	99.9031 !	
5.0000 !	99.9275 !	99.1759!	99.9040 !	
+	+	+	!	
5.5000 !	99.9339 !	99.2468 !	99.9048 !	
6.0000 !	99.9393 !	99.3064 !	99.9055 !	
6.5000 !	99.9439 !	99.3572 !	99.9061 !	
7.0000 !	99.9478!	99.4010 !	99.9066 !	
7.5000 !	99.9512 !	99.4391 !	99.9070 !	
+	+	+	!	
		99.4727 !		
8.5000 !	99.9569 !	99.5025 !	99.9077 !	
9.0000 !	99.9592!	99.5290 !	99.9080 !	
9.5000 !	99.9613 !		99.9082 !	
10.0000 !	99.9632 !		99.9085! !	

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

ACRY	0.2451	21E-01	KMOL/SEC
ACET	0.1788	60E-02	KMOL/SEC
DSO	0.35957	1 KI	MOL/SEC
TACRY	0.245	414E-01	KMOL/SEC
TACET	0.1812	264E-02	KMOL/SEC
TDSO	0.3599	37 K	MOL/SEC

APPENDICES A11

SENSITIVITY BLOCK: T305-FS

SAMPLED VARIABLES:
ACRYB : ACRYL-01MOLEFLOW IN STREAM 22 SUBSTREAM MIXED
ACETT : ACETI-01MOLEFLOW IN STREAM 21 SUBSTREAM MIXED
TOTALB : TOTAL MOLEFLOW IN STREAM 22 SUBSTREAM MIXED
TOTALT : TOTAL MOLEFLOW IN STREAM 21 SUBSTREAM MIXED
VARIED VARIABLES:
VARY 1: SENTENCE=FEEDS VARIABLE=STAGE ID1=20 IN UOS BLOCK T-305
LOWER LIMIT = 2.0000
UPPER LIMIT = 36.0000
INCREMENT = 1.0000
HUCKEWEIUI = 1.0000
FORTRAN STATEMENTS:
PUR1=ACRYB/TOTALB*100
PUR2=ACETT/TOTALT*100
FURZ-ACETT/TUTALT*100
TABULATED VARIABLES:
COLUMN 2: PUR1
COLUMN 3: PUR2
COLOMIN 5. FORZ
! VARY 1 ! PUR1 ! PUR2 !
! T-305 ! ! !
20 ! ! !
! FEEDS ! ! !
STAGE ! ! !
!=====!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 4.0000 ! 99.3339 ! 71.3448 ! 5.0000 ! 00.7447 ! 75.8628 !
! 5.0000 ! 99.7447 ! 75.8638 ! ! 6.0000 ! 99.9252 ! 77.8493 !
!! ! 7.0000 ! 99.9911 ! 78.5740 !
! 8.0000 ! 99.9984 ! 78.5740 ! ! 8.0000 ! 99.9984 ! 78.6550 !
9.0000 ! 99.9991 ! 78.6626 !
! 11.0000 ! 99.9992 ! 78.6638 ! !+
!! ! 12.0000 ! 99.9990 ! 78.6619 !
! 13.0000 ! 99.9988 ! 78.6586 !
! 14.0000 ! 99.9984 ! 78.6539 ! ! 15.0000 ! 99.9977 ! 78.6470 !
! 16.0000 ! 99.9969 ! 78.6374 !
! 10.0000 ! 99.9909 ! 78.0374 ! !++
! 17.0000 ! 99.9956 ! 78.6240 !
! 18.0000 ! 99.9940 ! 78.6054 !
! 18.0000 ! 99.9940 ! 78.0034 ! ! 19.0000 ! 99.9916 ! 78.5796 !
! 19.0000 ! 99.9910 ! 78.5790 ! ! 20.0000 ! 99.9883 ! 78.5437 !
! 20.0000 ! 99.9885 ! 78.5457 ! ! 21.0000 ! 99.9838 ! 78.4941 !
! 22.0000 ! 99.9775 ! 78.4254 ! ! 23.0000 ! 99.9690 ! 78.3304 !
: 23.0000 : 77.7070 : 70.3304 !

!	24.0000 !	99.9570 !	78.1991 !
!	25.0000 !	99.9405 !	78.0180 !
i	26.0000 !	99.9178 !	77.7683 !
:			
!	+	+	!
!	27.0000 !	99.8866 !	77.4243 !
!	28.0000 !	99.8435 !	76.9504 !
!	29.0000 !	99.7841 !	76.2966 !
!	30.0000 !	99.7018 !	75.3919 !
!	31.0000 !	99.5874 !	74.1331 !
!	+	+	!
!	32.0000 !	99.4264 !	72.3627 !
! !	32.0000 ! 33.0000 !	99.4264! 99.1959!	72.3627! 69.8306!
! ! !			
!	33.0000 !	99.1959 !	69.8306 !
!	33.0000 ! 34.0000 !	99.1959 ! 98.8557 !	69.8306 ! 66.1126 !
! ! !	33.0000 ! 34.0000 ! 35.0000 !	99.1959 ! 98.8557 ! 98.3230 !	69.8306 ! 66.1126 ! 60.4206 ! 51.1087 !
! ! ! !	33.0000 ! 34.0000 ! 35.0000 ! 36.0000 !	99.1959 ! 98.8557 ! 98.3230 ! 97.3770 !	69.8306 ! 66.1126 ! 60.4206 ! 51.1087 !

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

VARIADLI	VALUE	UNITS
ACRYB	87.9687	KMOL/HR
ACETT	6.40763	KMOL/HR
TOTALB	88.0000	KMOL/HR
TOTALT	8.00000	KMOL/HR

APPENDICES A12

SENSITIVITY BLOCK: T305-RD

SAMPLED VARIABLES:

ACRYB: ACRYL-01MOLEFLOW IN STREAM 22 SUBSTREAM MIXEDACETT: ACETI-01MOLEFLOW IN STREAM 21 SUBSTREAM MIXEDTOTALB: TOTAL MOLEFLOW IN STREAM 22 SUBSTREAM MIXEDTOTALT: TOTAL MOLEFLOW IN STREAM 21 SUBSTREAM MIXED

VARIED VARIABLES:

VARY 1: SENTENCE=COL-SPECS VARIABLE=QN IN UOS BLOCK T-305 LOWER LIMIT = 5.5556+04 WATT UPPER LIMIT = 8.3334+05 WATT INCREMENT = 5.5556+04

FORTRAN STATEMENTS: PUR1=ACRYB/TOTALB*100 PUR2=ACETT/TOTALT*100

TABULATED VARIABLES: COLUMN 2: PUR1 COLUMN 3: PUR2

_____ ! VARY 1 ! PUR1 ! PUR2 ! ! T-305 ! ! ! ! COL-SPEC ! ! ! QN ! ! ! ! ! ! ! 1 ! ! ! WATT ! ! !! 1 ! !=====!=====!=====!=====! ! 5.5556+04 ! 93.9580 ! 14.1543 ! ! 1.1111+05 ! 94.3239 ! 18.0517 ! ! 1.6667+05 ! 95.1382 ! 27.0038 ! ! 2.2222+05 ! 95.9523 ! 35.9584 ! ! 2.7778+05 ! 96.7641 ! 44.8884 ! !-----! ! 3.3334+05 ! 97.5633 ! 53.6804 ! ! 3.8889+05 ! 98.3175 ! 61.9762 ! ! 4.4445+05 ! 98.9601 ! 69.0442 ! ! 5.0000+05 ! 99.4192 ! 74.0950 ! ! 5.5556+05 ! 99.6899 ! 77.0728 ! !-----! ! 6.1112+05 ! 99.8321 ! 78.6371 ! ! 6.6667+05 ! 99.9055 ! 79.4438 ! ! 7.2223+05 ! 99.9439 ! 79.8662 ! ! 7.7778+05 ! 99.9651 ! 80.0996 ! ! 8.3334+05 ! 99.9774 ! 80.2345 ! !-----!

e ERRORS OCCURRED FOR VALUES IN THIS ROW. SEE THE HISTORY FILE FOR DETAILS.

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS: VARIABLE VALUE UNITS

ACRYB	0.266667E-06	KMOL/SEC
ACETT	0.179771E-02	KMOL/SEC
TOTALB	0.266667E-06	KMOL/SEC
TOTALT	0.266664E-01	KMOL/SEC

APPENDICES A13

SENSITIVITY BLOCK: T305-RR

SAMPLED VARIABLES:

ACRYB: ACRYL-01MOLEFLOW IN STREAM 22 SUBSTREAM MIXEDACETT: ACETI-01MOLEFLOW IN STREAM 21 SUBSTREAM MIXEDTOTALB: TOTAL MOLEFLOW IN STREAM 22 SUBSTREAM MIXEDTOTALT: TOTAL MOLEFLOW IN STREAM 21 SUBSTREAM MIXED

VARIED VARIABLES:

VARY 1: SENTENCE=COL-SPECS VARIABLE=MOLE-RR IN UOS BLOCK T-305

LOWER LIMIT = 1.0000 UPPER LIMIT = 15.0000 INCREMENT = 1.0000
FORTRAN STATEMENTS: PUR1=ACRYB/TOTALB*100 PUR2=ACETT/TOTALT*100
TABULATED VARIABLES: COLUMN 2: PUR1 COLUMN 3: PUR2
! VARY 1 ! PUR1 ! PUR2 ! ! T-305 ! ! ! ! COL-SPEC ! ! ! ! ! MOLE-RR ! ! ! ! ! ! ! ! ! ! ! !
!======! !=====! ! 1.0000 ! 95.0270 ! 23.9699 ! ! 2.0000 ! 95.9584 ! 34.2150 ! ! 3.0000 ! 96.8446 ! 43.9633 ! ! 4.0000 ! 97.6756 ! 53.1046 ! ! 5.0000 ! 98.4203 ! 61.2959 !
! 6.0000 ! 99.0278 ! 67.9789 ! ! 7.0000 ! 99.4549 ! 72.6764 ! ! 8.0000 ! 99.7090 ! 75.4715 ! ! 9.0000 ! 99.8439 ! 76.9556 ! ! 10.0000 ! 99.9132 ! 77.7180 !
! 11.0000 ! 99.9493 ! 78.1147 ! ! 12.0000 ! 99.9689 ! 78.3306 ! ! 13.0000 ! 99.9801 ! 78.4535 ! ! 14.0000 ! 99.9867 ! 78.5266 ! ! 15.0000 ! 99.9909 ! 78.5719 !
!! ! 12.0000 ! 99.9689 ! 78.3306 !

VALUES OF ACCESSED FORTRAN VARIABLES ON MOST RECENT SIMULATION PASS:

VARIABLE	VALUE	UNITS
ACRYB	0.244357E-01	KMOL/SEC
ACETT	0.177990E-02	KMOL/SEC
TOTALB	0.244444E-01	KMOL/SEC
TOTALT	0.222222E-02	KMOL/SEC