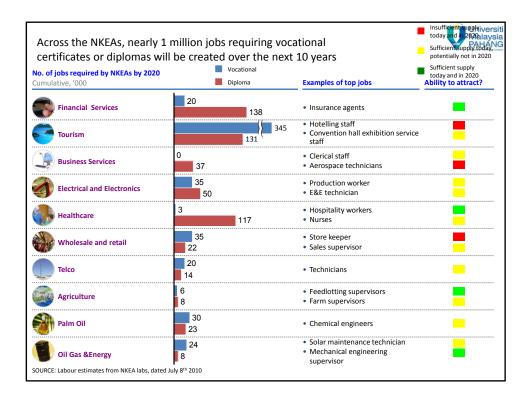
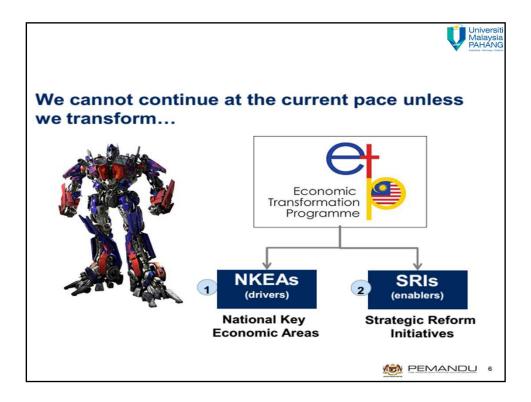
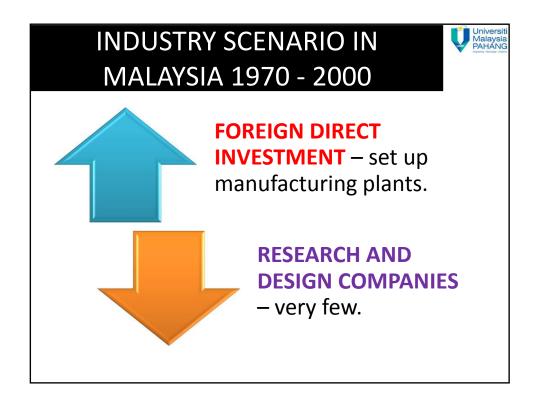
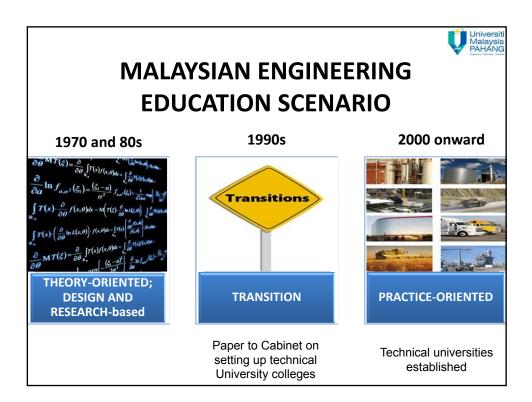
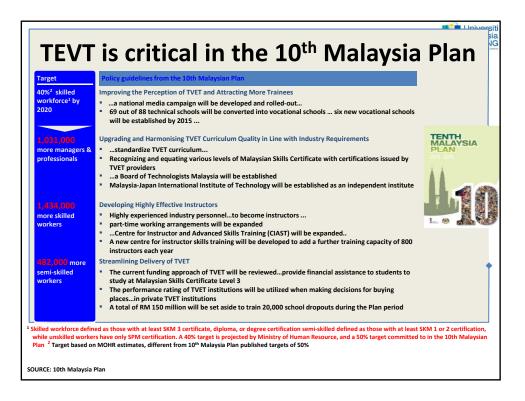

Learning Objectives At the end of presentation, participants will be able to: Understand the Engineering Technology issues in Malaysia. Value the benefits of Engineering Technology to the country. Appreciate initiatives in Engineering Technology. Experience the challenges faced during the whole process. Visualize the Future Direction.

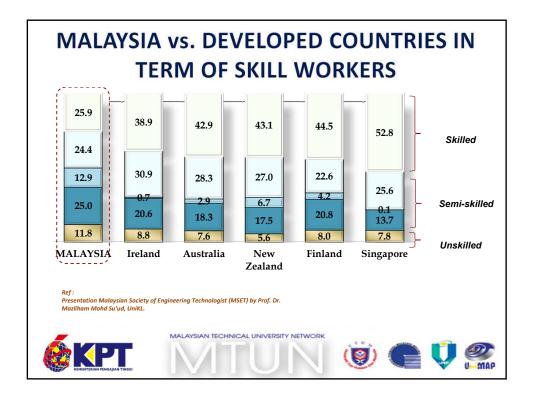


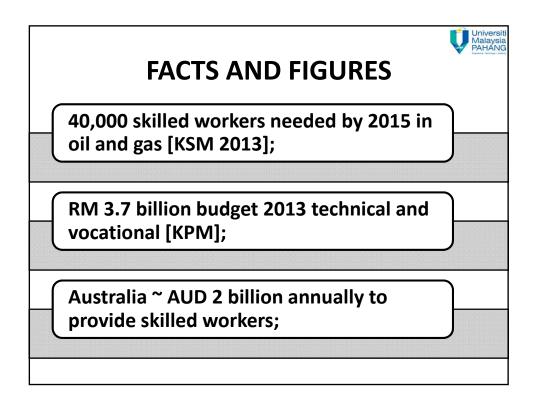


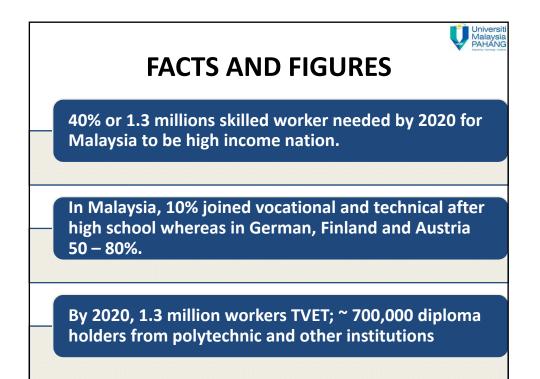


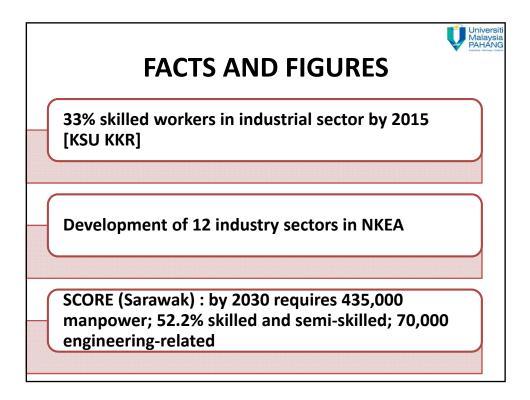


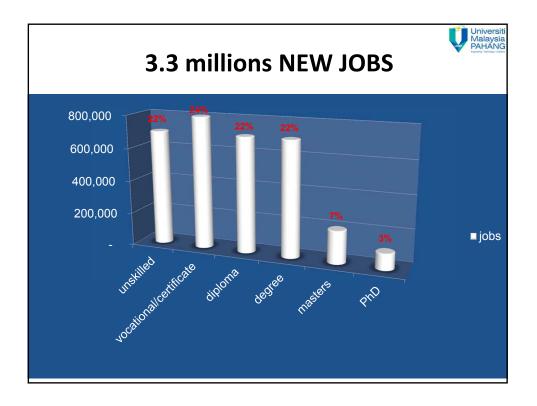


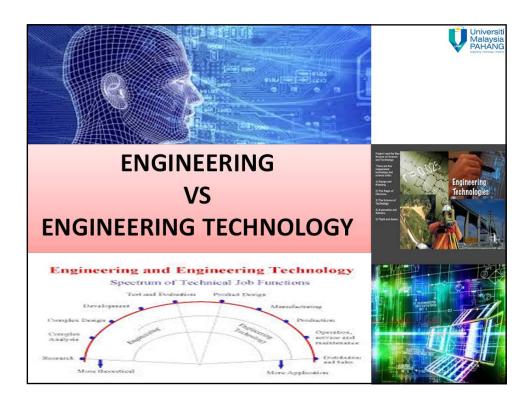


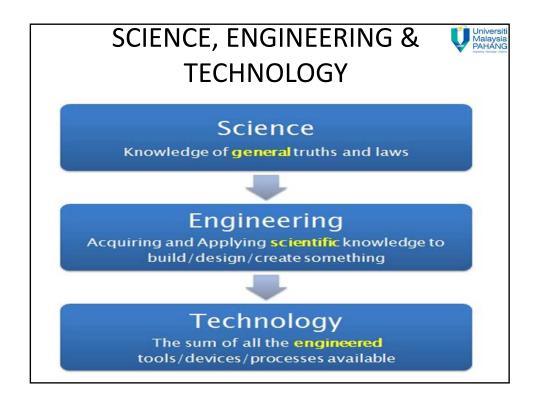


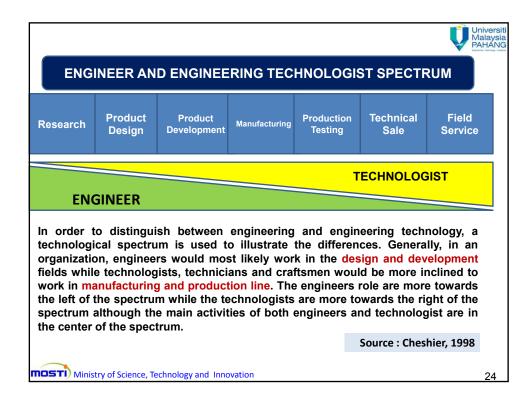


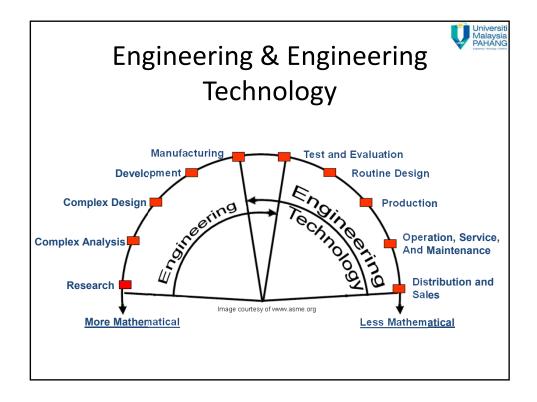


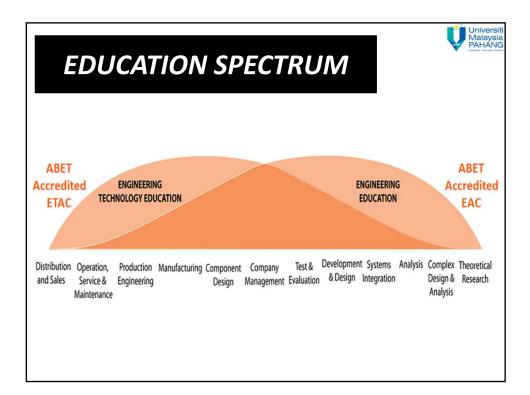

	On the supply side, there is also a significant pool of students for expansion of TVET				
Segment	Size Today Thousands	Segment description	Projected capture rate in 2020		
Basic education dropouts	301	 Basic education dropouts, i.e. students leaving school prior to taking SPM 	50%		
SPM leavers directly entering workforce	100	 Unskilled workers entering workforce without further qualifications, out of which 40k have no SPM credits 	30%		
Foreign students	0.2	 Foreign students coming to Malaysia for Skills Training 	16,000		
		 Malaysian Skills training curriculum exported abroad 			
Lifelong learning for unskilled and semi- skilled workforce	8,400	 Upskilling of those already in workforce 	20%		
Higher level SKM 3 and 4	40	 SKM 1 and 2 holders who do not currentl go on to pursue SKM 3 and 4 	y 50%		
	¹ Number of students leaving the national education system could be higher, up to 80k SOURCE: MOHR				

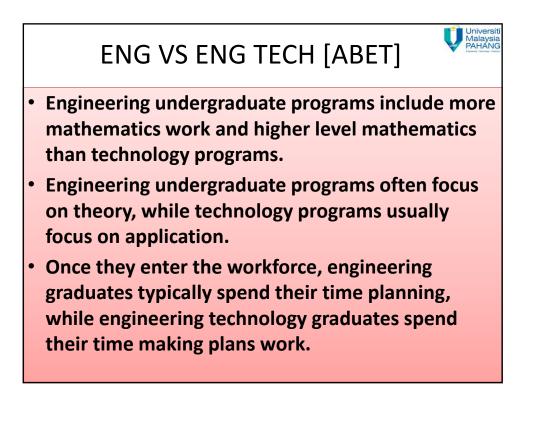












Accreditation Board for <u>Engineering and Technology [ABET]</u>

<u>describes the difference between</u> <u>engineering and engineering technology as</u>

"Engineering and technology are separate, but intimately related professions"

Universit Malaysia PAHANG

ENG VS ENG TECH [ABET] cont.

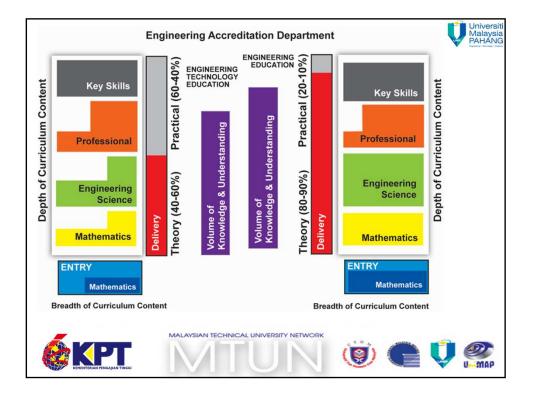
- At ABET, engineering and engineering technology programs are evaluated and accredited by two separate accreditation commissions using two separate sets of accreditation criteria.
- Graduates from engineering programs are called engineers, while graduates of technology programs are often called technologists.
- Graduates from engineering technology programs are often hired as engineers.

ENG vs ENG TECH [based on Washington vs Sydney Accord]			
for Washington Accord	for Sydney Accord		
Graduate	Graduate		
Apply knowledge of	Apply knowledge of mathematics,		
mathematics, science,	science, engineering fundamentals		
engineering fundamentals and an	and an engineering specialization		
engineering specialization to the	to defined and applied engineering		
solution of complex engineering	procedures, processes, systems or		
problems.	methodologies.		

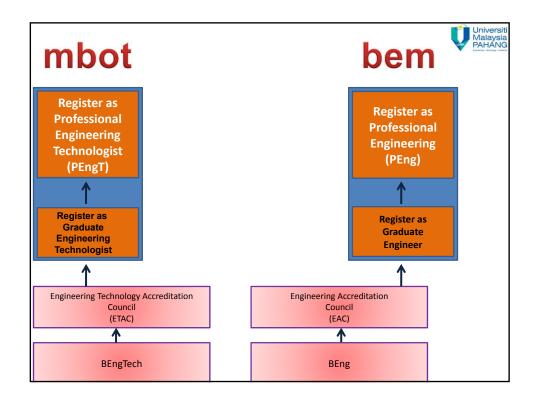
RANGE	OF PROBLEM	SOLVING
-------	-------------------	---------

	Attribute	Complex Problems	Broadly-defined Problems
1	Preamble	Engineering problems which cannot be resolved without in-depth engineering knowledge, much of which is at, or informed by, the forefront of the professional discipline, and have some or all of the following characteristics:	Engineering problems which cannot be pursued without a coherent and detailed knowledge of defined aspects of a professional discipline with a strong emphasis on the application of developed technology, and have the following characteristics
2	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues	Involve a variety of factors which may impose conflicting constraints
3	Depth of analysis required	Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models	Can be solved by application of well-proven analysis techniques
4	Depth of knowledge required	Requires research-based knowledge much of which is at, or informed by, the forefront of the professional discipline and which allows a fundamentals-based, first principles analytical approach	Requires a detailed knowledge of principles and applied procedures and methodologies in defined aspects of a professional discipline with a strong emphasis on the application of developed technology and the attainment of know-how, often within a multidisciplinary engineering environment
5	Familiarity of issues	Involve infrequently encountered issues	Belong to families of familiar problems which are solved in well-accepted ways
6	Extent of applicable codes	Are outside problems encompassed by standards and codes of practice for professional engineering	May be partially outside those encompassed by standards or codes of practice
7	Extent of stakeholder involvement and level of conflicting requirements	Involve diverse groups of stakeholders with widely varying needs	Involve several groups of stakeholders with differing and occasionally conflicting needs
8	Consequences	Have significant consequences in a range of contexts	Have consequences which are important locally, but may extend more widely
9	Interdependence	Are high level problems including many component parts or sub-problems	Are parts of, or systems within complex engineering problems

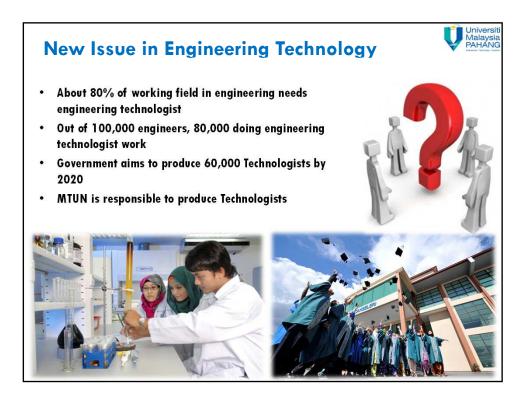
	Attribute	Complex Activities	Broadly-defined Activities
1	Preamble	Complex activities means (engineering) activities or projects that have some or all of the following characteristics:	Broadly defined activities means (engineering) activities or projects that have some or all of the following characteristics:
2	Range of resources	Involve the use of diverse resources (and for this purpose resources includes people, money, equipment, materials, information and technologies)	Involve a variety of resources (and for this purposes resources includes people, money, equipment, materials, information and technologies)
3	Level of interactions	Require resolution of significant problems arising from interactions between wide- ranging or conflicting technical, engineering or other issues,	Require resolution of occasional interactions between technical, engineering and other issues of which few are conflicting
4	Innovation	Involve creative use of engineering principles and research-based knowledge in novel ways.	Involve the use of new materials, techniques or processes in non-standard ways
5	Consequences to society and the environment	Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation	Have reasonably predictable consequences that are most important locally, but may extend more widely
6	Familiarity	Can extend beyond previous experiences by applying principles-based approaches	Require a knowledge of normal operating procedures and processes

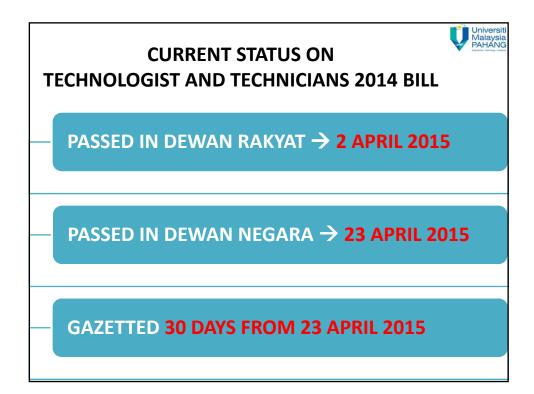

KNOWLEDGE	
A Washington Accord programme provides:	A Sydney Accord programme provides:
 A systematic, theory-based understanding of the natural sciences applicable to the discipline (e.g. calculus-based physics) 	 A systematic, theory-based understanding of the natural sciences applicable to the sub-discipline
 Conceptually-based mathematics, numerical analysis, statistics and formal aspects of computer and information science to support analysis and modelling applicable to the discipline 	 Conceptually-based mathematics, numerical analysis, statistics and aspects of computer and information science to support analysis and use of models applicable to the sub-discipline
 A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline 	 A systematic , theory-based formulation of engineering fundamentals required in an accepted sub-discipline
 engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline. 	 engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for an accepted sub-discipline
 knowledge that supports engineering design in a practice area 	 knowledge that supports engineering design using the technologies of a practice area
 knowledge of engineering practice (technology) in the practice areas in the engineering discipline 	 knowledge of engineering technologies applicable in the sub-discipline
 comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the professional responsibility of an engineer to public safety; the impacts of engineering activity: economic, social, cultural, environmental and sustainability; 	 comprehension of the role of technology in society and identified issues in applying engineering technology: ethics and impacts: economic, social, environmental and sustainability
Engagement with selected knowledge in the research literature of the discipline	engagement with the technological literature of the discipline
A programme that builds this type of knowledge and develops the attributes listed below is typically achieved in 4 to 5 years of study, depending on the level of students at entry.	A programme that builds this type of knowledge and develops the attributes listed below is typically achieved in 3 to 4 years of study, depending on the level of students at entry.

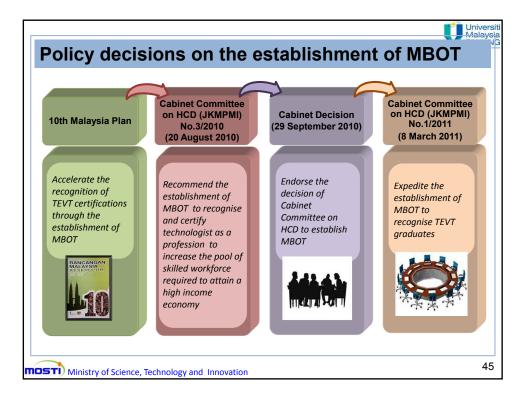
	GRAD	DUATE A	ATTRIBUTE PI	
		Differentiating Characteristic	for Washington Accord Graduate	for Sydney Accord Graduate
1.	Engineering Knowledge	Breadth and depth of education and type of knowledge, both theoretical and practical	Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems	Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to defined and applied engineering procedures, processes, systems or methodologies.
2.	Problem Analysis	Complexity of analysis	Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.	Identify, formulate, research literature and analyse broadly-defined engineering problems reaching substantiated conclusions using analytical tools appropriate to their discipline or area of specialisation.
3.	Design/ development of solutions	Breadth and uniqueness of engineering problems i.e. the extent to which problems are original and to which solutions have previously been identified or codified	Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	Design solutions for broadly- defined engineering technology problems and contribute to the design of systems, components or processes to meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
4.	Investigation	Breadth and depth of investigation and experimentation	Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.	Conduct investigations of broadly-defined problems; locate, search and select relevant data from codes, data bases and literature, design and conduct experiments to provide valid conclusions.
5.	Modern Tool Usage	Level of understanding of the appropriateness of the tool	Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities, with an understanding of the limitations.	Select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to broadly-defined engineering activities, with an understanding of the limitations.

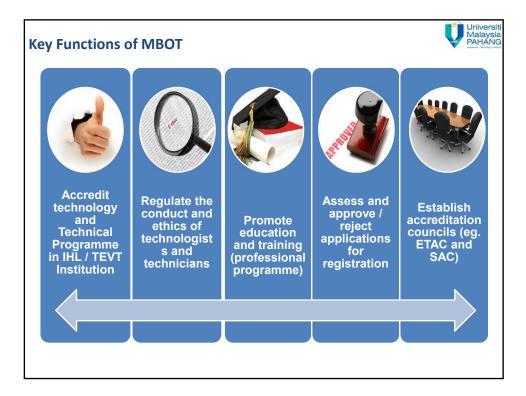

G	GRADUATE ATTRIBUTE PROFILES				
		Differentiating Characteristic	for Washington Accord Graduate	for Sydney Accord Graduate	
6.	The Engineer and Society	Level of knowledge and responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.	Demonstrate understanding of the societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering technology practice.	
7.	Environment and Sustainability	Type of solutions.	Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.	Understand the impact of engineering technology solutions in societal societal and environmental context and demonstrate knowledge of and need for sustainable development.	
8.	Ethics	Understanding and level of practice	Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.	Understand and commit to professional ethics and responsibilities and norms of engineering technology practice.	
9.	Individual and Team work	Role in and diversity of team	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.	Function effectively as an individual, and as a member or leader in diverse technical teams.	
10.	Communication	Level of communication according to type of activities performed	Communicate effectively on <i>complex</i> engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	Communicate effectively on broadly- defined engineering activities with the engineering community and with society at large, by being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	
11.	Project Management and Finance	Level of management required for differing types of activity	Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	Demonstrate knowledge and understanding of engineering management principles and apply these to one's own work, as a member and leader in a team and to manage projects in multidisciplinary environments	
12.	Life long learning	Preparation for and depth of continuing learning.	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Recognize the need for, and have the ability to engage in independent and life- long learning in specialist technologies.	

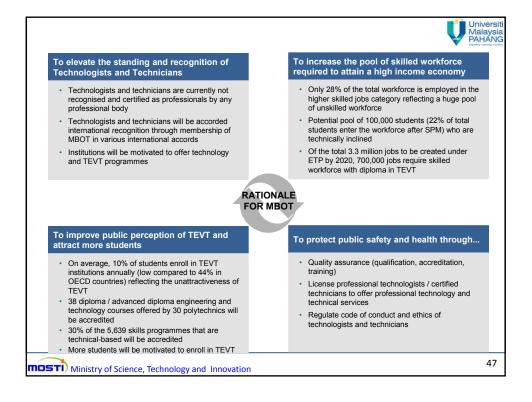
<u> </u>				
		Differentiating Characteristic	Professional Engineer	Engineering Technologist
1.	Comprehend and apply universal knowledge	Breadth and depth of education and type of knowledge	Comprehend and apply advanced knowledge of the widely-applied principles underpinning good practice	Comprehend and apply the knowledge embodied in widely accepted and applied procedures, processes, systems or methodologies
2.	Comprehend and apply local knowledge	Type of local knowledge	Comprehend and apply advanced knowledge of the widely-applied principles underpinning good practice specific to the jurisdiction in which he/she practices.	Comprehend and apply the knowledge embodied procedures, processes, systems or methodologies that is specific to the jurisdiction in which he/she practices.
3.	Problem analysis	Complexity of analysis	Define, investigate and analyse complex problems	Identify, clarify, and analyse broadly- defined problems
4.	Design and development of solutions	Nature of the problem and uniqueness of the solution	Design or develop solutions to complex problems	Design or develop solutions to broadly- defined problems
5.	Evaluation	Type of activity	Evaluate the outcomes and impacts of complex activities	Evaluate the outcomes and impacts of broadly defined activities
6.	Protection of society	Types of activity and responsibility to public	Recognise the reasonably foreseeable social, cultural and environmental effects of complex activities generally, and have regard to the need for sustainability; recognise that the protection of society is the highest priority	Recognise the reasonably foreseeable social, cultural and environmental effects of broadly-defined activities generally, an have regard to the need for sustainability take responsibility in all these activities to avoid putting the public at risk.
7.	Legal and regulatory	No differentiation in this characteristic	Meet all legal and regulatory requirements and protect public health and safety in the course of his or her activities	Meet all legal and regulatory requirement and protect public health and safety in th course of his or her activities

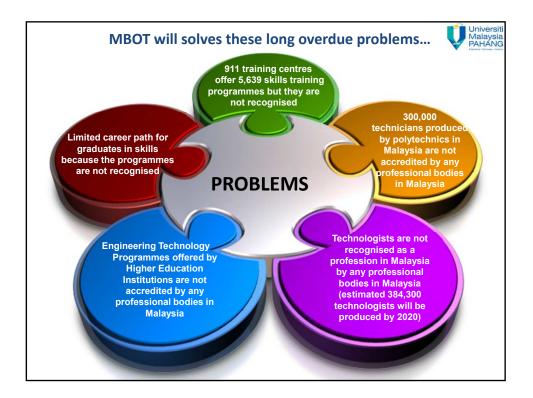

		Differentiating Characteristic	Professional Engineer	Engineering Technologist	
8.	Ethics	No differentiation in this characteristic	Conduct his or her activities ethically	Conduct his or her activities ethically	
9.	Manage engineering activities	Types of activity	Manage part or all of one or more complex activities	Manage part or all of one or more broadly- defined activities	
10.	Communication	No differentiation in this characteristic	Communicate clearly with others in the course of his or her activities	Communicate clearly with others in the course of his or her activities	
11.	Lifelong learning	Preparation for and depth of continuing learning.	Undertake CPD activities sufficient to maintain and extend his or her competence	Undertake CPD activities sufficient to maintain and extend his or her competence	
12.	Judgement	Level of developed knowledge, and ability and judgement in relation to type of activity	Recognize complexity and assess alternatives in light of competing requirements and incomplete knowledge. Exercise sound judgement in the course of his or her complex activities	Choose appropriate technologies to deal with broadly defined problems. Exercise sound judgement in the course of his or her broadly-defined activities	
13.	Responsibility for decisions	Type of activity for which responsibility is taken	Be responsible for making decisions on part or all of complex activities	Be responsible for making decisions on part or all of one or more broadly defined activities	

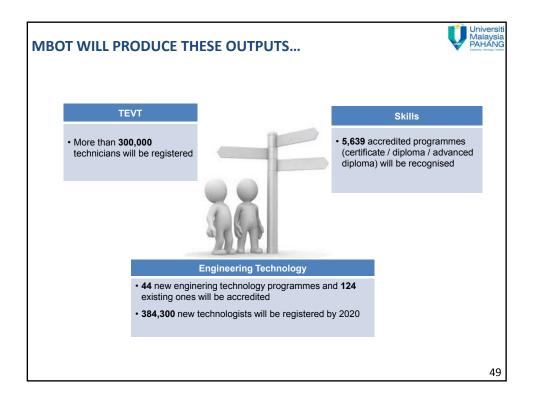


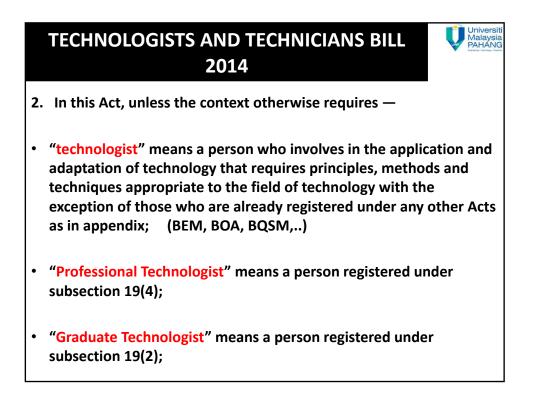



MQF Levels	Skills (SAC – Technical & Non Technical)	Vocational and Technical (TAC – Poly, Community College, Dublin Accord)	Higher Learning Institutions (ETAC – Sydney Accord)	Designatio
8	NA	NA	Doctorate	Principal Technologist Executive
7	NA	NA	Masters	Senior Technologist Executive
6	NA	NA	Bachelors	Technologist Executive
5	Advanced Diploma	Advanced Diploma	Advanced Diploma	Senior Technician
4	Diploma	Diploma	Diploma	Technician
3	Skills Certificate 3	Vocational & Technical Certificate		Junior Technician
2	Skills Certificate 2			Senior Operator
1	Skills Certificate 1			Operator









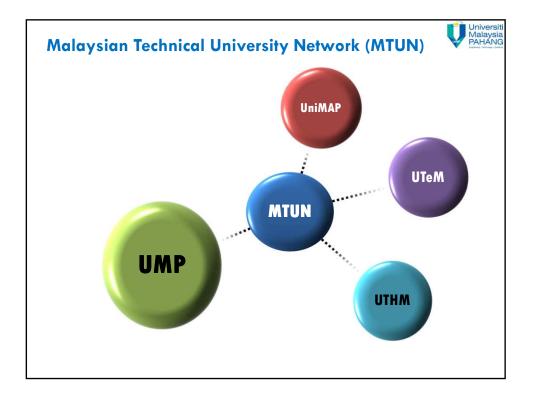
Universi

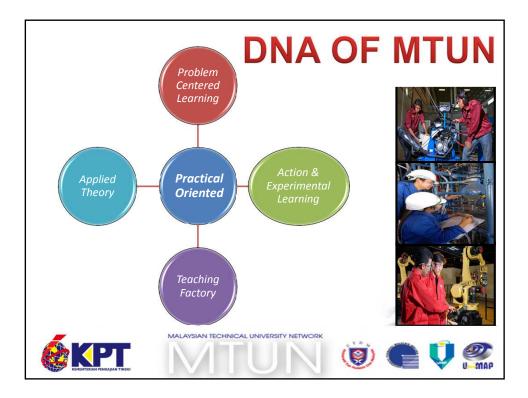
Registration of Graduate Technologist and Professional Technologist

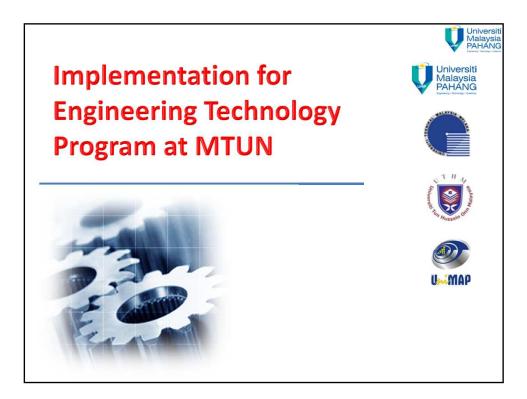
19. (1) A person who holds a degree in technology or a technical-related programme which is recognised by the Board may apply to be registered as a Graduate Technologist upon payment of the prescribed fee.

(2) Upon application made under subsection (1), and based on the criteria as may be determined by the Board, the Board may approve the application to be registered as a Graduate Technologist.

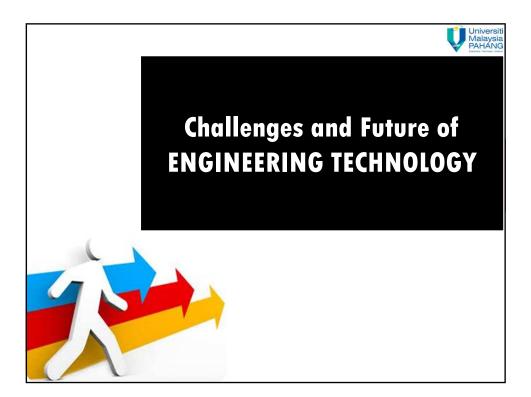
(3) A Graduate Technologist registered under subsection (2) who has -

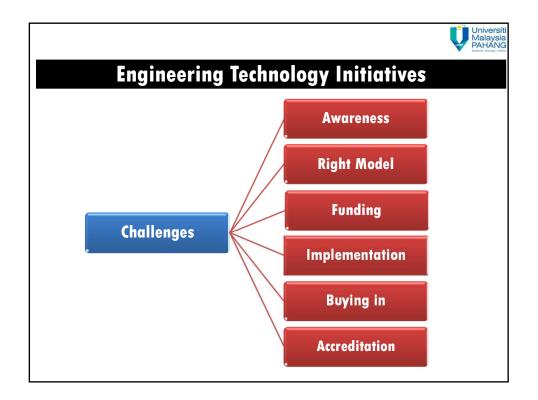

- obtained the practical experience as may be determined by the Board;
 - paid the prescribed fee; and

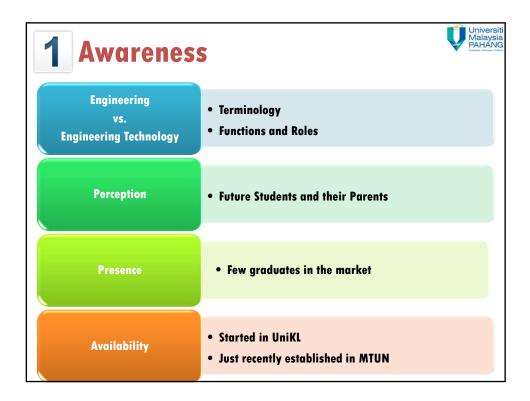

complied with all the criteria to be determined by the Board,

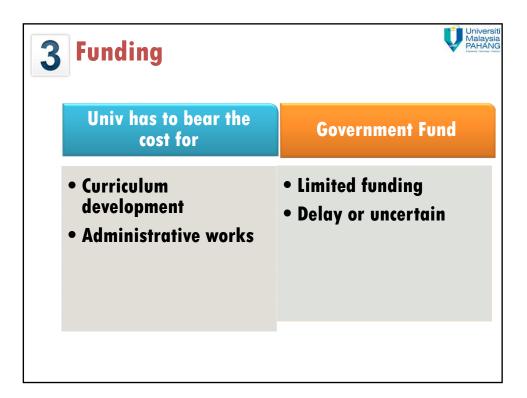

may apply to be registered as a Professional Technologist.

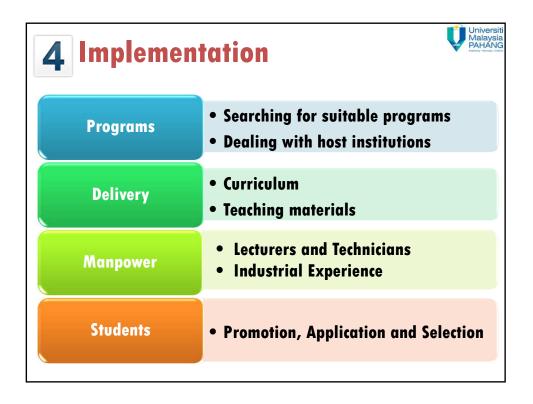
(4) Upon application made under subsection (3), and based on the criteria as may be determined by the Board, the Board may approve the registration of a Graduate Technologist as a Professional Technologist.

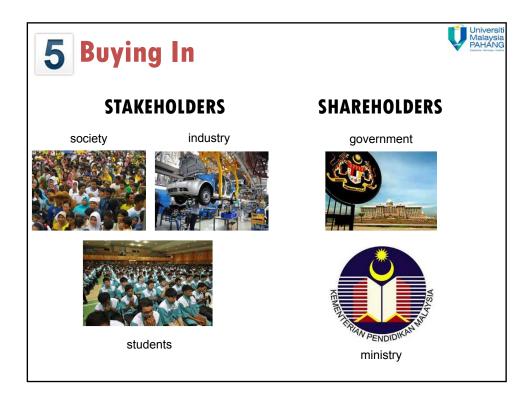


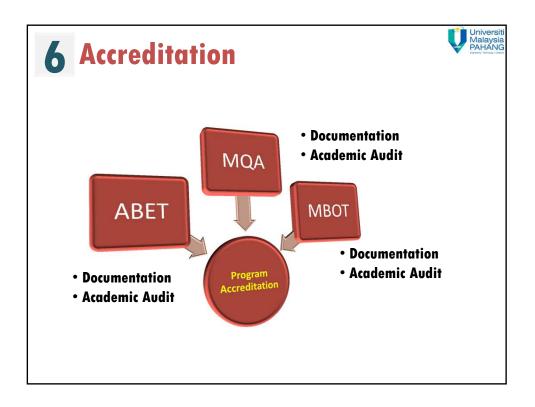


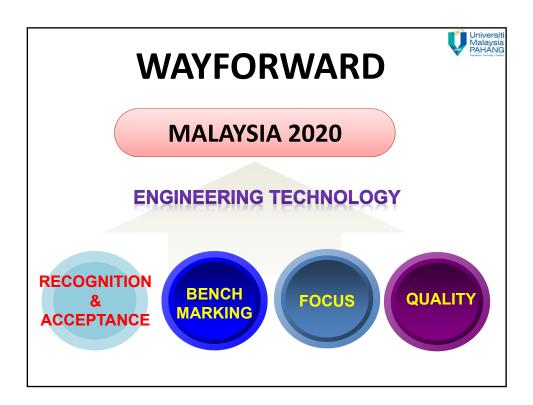



ESTIMATED BUDGET FOR ENGINEERING TECHNOLOGY PROGRAM IN MTUN 2013-2015					
YEAR	TOTAL [RM MILLIONS]				
2013	272	45 PROGRAMS			
2014	285	& ~ 7000 STUDENTS			
2015	365	~ 7000 STUDENTS			
TOTAL	922				








2 The Right Model			
COUNTRY	BOARD	SCOPE	ACCORD
Malaysia	Board of Engineers Malaysia (BEM)	Engineering Programme	Washington
UK	Engineering Council (EC)	Engineering, Technology, Construction & Build Environment	Washington Sydney Dublin
Canada	Canadian Council of Technicians & Technologists (CCTT)	Bioscience, Building, Chemical, Civil, Electrical, Electronic, Forestry, Geomatics, Instrumentation, Industrial, Information Technology, Mechanical, Petroleum & Geosciences	Sydney Dublin
*	Engineers Canada	All Engineering fields	Washington
USA	Accreditation Board for Engineering and Technology (ABET)	Education in Applied Science, Computing, Engineering and Technology	Washington Sydney
Australia	Institution of Engineers Australia (IEA)	All Engineering fields	Sydney Washington
Ireland	Engineers Ireland	All Engineering fields and ICT	Washington Sydney Dublin

