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Abstract
A new nonlinear filtering algorithm for effectively denoising images corrupted by the
random-valued impulse noise, called dual sliding statistics switching median (DSSSM) filter
is presented in this paper. The proposed DSSSM filter is made up of two subunits; i.e.
impulse noise detection and noise filtering. Initially, the impulse noise detection stage of
DSSSM algorithm begins by processing the statistics of a localized detection window in
sorted order and non-sorted order, simultaneously. Next, the median of absolute difference
(MAD) obtained from both sorted statistics and non-sorted statistics will be further processed
in order to classify any possible noise pixels. Subsequently, the filtering stage will replace the
detected noise pixels with the estimated median value of the surrounding pixels. In addition,
fuzzy based local information is used in the filtering stage to help the filter preserves the
edges and details. Extensive simulations results conducted on gray scale images indicate that
the DSSSM filter performs significantly better than a number of well-known impulse noise
filters existing in literature in terms of noise suppression and detail preservation; with as
much as 30% impulse noise corruption rate. Finally, this DSSSM filter is algorithmically
simple and suitable to be implemented for electronic imaging products.

Keyword: Image processing, random-valued impulse noise, digital image, nonlinear noise
filtering.

1. Introduction
The use of digital image-based visual information have gained a lot attention due to its

flexibility and this phenomenon is expected to continue growing. Unfortunately, digital
images are frequently subjected to the contamination of impulse noise that typically due to
the interferences generated during transmission/acquisition or storage through electronic



medium, poor sensor configuration and timing errors in analog-to-digital conversion [1].
Therefore, it is imperative to remove the impulse noise effect before any subsequent image
processing operations can be carried out as the occurrences of impulse noise can severely
damage the information in the original image.

One of the most effective approaches to cater for the occurrence of impulse noise and for
the improvement of the quality of the acquired image is by using denoising-based algorithm.
Accordingly, a large number of nonlinear filters have been widely exploited to remove the
impulse noise as they are generally more superior than linear filtering techniques. For
instance, standard median (SM) filter [2] and adaptive median (AM) filter [3] are two of the
most basic nonlinear filtering techniques for suppressing impulse noise. Ironically, this SM is
implemented unconditionally across the image while its variants (e.g. see AM) inherited this
clumsy smoothing property; thus they tend to modify both noise and noise-free pixels
simultaneously. Consequently, the detailed regions such as object edges and fine textures in
image are smeared and appear blurry or jittered.

To get rid of the problem, various filters under switching scheme have been studied and
experimented by a number of recently published works; such as switching median filter I and
II (SWM-I and SWM-II) [4], multi-state median (MSM) filter [5], Laplacian switching
median (LSM) filter [6], enhanced rank impulse detector (ERID) [7] and directional weighted
median (DWM) filter [8], etc. With this kind of filtering properties, these techniques are
shown to be more effective to preserve most of the image details compared to the
conventional non-switching techniques.

Of late, in accordance with the evolution in digital image acquisition technologies,
the corruption rate of impulse noise in digital images has managed to be reduced to the level
that may be regarded as low; i.e. less than 30% noise density [9]. Based on the
aforementioned statements and observations; hence our aim in this paper is to develop an
efficient filtering technique with a reasonable processing time, particularly for the range of
low level impulse noise. Towards this, we introduce a new iterative and recursive filter
known as dual sliding statistics switching median (DSSSM). This proposed filter is relatively
fast and can remove the impulse noise dexterously without jeopardizing the details and
textures inside the image.



2. Methodology

2.1 Impulse Noise Model
In this paper, the experiment picture use the Impulse Noise Model. Theoretically, impulse
noise contaminates an image with a random amplitude which could either fall within the
image dynamic range (i.e. random-valued impulse noise) or out of the range (i.e.
salt-and-pepper noise), and usually only certain percentage of pixels are affected. In this work,
we tend to focus on the random-valued impulse noise and the model of this impulse noise is
described for clarity. For detail, let x(i, j) and o(i, j) be the gray level of the noisy image and
the original image at location (i, j), respectively. Then, the impulse noise model with noise
density r can be defined as:
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where n(i, j) is the noise pixel value independent from o(i, j). The image is said to be
corrupted by the  random-valued impulse noise when n(i, j) uniformly distributed within the
image dynamic range, i.e. n(i, j) ∈ [Nmin, Nmax]. For example, in an 8-bit gray scale image
with 256 gray levels, the n(i, j) may range from 0 (Nmin) to 255 (Nmax).The form of
random-valued impulse noise may be best described by Figure 1.

Figure 1. The representation of random-valued impulse noise

In practical, identifying this such noise is more challenging compared to the salt-and-pepper
noise because the intensity of noisy pixel is very similar to its surrounding.

2.2 Dual Sliding Statistics Switching Median Filter

Dual sliding switching median (DSSSM) filter is an iterative nonlinear filter which
consists of two processing stages. The first stage involves the detection of impulse noise and
its location. A noise mask, acting as a classifier to separate the noise pixels from noise-free
pixels is generated during this process. In the second stage, all noise-free pixels are left
uncorrected while the other noise pixels will be subjected for further processing. At this level,
the pixel restoration process is carried out recursively with the assistance of fuzzy based local
information.



In digital image, the noisy pixel can be characterized by a pixel with the intensity that
varies greatly from those of its neighboring pixels. Basically, the intensities of these pixels
are represented by a numerical integer. Based on this fact, the impulse detection can be
realized by analysing the local image statistics within a window patch. In the beginning of the
detection process, the proposed DSSSM filter employs a square local window W(i, j) with
odd dimensions (2N+1) × (2N+1) and is centered at x(i, j). It is given as:

( , ) {x(i k, j l)} ; where k,l  (-N,...,0,...,N)W i j     (2)

All the pixel’s elements within W(i, j) are then stored in two separate arrays which represent
the sorted statistics and non-sorted statistics, respectively. The process is continued by
finding the median pixel Pmed(i, j) and central pixel Pcenter(i, j). Both Pmed(i, j) and Pcenter(i, j)
are defined by:

( , ) { ( , j l)}medP i j med x i k   (3)

( , ) ( , )centerP i j x i j (4)

Next, the median pixel Pmed(i, j) and central pixel Pcenter(i, j) are subtracted from all the pixels
in W(i, j). This modus operandi will produce two sets of absolute differences arrays, namely
dmed(i+k, j+l) and dcenter(i+k, j+l). Mathematically, these absolute differences arrays are
computed as follows:

( , ) ( , ) ( , )  ; with k, l  0med medd i k j l x i k j l P i j       (5)

( , ) ( , ) ( , )  ; with k, l  0center medd i k j l x i k j l P i j       (6)

At this point, all the values computed in dmed(i+k, j+l) and dcenter(i+k, j+l) are rearranged in
ascending order. After that, the median of absolute differences (i.e. MADmed and MADcenter)
will be identified based on:

{ ( , )}med medMAD med d i k j l   (7)

{ ( , )}center medMAD med d i k j l   (8)



In order to make a distinction whether current processing pixel is a noise or not, the
difference between MADmed and MADcenter will be first calculated. If the MAD difference is
denoted as diffMAD, then alternatively diffMAD can be written as follows:

med centerdiffMAD MAD MAD  (9)

This diffMAD provides information about the likelihood of corruption for the current
processing pixel. For example, if diffMAD value is large then the current pixel is very likely
being contaminated by impulse noise. On the other hand, in the case where diffMAD is small,
the current pixel may be considered as a noise-free.

After diffMAD is counted, a binary noise mask M(i, j)  will be formed to mark the
locations of noise pixels and noise-free pixels. Thus, the process of generating noise mask
can be grasped as:
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where M(i, j) = 1 signifies the noise pixel, M(i, j) = 0 represents the noise-free pixel and
T(t)

DSSSM actually is the threshold in the t-th iteration.

In step-by-step implementation, the proposed DSSSM algorithm is elucidated as follows:

Step 1: Select a two dimensional local window W(i, j) of size 3×3 from the noisy image.
(The reason behind the selection of 3×3 window size is based on the fact that
larger local window will blur the image’s detail and edge [10]).

Step 2: Put all elements within W(i, j) in two separate arrays, then identify the median pixel
Pmed(i, j) and central pixel Pcenter(i, j) using Eq. (3) and Eq. (4), respectively.

Step 3: Compute the absolute difference luminance dmed(i+k, j+l) and dcenter(i+k, j+l)
according to Eq. (5) and Eq. (6), respectively.

Step 4: Rearrange each value obtained in dmed(i+k, j+l) and dcenter(i+k, j+l) in
ascendingorder. Then, calculate the median of absolute differences MADmed and

MADcenter based on Eq. (7) and Eq. (8), respectively.
Step 5: Calculate the absolute MAD difference diffMAD based on Eq. (9).
Step 6: Compare the absolute diffMAD value found in Step 5 with the decision maker

threshold T(t)
DSSSM and generate the binary mask M(i, j) based on Eq. (10).

(Repeat Step 2 to Step 6 until the entire pixels in the image have been processed)



3. Simulation Result and Discussions

The performance of the proposed DSSSM filter will be compared to other related
state-of-the-art impulse noise filters based on their simulation results. Test images of size
512×512, obtained from diverse online sources were used for the simulations of each
implemented filters. Each of the test images was corrupted with the impulse noise model
described in (1), ranging from 5% to 30% with an increment of 5%. This set of standard test
images contains various characteristics which are suitable to assess the robustness of the
implemented filters.

In addition to the visual inspection of the restored images, the quality of the restored
images is also evaluated quantitatively using the peak signal-to-noise ratio (PSNR).
Mathematically, the PSNR for a digital image of the dimension M×N is defined as:
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For the above formulae, MSE stands for the mean-squared error and it is given as:
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where yi, j is the filtered image and oi, j is the original noise-free image.

Apart from the PSNR assessment, the mean of absolute error (MAE) has also been used
in this analysis to characterize the filter’s detail preservation behavior, one which is defined
by:
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As reported in Table 1, the proposed DSSSM filtering technique consistently yields the
highest PSNR values compared to the other existing conventional filters. The higher PSNR
value, the clearer filtered image produced.



Table 1. Comparison of PSNR on Different Noise Level Restoration for ‘Starfish’,
‘Boat’ and ‘Goldhill’ (Test Image).

Images Algorithms 10%
PSNR(dB)
20% 30%

SWM-I 31.6219 27.8273 24.7745
SWM-II 33.056 27.8818 23.8052
TSM 35.0013 30.2872 26.1675

Starfish DWM 32.6523 29.6524 27.9957
LUO 35.1372 31.4958 28.0056
ACWM 35.3272 30.6981 26.55
DSSSM 35.3753 32.7072 30.5841

Meanwhile, the similar phenomenon is occurred in the analysis outlined in Table 2,
where the proposed DSSSM filter without fail outclasses the other filters in comparison by
producing the best MAE results for the cases of 20% and 30% impulse noise density. On the
contrary, at 10% of impulse noise density, it can be observed that ACWM gives the better
MAE results as compared to our proposed filter.

Table 2. Comparison of MAE on Different Noise Level Restoration for ‘Starfish’,
‘Boat’ and ‘Goldhill’ (Test Image).

Images Algorithms 10%
MAE
20% 30%

SWM-I 1.37569 3.01962 5.21482
SWM-II 1.16153 2.82004 5.49509
TSM 0.925304 2.02381 3.84945

Starfish DWM 1.17076 2.3494 3.52177
LUO 0.983086 1.88244 3.21782
ACWM 0.759693 1.78849 3.48141
DSSSM 0.826065 1.58328 2.49641

Figure 3. Simulation results on a portion of Starfish using; (a) original image,    (b)
noisy image with 10% density of impulse noise, (c) SWM-I, (d) SWM-II, (e) TSM, (f) DWM,
(g) LUO, (h) ACWM and (i) DSSSM.



4. Conclusion
Throughout this study, an effective algorithm for the detection and suppression of

random-valued impulse noise have been introduced. The proposed DSSSM filter is
constructed by incorporating a robust impulse noise detection based on adaptive thresholding
and recursive pixel restoration technique. Additionally, fuzzy reasoning set is embedded as
part of the filtering mechanism in order to handle any imprecise local information. Extensive
simulation results reveal that the DSSSM filter is able to reduce the random-valued impulse
noise effect, while at the same time preserving the details and structures of fine images.
Furthermore, its filtering performance is tremendously consistent all the time as compared to
the number of well-known conventional techniques; and all these good results are achieved
with a fairly efficient processing time.
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