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Abstract 
 

Analyzing and modeling efforts on production throughput are getting more complex due to random variables in 

today’s dynamic production systems. The production line faces the changes in setup time, machinery break down, 

lead time of manufacturing, demand, and scraps. Bayesian approach is applied to tackle the problem. Later, it is 

developed by Seasonal Autoregressive Integrated Moving Average (SARIMA) approach. The integrated Bayesian-
SARIMA model consists of multiple random parameters with multiple random variables. A statistical index, R-

squared, is used to measure the performance of the developed model. A real case study on tile and ceramic 

production is considered. The Bayesian model is validated with respect to convergence and efficiency of its outputs. 

The results of the analyses present that the Bayesian-SARIMA produces higher R-squared value indicated by 98.8% 

compared with previous studies on Bayesian and ARIMA approaches individually.  
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1. Introduction 
Practically, the production rate at a workstation depends on some random variables in the production line, which 

affect the final product throughput. The capability of handling random variables helps industrial engineers 

accurately plan in order to meet customers’ orders on time, thereby resulting in a competitive advantage for 

manufacturers. Industrial engineers have to match the production throughput with customers’ orders by accurately 
predicting the throughput using a robust approach. However, current theories for handling and evaluating random 

variables and uncertainties under production throughput modeling are still under debate because these theories are 

dependent on the time factor [1, 2]. Production throughput is considered an important parameter of production line 

performance [3–5]. Considering and handling the various uncertainties on the shop floor of production are the new 

challenges for the academic research, which is known as complex optimization problems.  

 
In this study, the emphasis is on the production line random variables and uncertainties from the practical 

standpoint. This study focuses on tile production industry. More accurate model for estimating production 

throughput under setup time, scrap, break time, demand, and lead time of manufacturing is derived using Markov 

chain Monte Carlo (MCMC) algorithm for Bayesian- autoregressive integrated moving average (ARIMA) modeling. 

 

2. Literature Review 
The overall operations for tile production are presented in Figure 1. The Figure 1 presents that raw materials 

including water and soil that is usually clay are mixed to provide slurry. Granule is made when the slurry is dried. 

When the granule is ready, the body of the tiles in the pressing stage is produced, namely, bisque. The bisques are 

moved to another stage called glazing and printing. The bisques are first sprayed by glaze. Glazes include frit, sand, 

kaolin, coloring agents, and chemical and mechanical resistance to provide the bisque for cooking. After spraying, 

the redundant glaze from the edge of bisques is cleaned then they are transferred for printing. Printing is performed 

by different colors, lines (designs), which produced different types of tiles along with gluing. For some types of tiles 

it requires two or three times gluing and printing screens. Thus, when it is done subsequently the tiles were 
transferred to a large kiln for cooking. Finally, the tiles are ready for sorting and packing.  



 
 

Figure 1: The flow of tile production  

 
Machines are subject to random failures, and setup time is required to change for different product types. Nowadays, 

the issue of how to handle the production changes becomes crucial. Processing time and breakdown time affect the 

production throughput based on the studies of [3, 9]. [6] reviewed models under uncertainty for production planning 

and highlighted that superior planning decisions were made by models for production planning that considered 

uncertainties and changes compared to models that did not. [7] examined the effects of three uncertainties, namely, 

demand, manufacturing delay, and capacity scalability delay.  [8] presented significant uncertainty parameters in 

manufacturing environments in reference to demand changes, lead time variations, and resource break. Analytical 

algorithm was presented by [10]. The authors predicted the production throughput under unbalanced workstations. 

Linear regression models was used by [11] for formulating strategy, environmental uncertainty, and performance 

measurement. Bayesian approach was explicitly used by [12] for external evidence in the design, monitoring, 

analysis, interpretation, and reporting of scientific investigations. The most appropriate method in this context is 

Markov chain Monte Carlo (MCMC), and used in virtually all recently conducted Bayesian approaches [13]. The 
popular MCMC procedure is Gibbs sampling, which has also been widely used for sampling from the posterior 

distribution based on stochastic simulations for complex problems [14]. Gibbs Sampling was used by [15] to solve 

complex statistical problems. A few thousand iterations should be sufficient for moderate sized datasets involving 

standard statistical models [16]. 

  

3. Methodology 
Bayesian inference is applied for this study. It uses distribution-based approach where the prior probabilities were 

utilized to quantify uncertainty regarding the occurrences of events. Tile and ceramic industry is chosen because it is 

real case study and it is under a dynamic production system and uncertainty. Tile and ceramic industry consists of 

both manual and automated processes. The case study is located in the Alborz industrial city, Qazvin province, Iran. 

78 recorded data in 78 weeks were found available for 20 highly request types of tiles. Continuously 26 more 

observational data during 26 weeks were collected for the same tiles types. These data are collected for all six 

random variables: production throughput, breakdown time, lead time of manufacturing, demand, setup time, and 

scrap. Once any breakdown time or changes were happen they were recorded in the prepaid form by factory. Time 

was recorded using clock watch/stopwatch. Then at the end of the week, the occurrences were counted for each 

random variable to be used for next week production plan. Thus, 104 recorded data during 104 weeks were used as 

inputs for each random variable to estimate the production throughput. 

 



ARIMA model was compiled with the Bayesian model, called hybrid model. The best compilation of the hybrid 

model was considered based on generating the lower Mean Absolute Percentage Error (MAPE). The improvements 

included the values changes of the parameters of p and q In ARIMA that were determined by Autocorrelation 

Function (ACF) and Partial Autocorrelation Function (PACF). The algorithm procedure of Bayesian-ARIMA 

approach is illustrated in Figure 2. Figure 2 presents for five random variables as inputs and one output, which is 

production throughput.  
 

After collecting the observed data on both inputs and output, Weakly Informative Prior (WIP) priors are suggested 

as the prior distribution of uncertainty to be considered for Bayesian inference, which is sampled by Gibbs sampling 

method for few thousand of iterations as burn-in. The likelihood distribution of the observed data is calculated by 

the BUGS. The products of WIP priors of uncertainty and likelihood distribution of observed data with few 

thousand iterations gives posterior distribution of uncertain parameters.  Later, the model output is checked for 

validity by checking convergence of two chins of sampling and efficiency of Monte Carlo (MC) procedure by 

checking error of MC, which should be less than 5% of standard deviation from posterior mean estimation. If it is 

not valid or efficient it may try for other distributions and more number of iterations. Subsequently, through the 

estimated posteriors the production throughput is predicted. The difference between predicted production throughput 

and actual production throughput is checked for time-dependent correlation using ACF and PACF in ARIMA 

approach. The parameters of ARIMA model is estimated with the significant time-dependent correlation of 5%. 
Then it is checked for significance of coefficients of ARIMA by checking t test and p-value. Finally, the estimated 

outputs of ARIMA model is added to predicted outputs of Bayesian.  

 

 



 

Figure 2: Bayesian-ARIMA approach algorithm 

 

3.1 Programmed Bayesian Model 

The variance of production throughput was written as 
�

�������
 in Bayesian inference Using Gibbs Sampling 

(BUGS) program. The prior distribution of random coefficient of breakdown time is beta1 ~ dnorm (0,1.0E-2). The 

expression of “List (P = c (16500, 12586, …), bt = c (130, 240, ...), dt = c(16830, 12600,...), lt = c(5000, 6020,...), 

set = c(200, 225,...), st = c(2140, 2517,...)” presents the given data observed for uncertain variables. P represents the 

data observed for production throughput, bt shows the data observed for breakdown time, dt shows the data 

observed for demand, lt shows the data observed for lead time, set shows the data observed for setup time, and st 

shows the data observed for scrap in a vector of c.    

 

3.2 Number of Simulations for Sampling 
Four simulation runs: 1000, 5000, 8000, and 10000 were examined for burn-in then it starts from 10000 to 20000 for 

drawing samples to approach convergence and reduce the Deviance Information Criterion (DIC) and MC error. 
Simulation started from 1000 and was increased until it reached convergence and lower error of MC. The amount of 

optimal simulation run was determined by the higher level of convergence and the lower value of MC error and 

DIC. 10000 iterations were carried out to generate initial values and 10000 iterations were performed to maximize 

the posterior mean starting from 10000 to 20000. 

 

3.3 Bayesian Model Validation 
The model was validated through the convergence and the efficiency. Convergence was checked using three ways. 

First checking was by visual inspection of trace/history plots. The model convergence was achieved when the two 

chains were overlapping. The convergence graphically presents how quickly the prior distributions of uncertainties 

approach the posterior distributions. Second checking was based on the autocorrelation test. The autocorrelation is 

defined between 0 and 1 or -1. A slow convergence of two chains graphically shows the high autocorrelation within 
chains. It implies that two chains are mixed slowly because true distributions are defined. Thus, the mixed or 

convergence chain contains most of the information to estimate an accurate posterior that indicates validity of 

model. Third checking was using Brooks Gelman Rubin (BGR) diagnostic. BGR numerically shows the 



convergence ratio, which should be near to 1 according to [17]. The idea is to generate multiple chains starting at 

over dispersed initial values, and assess convergence by comparing within and between chain variability over the 

second half of those chains. According to [17], the BGR is calculated as shown in equation (1). 

BGR = 
�
�

                                                                    (1) 

 
Where 

W= width of the empirical credible interval of two chains based on all samples, 

A= width average of the empirical credible intervals across the two chains. 

 

The efficiency of the model was checked by calculating the MC error. The lower value of MC error shows more 

accurate estimation of parameters. MC error for each unknown parameter should be less than 5% of the sample 

standard deviation according to [18], which indicates the model validation. The MC error for generating posterior 

parameters for each uncertainty is calculated by equation (2) according to [18]. 

MC error = 
	


������	��	����������
                                                 (2) 

 
Where 

SD = Standard deviation. 

 

Higher efficiency and lower MC error were achieved by adjusting the variances of prior distributions and number of 

iterations. 

 

4. Results 
 

4.1 Prior Probability Distribution of Uncertain Parameters  
WIP is considered for prior distributions, because the advantage of WIP is that the production management does not 

require providing any prior opinions about the process. Different variances from 10 to 10000, which should be 

written as precisions of 0.1 to 0.0001 in BUGS were tested for normal prior distributions based on the DIC 

according to [15]. The best parameters were chosen according to the least DIC.  

 

The prior distribution defined by the normal distribution is presented in equation (3) according to [20]. 

P (��)	~	�	��, !�) = 	 �
#√�%

	&'	
�()*+),

,-,                                               (3) 

 
Table  1 presents the different variances of normal distributions and the calculated DIC respectively. Although set 1 

resulted in lower DIC as shown in the Table , however the other sets (different values given to the prior 

distributions) do not affect the DIC much. Thus, according to [21] the prior is correct because it has no substantial 

effect.   

 

Table 1: Different parameters assigned as prior distributions 

Sets Variances DIC 

1 
β/ and β�	= 10, β� and β0 = 100, 

β�	and	β� = 1000 
1847 

2 
β/ and β�	= 100, β� and β0 = 1000, 

β�	and	β� = 10 
1848 

3 β6 = 100,	i = 0,...,5 1848 

4 β6 = 1000,	i = 0,...,5 1849 

5 β6 = 10000,	i = 0,...,5 1850 

 
The equations (4-6) show that the prior information	 of	 uncertainties	 with	 the	 normal	 distributions	 by	 means	 of	
zero	and	different	variances	ranging	from	10	to	1000.	

P	�β/)	=	P	�β�)	~	N	�0,	10)																																																																�4)	
P	�β�)	=	P	�β0)	~	N	�0,	100)																																																														�5)	



P�β�)	=	P	�β�)		~	N	�0,	1000)																																																												�6)	
	

The likelihood distributions of observations for uncertain variables are gained by integrating out the unknown 

parameter as shown in equation (7) according to [20,21]. 

P	�u|β6) = �
	P	√�Q

	e'	
RS*TUV

,

,W, 																																																																	�7)	
	
The Bayes rule to postulate a prior on β6 for the data observed for each uncertainty (u) is presented as posterior 

distribution in equation (8) according to [20]. 

P	�β6|u) ∝	P	�β6)P	�u|β6) 	 ∝ 	 �
Z	√�Q

	e'	
RTU*[V

,

,W, 	 × 	 �
Z	√�Q

	e'	
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,], 																										�8)	
 

4.2 Dynamic Trace Plot of Uncertain Parameters 
The convergence diagnostics were graphically checked through two chains of generated values. The convergence 

was achieved because both chains were overlapped to each other following [17]. The dynamic trace plots of the 

stochastic parameters on 10000 iterations are shown in Figure 3 with 95% credible interval. The history trace of 

10000 iterations of maximizing the posterior mean for all stochastic variables was checked for convergence too with 

95% credible interval. The convergence was approached because both chains look like a fat hairy caterpillar [22]. 

 

 
 

Figure 3: Dynamic trace plots of the stochastic parameters 

 

4.3 Autocorrelation Function of Uncertain Parameters 
The autocorrelation function plot for each uncertain parameter is shown in Figure 4 in two chains: blue and red 

colors. The plots indicate that the posterior distributions are gradually integrating, which implies high posterior 

correlations between parameters. The plots present that all uncertain parameters were properly integrated before 20 

lags.  

 



 
 

Figure 4: Autocorrelation function of the stochastic parameters 

 

4.4 Brooks Gelman Rubin (BGR) Statistics 
BGR statistics were calculated for all stochastic parameters. The calculated BGR was approaching 1 to prove that 

the number of iterations is enough and the model convergence was achieved [22]. Figure 5 shows that the chains of 

stochastic parameters approached convergence in most cases of iterations. The green line shows W (Normalized 
width of two chains) and the blue line exhibits A (Normalized mean within two chains), and the BGR is depicted in 

red line. W and A were described under equation (1) as BGR formula. The blue and green lines finally should be 

stabilized to tend to approximately constant value [17]. When the iteration is increased, W leads to A. Figure 5 

presents the green line are properly overlapped with blue line especially after 12000 iterations. This causes BGR 

becomes nearer to 1.   

 

 
 

Figure 5: BGR statistics for uncertain parameters 

 



4.5 Efficiency of the Bayesian Model 
Table  presents that the MC errors for estimating the coefficient of intercept is about 0.0092, and for coefficients of 

breakdown time, demand, lead time, setup time, scrap respectively are 0.01033, 0.00035, 0.00132, 0.00863, and 

0.00133. The Bayesian model shows high efficiency for the estimated coefficients of production uncertainties as the 

MC errors are less than 5% of the standard deviation of coefficients according to [18], which is presented in Table 2. 

 
Table 2: MC errors of uncertain parameters 

Coefficient MC error 

β/ 0.0092 

β� 0.01033 

β� 0.00035 

β0 0.00132 

β� 0.00863 

β� 0.00133 

 

4.6 Estimates of Posterior Distributions of Uncertain Parameters 
The final set of posterior distributions estimations of production uncertainties using BUGS with 95% credible 

interval is summarized in Table 3.  

 
Table 3: Summaries of posterior distributions of uncertain parameters 

Coefficient Mean SD 5% of SD  2.5% 97.5% 

β/ 0.00558 3.207 0.160  -6.231 6.301 

β� -0.4704 4.266 0.213  -8.876 7.923 

β� 0.9526 0.123 0.006  0.713 1.194 

β0 -0.1594 0.553 0.027  -1.235 0.935 

β� -0.01433 3.161 0.158  -6.240 6.160 

β� -0.1461 0.471 0.023  -1.074 0.791 

 
The mean of the posterior distributions of ��  is used for the Bayesian regression model because it minimizes the 

expected square loss according to [23]. Therefore, the Bayesian model developed is formulated in equation (9). 

 

P_,à	~ 0.00558 – 	0.4704	B_,� + 	0.9526	D_ − 	0.1594	L_,� − 0.01433	Se_,� − 	0.1461	S_,�	�t) + e_v    (9) 
 

Where 

et ~ N (0, σ2). 

 

The developed Bayesian model proposes a credible interval of changes for mean of uncertainties with 95% credible 

interval in following borders. �� has the widest prediction interval compared to other parameters with the highest 

standard deviation of 4.266 as presented in Table .  
 

ACF diagram is examined for the residuals of Bayesian in Figure 6. Figure 6 shows there are significant 

autocorrelations in lags 1, 2, and 3 for Bayesian residuals with 5% significance limits. 
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Figure 6: Autocorrelation function of Bayesian residuals 

 

The values of ACF were calculated for Bayesian residuals. It presents that the parameter numbers of moving 

average for ARIMA modeling should be 1, 2 or 3 as the t statistic values are greater than 1.96 based on 95% 

confidence interval and their Ljung-Box-Q (LBQ) shows the smallest amount.  

 

The PACF for Bayesian residuals is also performed. The diagram of PACF of Bayesian model is presented in Figure 

7. It presents that there are significant partial autocorrelations in lags 1, 2, 7, and 8 for Bayesian residuals with 5% 
significance limits. 
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Figure 7: Partial autocorrelation function of Bayesian residuals 

 
The values of PACF for Bayesian residuals are calculated. It presents that the amounts of PACF for Bayesian 

residuals are significant with respect to 5% significance limits in lags 1, 2, 7 and 8. Thus, according to the results of 

PACF as tabulated in Table 4, the candidates of autoregressive parameter should be 1, 2, 7 or 8 because the t statistic 

values are 3.67, 3.44, 2.38, and -2.92 respectively that are greater than the normal score of 1.96 or less than -1.96 

based on 95% confidence level. Therefore, the Bayesian residuals could be considered for ARIMA modeling in 

order to check if the utilization of ARIMA approach could increase the accuracy of the developed Bayesian model 

further. 

 



4.7 SARIMA Model 
The modified ARIMA model was found in both seasonal autoregressive and moving average. The final summaries 

of the coefficients of SARIMA (1, 2) model are tabulated in Table 4.  

 

Table 4: Final estimates of ARIMA parameters 

Type Coefficient t p 

SAR  12 -0.9993 -31.36 <0.0001 

SMA  12 -1.6337 -16.19 <0.0001 

SMA  24 -0.7269 -6.82 <0.0001 

Constant 42.67 3.51 0.008 

 
Where 

SAR = seasonal autoregressive, 

SMA = seasonal moving average, 

t = t statistic, 

p = p-value. 
 

Table 4 presents that all the coefficients of ARIMA model are optimum and significant as their p-values were 

<0.0001 and for constant parameter was 0.008. Thus, SARIMA model: SAR (1)12, SMA (2)12, and SMA (2)24 is 

formulated according to [24] in equation (10). 

ϵ_	~		42.67 − 0.9993	ϵt-12 +	a_ − 1.6337a_'�� − 0.7269	a_'��                      (10) 

 
4.8 Bayesian-ARIMA Model  
The hybrid Bayesian-ARIMA model is the combination of both the modified ARIMA model shown in equation (9) 

and the developed Bayesian model presented in equation (10) as presented in equation (11). The main benefit of this 

model is that it can consider time dependency and variations of uncertainties together because it accounts for the 

element of time compared to Bayesian model individually.  

P_,ma 	~	0.005581 − 0.4704	B_,� + 0.9526	D_ − 0.1594	L_,� − 0.01433		Se_,� − 0.1461		S_,� + 42.67 − 0.9993	ϵt −
12	 +	 a_ − 1.6337a_'�� − 0.7269	a_'�� 	 +	 e_		                                                                                                     (11) 

 

The following assumptions were considered for deriving the hybrid Bayesian-ARIMA model. 

• Normal distributions for priors were considered to enable to be compared with the  ANFIS model,  

• Five random variables were considered based on the case study problem and availability of data for a long 

period of time (104 weeks) with reliable numbers of observations, 

• Independent errors for random variables were assumed to be normally distributed, which is et ~ N (0, σ2). 

 

4.9 Comparison  
Table 5 presents the accuracy of previous researches compared to this research. The accuracy of the developed 

Bayesian-ARIMA for this research is superior than Bayesian and ARMA in previous researches. 

 

Table 5: Comparison of previous approaches with the proposed approach 

Inputs 

No.  
Outputs No observations  R2  Approaches  Industry  References  

1  1  17  90.68% Bayesian  Lath  [23]  

2  1  85  97.38% ARMA  Automotive  [19]  

5  1  104  98.8%  
Bayesian-

ARIMA  
Tile  This research  

 

 



5. Conclusion 
This study found that the combination of the Bayesian inference and ARIMA approach on detecting the production 

uncertainties and their impacts on the production throughput as viable and accurate than Bayesian and ARIMA 

individually. The study modeled the propagation of uncertainties of a serial tile production line consisting of five 

random variables: demand, breakdown time, scrap, setup time, and lead time using a real case study on tile industry 

in Iran. The hybrid model provides management with a clear picture of the variability inherent in the production 

processes. The proposed model is used to accurately predict the production throughput, and discover the 

mathematical relationship between the production uncertainties and throughput. The proposed hybrid model 

(Bayesian-ARIMA) generated the accuracy with R-squared of 98.8%. Therefore, the Bayesian-ARIMA is 

recommended for the production estimation under random variables and uncertain parameters of production.   
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