

PARTICLE SWARM OPTIMIZATION (PSO) FOR CNC ROUTE PROBLEM

NUR AZIA AZWANI BINTI ISMAIL

This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering (Electronics)

Faculty of Electrical & Electronics Engineering Universiti Malaysia Pahang

JUNE, 2012

,

ABSTRACT

The purpose of this study is to develop the application of Particle Swarm Optimization (PSO) which applicable to CNC machine route problem. In this project, the problem of CNC machine can be identifying by routing problem which it become complicated to solve without use of any optimization method. The more mathematical equation become more complexes and it will be difficult to solve using manual calculation without any optimization technique or algorithm in this project. We often see many of the method of Genetic Algorithm (GA), Ant Colony Optimization (ACO), Simulated Annealing Algorithm (SAA) and PSO are used for any optimization problems. Basically, this project is mainly concerned on Particle Swarm Optimization (PSO) to optimize the routing of CNC machine. The algorithm used in this project is the Global Best (gbest) algorithm where it is a basic algorithm of Particle Swarm Optimization which applicable the shortest time and path of CNC machine to complete the process of drilling. In addition, the software Microsoft Visual Basic 6.0 has been used which is provide a graphic user interface (GUI) for the user to determine the coordinate of holes (particles) and desired parameters at the search space given. The user can also monitor the result and performance of the system through this software. This software will optimize the result which is to determine the path and time to complete the drilling process. In t the end of this project, it can be concluded that the Particle Swarm Optimization (PSO) method can be used and available to apply in the CNC Route Problem.

TABLE OF CONTENT

TITLE

CHAPTER

	DEC	ALARATION OF THESIS		ii	
	DED	ICATION		iii	
	ACK	NOWLDEGEMENT		iv	
	ABS	ГКАСТ		v	
	ABS	ГКАК		vi	
	TAB	LE OF CONTENTS		vii	
	LIST	OF TABLES		xi	
	LIST	OF FIGURES		xii	
	LIST	OF APPENDICES		xiv	
	LIST	OF SYMBOLS		xv	
1	INTR	ODUCTION			
	1.1	Background		1	
	1.2	Objectives	~	2	
	1.3	Scope of Projects	1	3	
	1.4	Problem Statement		3	
	1.5	Outlined of Thesis		3	
	1.6	Summary of Works		4	
2	LITE	RATURE REVIEW			
	2.1	Basic theory of Particle		7	
		Swarm Optimization (PSO)			
	2.2	Global Best PSO Algorithm		9	`
		,		N ¹	

PAGE

2.3	Literatu	re Review on	Routing	12							
	Problem	n for CNC									
	2.3.1	Particle Swa	rm Optimization For	13							
		Travelling Sa	alesman Problem								
	2.3.2	Ant Colony	System For Routing	14							
		PCB Holes]	Drilling Process								
	2.3.3	Comparative	e Analysis of Ant	17							
		Colony and	Particle Swarm								
		Optimizatio	n Techniques								
	2.3.4	Solving Mac	chine Loading	18							
		Problem in	Flexible Manufacturing								
		Systems Using Particle Swarm									
		Optimizatio	n (PSO)								
	2.3.5	Vehicle Rou	ting Problem With	18							
		Uncertain D	emands: An Advanced								
		Particle Swa	arm Algorithm								
MET]	HODOL	OGY									
3.1	Introdu	iction '		19							
3.2	Implen	nent basic PSC) for minimization	21							
	of stand	dard test funct	ion								
3.3	Develo	p a fitness fun	ction for CNC	22							
	Route I	Problem	.'								
	3.3.1	CNC Route P	roblem Fitness	22							
		Function									
		3.3.1.1	Basic Understanding	23							
			Of CNC Fitness Function								
		3.3.1.2	Computational of CNC	33							

Route Problem Fitness Function

3.3.2 Number of Holes versus Route Possibility

3

36

,

3.4	Apply	Particle Swarm Optimization	. 37
	(PSO)	to CNC Route Problem	
	3.4.1	Work Flow For Developing Software	38
		3.4.1.1 Set Value For Hole Coordinate	38
		3.4.1.2 Initialization	39
		3.4.1.3 Evaluate Fitness Function	39
		3.4.1.4 Update <i>pbest</i> and <i>gbest</i>	40
		3.4.1.5 Update Velocity and Position Of	40
		Particles	
		3.4.1.6 Output Result	41
	3.4.2	Basic Approach Global Best	42
		PSO	
	3.4.3	Avoid repeated path checking	42
		Method	
	3.4.4	Out of range checking method	43
3.5	Graph	nical User Interface (GUI)	44
3.6	Analy	vsis	45
RES	ULT &	DISCUSSION	
4.1	Introd	luction	46
4.2	Visua	l Basic 6.0: Software For CNC Drill Route	47
	Proble	em Based On Particle Swarm Optimization (PSO)
	Syster	m	
	4.2.1	System Specification	48
	4.2.2	PSO Parameter	48
	4.2.3	Product Feature	49

•

4

ix

	4.4	Experiment 2	51
	4.5	Analysis	52
5	CON	ICLUSION AND RECOMMENDATION	
	5.1	Conclusion	53
	5.2	Problem	54
	5.3	Recommendation	455

REFERENCES

56

LIST OF TABLES

TABLE NO.	TITLES	PAGE
1	Path Initialization CNC Route	23
	ProblemFunction	
2	Path Initialization for the possibility of Route	23
3	Number Of Holes versus Route Possibility	36

LIST OF TABLES

TABLE NO.	TITLES	PAGE
1	Path Initialization CNC Route	23
	ProblemFunction	
2	Path Initialization for the possibility of Route	23
3	Number Of Holes versus Route Possibility	36

LIST OF FIGURES

FIGURES	TITLE	PAGE
1.0	Gantt Chart of the project schedule for semester	5
1.1	Gantt Chart of the project schedule for semester 2	6
2.1	Flow chart of Global Best PSO Algorithm	10
2.2	Travelling Salesman Problem Route without any optimization techniques	14
2.3	Step 1	15
2.4	Step 2	16
2.5	Step 3	16
2.6	Step 4	17
3.1	Flow Chart for Project Progress	20
3.2	Project Overview	21
3.3	Example 1 CNC Route	24
3.4	Example 2 CNC Route	28
3.5	Computational Method Example 1	34
3.6	Computational Method Example 2	35
3.7	General flow Chart For Software Development	37
3.8	Repeated Path Checking Flow Chart	43
3.9	Out Of Range Checking Flow Chart	44
4.1	GUI Visual Basic 6.0	44
4.2	Main Window	45

٣

~

4.3	Experiment 1	50
4.4	Experiment 2	51

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Step 1 :Initialization	58
В	STEP 2: Evaluate Fitness Function	59
С	Step 3: Update pbest and gbest	61

LIST OF SYMBOLS

c_1 -Cognitive Coefficient (position acceleration constant) c_2 -Social Coefficient (position acceleration constant) $r_1 \& r_2$ -Random Parameter r_i^k -Particle Position v_i^k -Particle Velocity k -Iteration i -Particle Number $T_x \& T_y$ -x and y coordinates of the target $P_x \& P_y$ -x and y coordinates of a given individual	ω	-	Inertial Weight
c_2 -Social Coefficient (position acceleration constant) $r_1 \& r_2$ -Random Parameter S_i^k -Particle Position v_i^k -Particle Velocity k -Iteration i -Particle Number $T_x \& T_y$ -x and y coordinates of the target $P_x \& P_y$ -x and y coordinates of a given individual	<i>c</i> ₁	-	Cognitive Coefficient (position acceleration constant)
$r_1 \& r_2$ -Random Parameter S_i^k -Particle Position v_i^k -Particle Velocity k -Iteration i -Particle Number $T_x \& T_y$ -x and y coordinates of the target $P_x \& P_y$ -x and y coordinates of a given individual	<i>C</i> ₂	-	Social Coefficient (position acceleration constant)
S_i^k -Particle Position v_i^k -Particle Velocityk-Iterationi-Particle Number $T_x \& T_y$ -x and y coordinates of the target $P_x \& P_y$ -x and y coordinates of a given individual	$r_1 \& r_2$	-	Random Parameter
v_i^k -Particle Velocityk-Iterationi-Particle Number $T_x \& T_y$ -x and y coordinates of the target $P_x \& P_y$ -x and y coordinates of a given individual	S_i^k	-	Particle Position
k-Iterationi-Particle Number $T_x \& T_y$ -x and y coordinates of the target $P_x \& P_y$ -x and y coordinates of a given individual	v_i^k	-	Particle Velocity
i -Particle Number $T_x \& T_y$ -x and y coordinates of the target $P_x \& P_y$ -x and y coordinates of a given individual	k	-	Iteration
$T_x \& T_y$ -x and y coordinates of the target $P_x \& P_y$ -x and y coordinates of a given individual	i	-	Particle Number
$P_x \& P_y$ - x and y coordinates of a given individual	$T_x \& T_y$	-	x and y coordinates of the target
	$P_x \& P_y$	-	x and y coordinates of a given individual

CHAPTER 1

INTRODUCTION

1.1 Background

A Computer Numerical Controlled (CNC) machine is a computer controlled machine for composites, aluminum, steel, plastics, wood and foams. A CNC router can reduce waste, frequency of errors and the time the finished product takes to get to market. A CNC machine gives more flexibility to the manufacturing process. It can be used in the production of many different items such as: door carvings, interior and exterior decorations, wood panels, sign boards, wooden frames, moldings, musical instruments, furniture manufacturing and so on.

For FKEE, CNC machine was used to drill the holes for PCB board. All CNC machine types share this commonality which is have two or more programmable directions of motion called axes. For drilling, common linear axis name are x,y,z which can be linear (along a straight line) or rotary (along around circular path).

!

In this project, the problem of CNC machine can be identifying by routing problem which it become more complexes when the number of holes was increased (too many holes) depends on the design. Occasionally, increasing the number of holes will increase the possibility of route. The mathematical equation become more complexes and it will be difficult to solve using manual calculation if any optimization technique or algorithm did not used in this project. CNC machine route problem will delay the process of drilling because the longest time taken needed to finish up the start, center, and end process.

In order to solve the problem of CNC route problem, optimization techniques are the best way for solving this problem. This project proposed to use the PSO algorithm as the main method to optimize the length or path of the CNC route and the time taken of path drilling holes can be reduced occasionally.

Particle Swarm Optimization (PSO) is one of the best optimization techniques which is an evolutionary computational technique developed by Australian Scientist, James Kennedy (social-psychologist) and Russell Eberhart (electrical engineer) in 1995 [1]. It is a robust stochastic optimization technique based on the movement and intelligence of swarms that finds a solution to an optimization in a search space or model and predict social behavior. This optimization techniques was inspired by social behavior and movement of insects, birds and fish to solve the routing problem in this project. It uses a number of agents (particles) that constitute a swarm moving around in the search space looking for the best solution.

1.2 Objectives

The main objective of this project is to develop the Particle Swarm Optimization (PSO) algorithm and applied to CNC route problem and also find the shortest time and path of CNC machine to complete the process of drilling by using the Particle Swarm Optimization (PSO).

1.3 Scope Of Project

In order to achieve the objectives of this project, several scope of project have been decided includes :

- a. Use software Microsoft Visual Basic 6.0 with Graphical User Interface (GUI).
- b. The type of CNC machine is X-Y-Z Cartesian Coordinates and it develop into two-dimensional in the software.
- c. The minimum and maximum number of holes to be drilled in this project are about range between one to ten.
- d. The time taken for drilling is classified to t_d (5 sec)
- e. The time taken for CNC Machine moving up or down is classified to $t_p(3 \text{ sec})$
- f. The time taken for CNC Machine moving from one point to another point at the Cartesian Coordinate is classified to t_m (1 sec).

1.4 Problem Statement

CNC Machine routing problems that occur in drilling process is very complex to solve without the help of optimization techniques. It includes optimization algorithms and mathematical formula which is difficult to solve by calculate manually. Basically, PSO technique with a calculation method is designed to provide solutions to the optimization problems.

1.5 Outlined thesis

This thesis consists of five chapters. In the first chapter introduction, it discusses about the objectives and scope of this project which are for overall summary of works. The second chapter will discusses several theory and literature reviews had been done in this project. In this chapter, the basic theory of Particle Swarm Optimization (PSO), several related applications of PSO and several research paper about route problem around worldwide had been discussed. In Chapter 3, the discussion about PSO implementation in this project will be on the methodology part. The results and discussions will be represented in Chapter 4. Finally, Chapter 5 will discusses about the conclusion of this project and future recommendation that can improve the CNC route problem.

1.6 Summary Of Works

Implementation and works of the project are summarized into the Gantt chart as shown in Figure 1.0 and Figure 1.1 show the detail of the works of the project that had been implemented in the first and second semester.

Ī									,																		
W13																											
W12																											
W11																											
W10																											
6M																											
8M														•					·								
W7																							<u>.</u>				
W6																									ı.		
W5														L													
W4																											
W3																											
W2													and the second														
W1																											
TOPIC	PSM 1 briefing session Padister subject RFE 4712	Find supervisor and project title	 Search literature review 	Register title and submit	abstract	 Describe the methodology 	 Define the objective project 	 Do the gantt chat 	 Describe the scope project 	Survey what component want	to use	 Submit proposal, 1A form, 	1B form	 Submit presentation slide 	 Submit evaluation form 	Survey what component	want to use	 Survey component price 	 Defined what component to 	use	PSM seminar 1	Design and built the hardware	Submit report, log book,	evaluation form			

N18																											
V17																						1 <u></u>					
N16											, 																
N15 / /																											
N14 \																											
V13 \																									-		
V12 V																											
111																						-					
V10 V														•													
7 6M																											
W8				L				ЖА	38	8.8	31	53)	M3	5							· · ·						
W7																											
W6										8																	
4 W5								-																			
V3 W																							<u></u>				
W2 V			*********						_																3		
I M															<u></u>												
ACTIVITIES.WEEK	-PSM 2 briefing session Register subject RFF	1724	Meeting with upervisor	Implement basic	PSO tor minimization of	standard test	function	evelop a fitness	inction for CNC	evelop a software	or CNC fitness	mction with GUI	pply Particle Swarm	ptimization (PSO) to	NC Drill Route	roblem	evelop PSO CNC	rith GUI programing	esting Simulation	malysis and Results	Vrite the thesis	repare the	resentation	resentation PSM2			

,

V18		T		Ţ																						
<u> </u>																								6		
<u>۶</u>		-1							-+																	
۶.									-+		-							+								
W15		_							_		+			+												
W14																									_	
W13																										
/12																										
N 11																										
EN C												-								-						
W10									22					_											-+	
6M							• • • • •	د . بر اند بر اند اند بر اند اند بر اند اند																		
8N)[A	38	8 X	131	53)	A 13	5										
W7																										
W6																										
WS																										
W4																										
W3																										
W2			 																							
I M																										
EK	BEE				<u></u>							re		I I	varm	O) to			Ŋ	ming	u	ults				12
ES WE	iefing ubiect	,	ith		it basi		tion of	est		fitness	CNC	softwa	ness	th GU	cle Sv	n (PS	Route		O CN	rogrm	nlatic	ld Res	lesis			n PSN
	12 3		13	T	15		2	<u>ت</u> ب	Ч	a	ſŌ	a	fit	.W	Ē	tic			P	I p.	l'H	an	1 T	he	<u>ē</u>	tio.
IVIT	M 2 1 ion		ting	rviso	lem) for	imiz	darc	XIO	lop	ion	lop	ZCZ	uo	γ Pa	niza	Ð	em	lop	B	12	/SiS	the	re t	ntat	nta

CHAPTER 2

LITERATURE REVIEW

2.1 Basic theory of Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is an evolutionary computational technique originally developed by Kennedy, Eberhart and Shi^{[1][2]}. It was intended for simulating social behavior,^[3] which is inspired by the movement dynamics of organisms in insects, birds and a bird flock or fish school as they searching the food source. The algorithm was simplified and it was observed to be performing optimization.

The PSO is stochastic, population-based computer algorithm modeled on swarm intelligence. Basically, PSO optimizes a problem by having a population of candidate which known as the particles and moving these particles around in the scarch-space^[3]. Each particle's movement is influenced by its local best known position and is also guided toward the best known positions in the search-space which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions^[4]. Each particle will produce two parameter and both parameters were communicate each other, which are the velocity of particle and the position of particle. All the particles can share their information about the search space, so there is a global best solution^[5].

For this project, the particle is similar to a time of the path or route to CNC machine completing the task. We can get the shortest path among the other path from the time that solved by particles. The analogy of the particle and swarm is depending to the problem, and it can represent whatever name and value that suitable from the problem according to the formulae shown below.

The velocity of particle *i*, is calculated as,

$$v_i^{k+1} = \omega v_i^k + c_1 r_1 (pbest_i - S_i^k) + c_2 r_2 (gbest - S_i^k)$$
(2.0)

$$\boldsymbol{\omega} = \boldsymbol{\omega}_{max} - \left(\frac{\boldsymbol{\omega}_{max} - \boldsymbol{\omega}_{min}}{i_{max}}\right) \times \boldsymbol{i}$$
(2.1)

Where,

 ω = Inertia Weight c_1 = Cognitive Coefficient (position acceleration constant) c_2 = Social Coefficient (position acceleration constant) r_1 and r_2 = Random Parameter S_i^k = Particle position v_i^k = Particle velocity k = Iteration i = Particle number

The position of particle *i* is calculated as,

$$S_i^{k+1} = S_i^k + v_i^{k+1} \tag{2.2}$$

 S_i^k is variable for the fitness function $f(x) = f(S_i^k)$

Where

k = 0, 1, 2, 3, 4, 5... (Iteration) i = 0, 1, 2, 3, 4, ... (Particle number)

2.2 Global Best PSO Algorithm

Basically, the objective of this routing problem is to find the shortest time through the shortest path of CNC. In order to achieve this objective, we can control the particle to use the useful variable. For this problem, the particles stand for the route of CNC. Particles will looking around the possibility of routes and find the best solution. Particles also looking around the search space to find the time (t) and it are not allowed and avoid it moving outside the search space.

Particles cannot repeat the value of axes which is each axes cannot use the same value from the other axes. This requirements need to follow to make sure we get the right solution when using Global Best PSO algorithm. If the system use 3 holes, we get 3 axes (3 Dimension) and if the system use up to 10 holes, we use 10 axes (10 Dimension).

Global Best PSO or gbest PSO is a basic PSO algorithm with their velocity calculation that depends on both the cognitive and social component and it is call as the full PSO model. For our routing problem, the gbest PSO represented by the minimum value among the Personal Best (pbest PSO) where the value of both is found by iteration. The Personal Best PSO is the best value that found and the values will compare to find the best value between the best and it is known as global best or gbest.

Figure 2.1 Flow chart of Global Best PSO Algorithm

Several basic step or procedure on Global Best PSO algorithm were identified and related to this project based on Figure 2.1 above.

Step 1: Initialization

- Initialize particle randomly for:
 - i. Particle position
 - ii. Particle velocities

Step 2: Evaluate Fitness Function

- Random value for the position of particle f(x,y)
- Calculate the fitness function for particle
- Follow the range of search space (the maximum number of holes)

Fitness Function equation:

Total time (t) = First Hole (t) + Last Hole (t) + {X-Component link 1(t) +X- Component link 2(t)} + {Y-Component link 1(t) +Y-Component link 2(t)} + (Robot Up (t) + Robot down (t) +Robot Drill (t))*Number of Hole

Step 3: Update pbest

- Evaluate each particle's position according to the position.
- If particle's fitness value is better than its previous best fitness value, update it as pbest.
- Determine the new pbest (according to the particle's previous best fitness value).

Step 4: Update gbest

- Choose the particle with the best fitness value (*pbest*) of all the particles as the gbest.
- Compare each particle where the best and the lowest velocity and position of particle will be gbest.

Step 5: Update Velocity and position of particle

• Update particle's velocities according to equation below.

$$v_i^{k+1} = \omega v_i^k + c_1 r_1 (pbest_i - S_i^k) + c_2 r_2 (gbest - S_i^k)$$
(2.4)

$$\boldsymbol{\omega} = \boldsymbol{\omega}_{max} - \left(\frac{\boldsymbol{\omega}_{max} - \boldsymbol{\omega}_{min}}{i_{max}}\right) \times \boldsymbol{i}$$
(2.5)