Optimization of citrate complex combustion for synthesis of transition metal oxide nanostructures

V.M. Nair, R. Jose, K. Raju, P.R.S. Wariar

Dept. of Physics, University College, University of Kerala, Trivandrum 695 034, India
Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia

Abstract

Combustion of citrate complex is a popular choice to synthesize nanocrystals of transition metal oxides in a single-step process. The amount of citric acid used for combustion is conventionally calculated based on the total valence of the oxidizing and reducing agents while keeping the equivalent ratio unity such that combustion energy is a maximum. This paper demonstrates by employing quantum chemical calculations that the amount of citric acid could be reduced to nearly two-third if prepared for appreciable amounts. Transition metal oxides belong to quaternary double perovskite has been synthesized as nanocrystals as examples to validate the calculations.

1. Introduction

Transition metal oxides (TMOs) are a source of abundant physical properties including high-Tc superconductivity, colossal magnetoresistance (CMR) and frustrated magnetism [1–5]. Owing to the numerous possibilities at the nanoscale, their nanostructures in various morphologies are studied extensively [6,7]. Nanostructured TMOs are frequently prepared by wet-chemical methods; i.e., by dissolving the precursors for a given composition in suitable solvents and subsequent processing to obtain a homogeneous mixture which upon annealing to produce the target material [6]. The solution combustion process, which involves rapid decomposition of a solution contains metal ions, an oxidizer and a fuel, is a popular a wet-chemical method for synthesizing a large variety of TMO nanostructures [8–10]. The combustion processes is characterized by fast heating rate and short reaction times, which make it attractive for synthesis of TMO nanostructures at relatively lower cost, simplicity, and time.

Conventionally, solution combustion process involves heating an aqueous solution containing an oxidizer (mostly metal nitrates) in the presence of a fuel (urea, for example) in a glass beaker [11,12]. However, urea decomposition process can often lead to multiphase compounds in the case of ternary or quaternary TMOs due to local differences in the metal ion concentration. This drawback has been overcome by taking advantages of coordination chemistry; i.e., by coordinating the metal ions in a chelating network thereby homogeneously distributing them and their controlled release during combustion. A number of TMO nanostructures have been synthesized using chelating agents such as polyvinyl alcohol, ethylene glycol, citric acid, ethylene diamine tetra acetic acid and so on using urea as fuel and nitrates/ammonium nitrate as oxidant [9,13,14]. Most of the above chelating agents are of higher molecular weight; and therefore, the combustion energy is not always enough to remove all the carbonaceous materials from the final product. In such cases, the combustion product needs to be further heated to remove the excess carbon or other carbonaceous materials [15]. On the other hand, chelating agent such as citric acid was demonstrated to synthesize TMO nanostructures using ammonium nitrate as oxidant in a single step, i.e., without any post combustion annealing [16–18]. During the solution refluxing, the citrate complex is formed while the solution is continuously evaporated. Upon complete evaporation, the solution becomes voluminous with enormous swelling and produces foam. The foam then undergoes spontaneous ignition triggered by the trace amounts of oxidant giving ultrafine powders of the TMO.

One of the primary questions to be addressed in the combustion of the citrate-network is the balance between the exothermic energy of combustion of the citrate complex and formation energy of the target compound. Grain growth and formation of hard agglomerates result if the combustion energy is higher than the
formation energy of the target compound. On the other hand, if the combustion energy is lower than the formation energy of the compound, then the final product is not expected to be single phase. The amount of citric acid for preparation of TMO compounds is routinely calculated based on the total valence of the oxidizing and reducing agents keeping the equivalent ratio unity such that the energy released is a maximum [19,20]. However, this practice neither accounts the combustion energy of the citrate complex nor the formation energy of the target material. To address this issue, we have initiated density functional theory (DFT) calculations to determine the combustion energy of a citrate chelate and applied the results to synthesize a number of transition metal oxides including binary, ternary, and quaternary compounds. Our results demonstrate that single phase ternary and quaternary compounds can be synthesized as single phase using lesser amount of citric acid than that is currently adopted. However, binary TMOs are unlikely to be synthesized using a citrate chelating network without leaving carbonaceous materials; for which urea decomposition could be a better choice.

2. Experimental details

2.1. DFT calculations

A TMO molecule with formula $\text{Ba}_2\text{La}_2\text{Sb}_2\text{O}_6$, a complex perovskite of considerable interest [21,22], was considered for DFT calculations and generalized the results to synthesize other compounds. Hydrogen termination was used to accommodate free valences considering the fact that the citrate combustion is carried in a boiling aqueous mixture. Geometries of citrate complexes containing Ba, La, and Sb individually or fully to produce a single molecule of $\text{Ba}_2\text{La}_2\text{Sb}_2\text{O}_6$ were optimized. Geometry optimizations were carried out with the use of Beck’s three parameter hybrid method [23] with the Lee, Yang, and Parr (B3LYP) gradient corrected correlation functional and using the standard double-ζ quality Lanl2dz basis sets [24]. The DFT calculations were performed using Gaussian 03 program packages [25]. Harmonic frequency calculations and analysis of their IR spectra were undertaken to check the accuracy of the calculations. No imaginary frequencies were observed in the IR spectra; hence indicating that the calculated geometries are acceptable. Total energies of the complexes as well as the $\text{Ba}_2\text{La}_2\text{Sb}_2\text{O}_6$ molecule were obtained from thermochemical data.

2.2. Combustion synthesis of $\text{Ba}_2\text{RESb}_2\text{O}_6$ ($\text{RE} = \text{La, Ho, Yb, and Tm}$)

Starting materials were $\text{Ba(NO}_3)_2$, RE_2O_3, and Sb_2O_3. In a typical synthesis, aqueous solution for formation of $\text{Ba}_2\text{La}_2\text{Sb}_2\text{O}_6$ was prepared by dissolving stoichiometric amounts of high purity $\text{Ba(NO}_3)_2$, La_2O_3, Sb_2O_3, Alfa Aesar, USA, and Sb_2O_3, Merck, USA. The $\text{Ba(NO}_3)_2$ was dissolved in distilled water, La_2O_3 in 0.1 N nitric acid, Sb_2O_3 in boiled tartaric acid in separate glass beakers and then mixed together in a 500 ml glass beaker. Citric acid, the amount of which was based on the results of calculation, was added to the above mixture. Addition of ammonium hydroxide triggered an exothermic reaction, which is assigned to the formation of citrate chelate as well as ammonium nitrate. Excess amounts of ammonia lead to precipitation which was further dissolved by the adding nitric acid. Table 1 shows the amount of materials used for synthesis of individual compounds synthesized in this work. The above solution containing the complex precursor mixture at neutral pH was heated using a hot plate at $-250 \degree C$ in a ventilated fume hood. The solution boils on heating and undergoes dehydration and decomposition leading to a smooth deflation with enormous swelling thereby producing foam. The foam ignited spontaneously upon complete evaporation thereby giving voluminous and fluffy product of combustion. The combustion product was flown off from the beaker to its surroundings due to the high exothermicity of reaction, which was subsequently collected by placing high purity butter papers in the combustion chamber. Temperature of the combustion flame was determined using a RTD MI-100k-type temperature controller by keeping a copper-constantan thermocouple in the combustion flame.

2.3. Characterization of the combustion product

The powder obtained directly after combustion, i.e., the as-prepared powder, has been tested for (i) the chemical stability, i.e., checking whether or not any reaction occurs in the as-prepared solid phase, (ii) the presence of carbonaceous materials, (iii) crystal structure, and (iv) morphology. Simultaneous thermal analyses (STA) involving differential thermal analysis (DTA) and thermo gravimetric analysis (TGA) were used to detect whether or not any solid state reaction or phase transition occurs in the sample (Perkin-Elmer TG/DT thermal analyzer) in the range 30–1100 °C at a heating rate of 10 °C/min in the nitrogen atmosphere. Presence of carbonaceous materials was further checked by Fourier transform infrared spectroscopy (Nicolet-Avatar 370). To check whether the combustion product was single phase, crystal structure of the combustion product was studied using powder X-ray diffraction (XRD) technique using an X-ray Diffractometer (Model Bruker D-8) employing Nickel filtered Cu Kα radiation ($\lambda = 1.5406 \text{Å}$). Morphologies of the powders were determined by scanning (FESEM; Quanta 200 FEI System, FEI Company, USA) and transmission electron microscopes (TEM; Model-JEOL 2010F, operating at 200 kV).

3. Results and discussion

Fig. 1 shows the optimized geometries of adsorption complexes considered in this study as well as a single molecule of $\text{Ba}_2\text{La}_2\text{Sb}_2\text{O}_6$. Table 2 shows the optimized bond lengths, bond angles, total energy, and adsorption energy of the above complexes. The adsorption energies were obtained from the following relation

$$E_{\text{Ads}} = E_{\text{Complex}} - E_{\text{CA}}$$

where E_{Ads} is the adsorption energy, E_{Complex} is the energy of the adsorbate complex, and E_{CA} is the energy of the citric acid. The adsorption energy of the complex is likely derived from the exothermicity upon addition of ammonium hydroxide and external heat source during refluxing the precursor solution. Table 2 shows that energy of the $\text{Ba}_2\text{La}_2\text{Sb}_2$–citrate complex is 50% lower than that of the sum of the energies of the component citrate complexes due to the fact that it reduces the amount of citric acid required. The energy of a single molecule of $\text{Ba}_2\text{La}_2\text{Sb}_2\text{O}_6$ is calculated to be $-1.4647 \times 10^4 \text{eV}$ whereas that of $\text{Ba}_2\text{La}_2\text{Sb}_2$–citrate is $-4.4822 \times 10^4 \text{eV}$, i.e., formation energy of $\text{Ba}_2\text{La}_2\text{Sb}_2\text{O}_6$ molecule is $\sim 75\%$ less than the energy of the total complex thereby showing that only one-fourth of the combustion energy is utilized for formation of the compound. Remaining three-fourth of combustion energy is contributed to crystallization energy, grain growth, and dissociation. The $\text{Ba}_2\text{La}_2\text{Sb}_2\text{O}_6$ has a monoclinic structure with two formula units in its unit cell [21]; therefore, total energy of a unit cell should be less than $-2.9294 \times 10^4 \text{eV}$, thereby suggesting that $\sim 50\%$ combustion energy contributes to grain growth and dissociation energy. Thus it turns out that reducing the combustion energy is the key to synthesize nanocrystals of TMO with controlled particle size.

Currently, the amount of citric acid for preparation of a TMOs compound is calculated based on the total valence of the oxidizing and reducing agents keeping the equivalent ratio unity such that the energy released is a maximum, following Jain et al. [19,20]. In the case of $\text{Ba}_2\text{La}_2\text{Sb}_2\text{O}_6$, valences of all the cations are 12 and the number of coordinating sites available is three; which suggest four citric acid molecules to synthesize one molecule of $\text{Ba}_2\text{La}_2\text{Sb}_2\text{O}_6$. However, the present calculations demonstrate that the amount of citric acid could be reduced to one–half than the currently adopted procedure. Also, the calculation predicts that binary TMO such as TiO_2, Nb_2O_5 are difficult to be synthesized using the citrate complex combustion as all valences of a single atom cannot be coordinated by the same citric acid molecule. Our attempts to synthesize
binary TMOs were not successful using either when the amount of citric acid was calculated following Jain et al. or based on the present calculations. The resulting powders were always blackish because the combustion energy was not enough to remove the carbonaceous materials and required a post combustion annealing to remove them. Moreover, chelating is meant for an atomistic mixing of various atoms involved in a solid, which is not required for a binary TMO. However, we successfully synthesized ternary and quaternary compounds following the calculations. For the sake of simplicity, results of Ba₂RESbO₆ are presented here primarily because it is a quaternary TMO.

First, we determined the difference in the combustion temperature due to the change in the amount of the fuel and the oxidant using RTD MI-100 k-type temperature controller by keeping a copper–constantan thermocouple in the combustion flame. Under optimal conditions using only two-third amount of citric acid, the ignition temperature was recorded to be \(\sim 520 \) °C. On the other hand, the temperature of combustion was increased up to 800 °C otherwise. Excessive fuel (citric acid) and oxidant (ammonium

Table 2

<table>
<thead>
<tr>
<th>Adsorption complex</th>
<th>X–O bond length (Å)</th>
<th>X–O–C bond angle (degrees)</th>
<th>Total Energy (eV)</th>
<th>Adsorption energy of the X atom (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric acid</td>
<td>–</td>
<td>–</td>
<td>–2.0674 (\times 10^4)</td>
<td>–</td>
</tr>
<tr>
<td>Ba–citrate</td>
<td>2.7893</td>
<td>89.7435</td>
<td>–2.1363 (\times 10^4)</td>
<td>6.8823 (\times 10^2)</td>
</tr>
<tr>
<td>La–citrate</td>
<td>2.3508</td>
<td>136.5901</td>
<td>–2.0868 (\times 10^4)</td>
<td>1.9341 (\times 10^2)</td>
</tr>
<tr>
<td>Sb–citrate</td>
<td>2.2025</td>
<td>120.2288</td>
<td>–2.1542 (\times 10^4)</td>
<td>8.6750 (\times 10^2)</td>
</tr>
<tr>
<td>Ba₂LaSb–citrate</td>
<td>–</td>
<td>–</td>
<td>–4.4822 (\times 10^4)</td>
<td>3.4235 (\times 10^3)</td>
</tr>
<tr>
<td>Ba₂LaSbO₆</td>
<td>–</td>
<td>–</td>
<td>–1.4647 (\times 10^4)</td>
<td>–</td>
</tr>
</tbody>
</table>
nitrate) have potential risks as it lead to higher exothermicity; and therefore, the glass beaker used for the processing was often broken. Because of this higher exothermicity, the combustion process was suggested to have adverse role in its scalability in producing metal oxides on a commercial scale [16]. However, present experiment on the relationship between the combustion temperature and reaction components provide opportunities to further scale up the process to produce advanced ceramics and specialty materials on a commercial scale.

Fig. 2 shows the DTA and TGA curves of the as-prepared \(\text{Ba}_2\text{LaSbO}_6\). The TGA showed a weight loss <5% at temperatures \(\sim 150^\circ\text{C}\). This weight loss is attributed to the liberation of adsorbed moisture in the sample. No weight or enthalpy change occurred in the sample at higher temperatures, i.e., in the 150–1100 \(^\circ\text{C}\) range. The usual calcination temperature of these materials are above \(\sim 1200^\circ\text{C}\) for a solid state reaction, which is further expected to be reduced due to the atomic level mixing of the reaction components during a wet chemical synthesis. This observation implies that the combustion produced a single phase material. Furthermore, a featureless STA confirms that combustion is complete with the amount of citric acid used and that no organic matter is present in the sample. Similar observations were made for all the four compounds reported in this paper.

Fig. 3 shows the FT-IR spectra of the as-prepared \(\text{Ba}_2\text{LaSbO}_6\) powder and that heated at 1500 \(^\circ\text{C}\). The bands in the 400–600 \(\text{cm}^{-1}\) range is generally ascribed to the asymmetric bending mode \(\nu_4 (T_{1u})\) and asymmetric stretching \(\nu_3 (T_{1u})\) mode of the \(\text{SbO}_6/\text{LaO}_6\) octahedra [18]. The band at 858 \(\text{cm}^{-1}\) is assigned to the originally IR inactive symmetric stretching mode \(\nu_1 (A_{1g})\) of the \(\text{SbO}_6/\text{LaO}_6\) octahedra, activated by symmetry lowering from cubic to monoclinic [21]. The broad feature in the 3000–3600 \(\text{cm}^{-1}\) region is attributed to O–H stretching of physisorbed water or from surface-adsorbed hydroxyl groups. The doublet at 2360 \(\text{cm}^{-1}\) is due to the surface adsorbed CO\(_2\). The broad band centered at 1430 \(\text{cm}^{-1}\) is assigned to the H–O–H bending vibrations of the free or adsorbed water. The spectral noise at 3000 \(\text{cm}^{-1}\) arises from water vapor. These observations confirm the thermal analyses result that the combustion is complete and no organic matter is present in the sample. Furthermore, no shift in the IR spectral bands was observed when the samples annealed at temperatures above 1500 \(^\circ\text{C}\) was used for FTIR measurements thereby corroborating that the combustion is complete and that no organic matter present in the as-prepared sample.

Fig. 4 shows the XRD pattern of the as-prepared \(\text{Ba}_2\text{LaSbO}_6\), \(\text{Ba}_2\text{HoSbO}_6\), \(\text{Ba}_2\text{TmSbO}_6\), and \(\text{Ba}_2\text{YbSbO}_6\)
Fig. 4 shows the XRD patterns of the as-prepared Ba$_2$RESbO$_6$ for 20 between 20° and 70°. Tolerance factor calculations and experimental results show that Ba$_2$LaSbO$_6$ is monoclinic while others have a face centered cubic crystal structure [18]. The XRD patterns of the as-prepared powders were fitted to their respective crystal structures. Table 3 shows the lattice and atomic parameters of the Ba$_2$RESbO$_6$ materials. No peaks corresponding to the secondary phases were observed in the XRD patterns. i.e., the phase formation of Ba$_2$RESbO$_6$ was complete during the combustion process itself without need for an additional heating stage. In many of the combustion processes that used chelating agents such as polyvinyl alcohol, a post annealing was necessary to remove the carbonaceous materials due to the involvement of high molecular weight organic compounds. A detailed structural characterization of the materials is beyond the scope of this paper, the main purpose of which is to optimize the citrate-complex for synthesizing TMOs nanostructures.

4. Conclusion

In conclusion, we have shown using B3LYP/lanl2dz level of DFT and Ba$_2$–LaSbO$_6$ as an example that combustion energy could be reduced by controlling the amount of citric acid in the citrate complex combustion for synthesizing nanocrystals of transmission metal oxides. Experiments show that combustion flame has several hundred degree Celsius lowered temperature when only two-thirds amount of citric acid was used than that required by conventional process. Besides, the calculations predict that binary transition metal oxides such as TiO$_2$, Nb$_2$O$_5$ are difficult to be synthesized as single phase materials without leaving the carbonaceous materials using the citrate complex combustion, which were further verified by experiments. Four complex perovskites, two of which were not reported before, were synthesized as nanocrystals as single phase materials in single step processing using the results of calculations. The characterization techniques used here, such as DTA, TGA, Fourier transform infrared spectroscopy, and X-ray diffraction showed that the combustion product was single phase of the complex

<table>
<thead>
<tr>
<th>Material (Space group)</th>
<th>Atom</th>
<th>Site</th>
<th>Site coordinate</th>
<th>Lattice parameter (Å)</th>
</tr>
</thead>
</table>
| Ba$_2$LaSbO$_6$ (P2$_1$/n) | Ba | 4e | -0.00121 | 0.00014 | 0.25132 | $a = 6.049$
| | La | 2d | 0.50000 | 0.00000 | 0.00000 | $b = 6.054$
| | Sb | 2c | 0.50000 | 0.00000 | 0.50000 | $c = 8.574$
| | O$_1$ | 4e | 0.25215 | 0.26492 | 0.08442 | $\beta = 90.23^\circ$
| | O$_2$ | 4e | 0.30715 | -0.26642 | 0.03885 |
| | O$_3$ | 4e | 0.02880 | 0.54596 | 0.21642 |
| Ba$_2$HoSbO$_6$ (Fn3m) | Ba | 8c | 0.2500 | 0.2500 | 0.2500 | $a = 8.582$
| | Ho | 4a | 0.0000 | 0.0000 | 0.0000 |
| | Sb | 4b | 0.5000 | 0.0000 | 0.0000 |
| | O | 24e | 0.2658 | 0.0000 | 0.0000 |
| Ba$_2$TmSbO$_6$ (Fn3m) | Ba | 8c | 0.2500 | 0.2500 | 0.2500 | $a = 8.532$
| | Tm | 4a | 0.0000 | 0.0000 | 0.0000 |
| | Sb | 4b | 0.0000 | 0.0000 | 0.0000 |
| | O | 24e | 0.2625 | 0.0000 | 0.0000 |
| Ba$_2$YbSbO$_6$ (Fn3m) | Ba | 8c | 0.2500 | 0.2500 | 0.2500 | $a = 8.462$
| | Yb | 4a | 0.0000 | 0.0000 | 0.0000 |
| | Sb | 4b | 0.5000 | 0.0000 | 0.0000 |
| | O | 24e | 0.2625 | 0.0000 | 0.0000 |

Fig. 5 summarizes morphology of the as-prepared Ba$_2$LaSbO$_6$. The particles were observed to be uniform with an average agglomerate size of ~400 nm. The TEM studies on the powder morphology of the as-prepared Ba$_2$LaSbO$_6$ powder obtained by the combustion synthesis showed that the particles are of size 20–40 nm with a mean size of 30 nm (left panel). The ring nature of the electron diffraction pattern is indicative of the polycrystalline nature of the crystallites. One may note the particles are less agglomerated than previously reported agglomerate size [18], the origin of which is the lower combustion energy by reducing the citric acid.

Fig. 4
perovskite. The transmission electron microscopic studies showed that the particles are less agglomerated than that produced through previously reported procedure. The reduction in agglomeration is expected to arise from the lower combustion energy by reducing the citric acid.

References