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Abstract 

Space charge has been recognied as an agent of insulàtibn déradaiiii 'for power 

transmission cable especially undei high • voltage dc" $p1ic4ii It netrales into 

bulk of insulating material, namely cros-1hikëd p6lyetiy1ene (XLPE), 1y1 IIrn 

during dc voltage application. The increase in space chage dnsity enha^nc'es 1661 

electric field in the insulating material. In other words, the local eleatiicfiéia 

is distorted. When the field distortion reaches a critical value, dc breakdownf 

the insulating material will occurs, causing a catastrophic dathag to the cable.

 Therefore, it is important to understand space charge inside an insulating material 

in order to improve the reliability of next generation pwer cables. 
.	 ........ 

in .
. In this thesis, pulsed-electroacoustic (PEA) method1

is utilized o
.
rder to probe 

space charge behavior inside an insulating material undei high v51tgê dcltae 

application. This method is a highly proven method in probing space charge be-

havior in a dielectric material. Furthermore, it is also applicable to on-site Cable 

assessment. In order to improve the reliability of the data, sjace charg bèhaviôi 

is simultaneously measured with external circuit current, which is partially corre-

sponded to the space charges dynamic. The objectives of this thesis is to investigate 

space charge behavior in an insulating material (namely low-density polyethylehe 

(LDPE), which is used as insulating material for medium voltage power sables), and 

to clarify how dc breakdown occurs after space charges accuthu1at in insulating 

material. 

It has been postulated by's 'e'veral reearchdrs that pàdè harges travel inside 

the bulk of iniilatikig niaterial through th féo1ühe. Ere4liime is free'saC 

between pilyner chain of LDPE naterial. 'Wi b' 1iè'd that' etiti and 

accumulation of space charge in LDPE will suppress the free-volume size 1 This is 

considered by the fact that Maxwell stress is enhanced with the increase of space 

V,



charge accumulation in the bulk of LDPE sample. However, free-voluthes are too 

tiny to be observed. Therefore, density of a LDPE material, which is related to the 

amount of free-volumes, is altered. A 3-dimensionally branching chain material, 

namely polyisobutylene (PIB), isadded into LDPE in order toreduce its density, 

whereas, alow molecular weight material, namely paraffin wax (Pr), is added 

into LDPE, in order to increase its density. From results, it has been found that 

under dc positive high voltage application, the penetration of positive space charges 

are suppressed under , Pr-added LDPE, whereas the penetration of positive space 

charges are increased in FIB-added LDPE sample. It implies that the alteration 

that is made to micro-structure of LDPE affect the penetration behavior, of space 

charge. 

Matsui et al. postulated that penetration of space charges are prevented when 
tiq 

it reaches a certain penetration .depth inside the bulk of LDPE material. The pen-

etration depth decreases with the increase of high voltage dc stress value. They 

explain that there are 2 regions exist when the penetration space charges is pre-

vented; high conductivity zone, which is behind space charge closer to anode, and 

low conductivity zone, which is in front of space charge and closer to cathode. 

Similar phenomenon was also observed in LDPE with no additive sample and Pr-

added LDPE sample. It is unusual to observe such phenomenon. It is like there are 

another layer of dielectric in front of space charge, which work as barrier, causing 

the charges to stop penetrating further. From this point of view, observation to 

clarify where breakdown is initiated, are carried out. A sample composed of 2 layer 

of different dielectric material (liquid and solid (this film)) is prepared, so that the 

injected charges may accumulate at interface of the 2 materials. It is important 

from there to claiify, where - breakdown will occurs. From the. obtained results. 

breakdown .does not necessarily occurs at the film., Sometimes it was ,initiated at 

other places.
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Chapter 1 

Introduction 

1.1 Overview 

There are 2 phenomena occurring in these days related to solid dielectric insu-

lation material that motivated studies in this thesis 

1. the increase in demand on renewable energy power generation and 

2. the replacement of old cables 

Firstly, the increase in renewable energy (RE) based power generator as a re 

placement of the conventional fossil fuel generator, is one of the efforts to fulfill 

the Kyoto protocol [6]. In European countries and Japan, the numberof RE-based 

power generation facilities that are built far away from the load centre, is growing 

(e.g. the coastal area (wind farm and wave power. generator) ) [7]. High voltage 

direct current (HVDC) transmission is more favorable in order to transfer the gen-' 

erated power to the load area. This is due to the low transmission loss of HVDC 

transmission, which is 30 % - 50 % than comparable HVAC transmission line. Fur-

thermore, transmission loss can be reduced if operated at higher voltage. In HVDC 

transmission, polyethylene (PE)-based power cables, such as cross-linked polyethy-

lene (XLPE) based cables offer outstanding electrical and mechanical properties are 

utilized in order to run HVDC power transmission efficiently. Therefore, nowadays, 

XLPE has become a very crucial part of a power cable for HVDC transmission. 

Basically, the power cable for HVDC transmission is a huge-sized coaxial cable that 

is used in residence as antenna cable. To know the limit and later to increase the 

1



limit especially of breakdown strength are important for long term run and under 

harsh condition utilization. 

Secondly, most of old underground cables (e.g. those installed during 1950s 

- 1960s) reach end of its lifetime mainly due to insulation degradation [8]. These 

important apparatuses need to be exchanged with a far better system in responding 

to the higher demand on electricity and also for the continuity of electricity supply 

to customers. The increase in demand for energy requires power companies to 

deliver higher energy capacity per cubic meter of the power cables. The cable should 

ideally possess long-term endurance, high temperature and mechanical resistant, 

no impuiities and voids content and strong wateMree resistant. 

Factors such as localization of contaminants and micro-voids during production 

have significant role in initiating breakdown. A lot of experiments and I theories 

related to breakdown of dielectric insulating material have been proposed. One of 

those, is a theory on the influence of space charge on the breakdown of PE rntia1. 

However,- how space charge affects breakdown of dielectric insulating material is not 

clearly answered. Therefore, continuous efforts are needed in understanding space 

charge phenomena in dielectric insulation material and how to suppress its influence 

on breakdown of FE. In this thesis, space charge behavior that leads to breakdown 

process is discussed.. Space charge behavior in insulation material was observed 

by Pulsed Electroacoustic method. Optical observation of the material during dc 

breakdown test was also carried out. in optical observation of breakdown, the 

material was composed of liquid and solid insulating material for easy. observation. 

2
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S

1.2 Polyethylene 

Figure 1.1: Polyethylene chemical structure. 

Polyethylene (PE) chemical structure is shown in figure 1. It is a polymer of 

ethylene monomer through radical polymeriation process. In 'a highly purified 

method, ethylene is directly trarisie frth 'petidleuth 'rëfiie r to 

plant. Under apprriaté condition (teiipeatiire, fes'shre tiyt), i1i	 1il 

bond of ethylene mdnmer breal to give wayt &m lbñg chain. 

accidentally discovered by Hans von Pechmai-in, a German scientist, while heating 

diazomethane, in 1899. His colleagues Eugen Bamberger and Friedrich Tschirner 

characterized the white solid as containing methyliIe units and called it poly-' 

methylene. The discoveries did not make it very useful for some 30 years. PE from 

ethylene monomer was probably initially synthesized by M.E.P. Friedrich when 

it was an unwanted by-product from reaction of ethylene and lithium alkyl corli-

pound. That occasion took place while he tvas astiident of Carl S. Marvel in 1930 

[9].

The PE we know • nowadays is attributd to the work of British' ICI's Eric 

Fawcett and Rginald Gibson in 1930'w' - héh they were ekpeHiinioii vh 
t	 1' kind of product can be made w	 hyl ith etene under extre,
mely high pressure. On 
i.,	 ,	 -	 - march 1933, formation of a white solid was found when they combined ethylene and 

benzaldehyde:under high pressure; at approximate1yj4OO atmospheres. Next time, 

they attempted, the same process but with ethylene ,alone but, it did not produceI ' ll1 1 .

3



High Density	
•..:' 

Medium Density	 __ 

Low Density 

Linear Low Density 

-	
\ \ 

Figure 1.2: Polyethylene chain type [1]. 

FE. It was barely a decomposition process of ethylene. Their work delayed again 

until december 1935 when they got new and better high pressure equipment . While 

experimenting with the new vessel at, 180°C, pressure inside the vessel consistently 

decreased with the forrnatioi of solid. They increased the .pressure in the vessel 

again with pumping more ethylene into the vessel. They found out that the pressure 

drop was not totally due , to formation of the solid but there were small leakage 

found. The leakage allow small amount of oxygen in which accidentally a right 

amount needed to catalyze reaction of the additional ethylene. As the ICI scientists 

found the new material, J. N Dean of British Telegraph Constructi9n heard about 

the new material. He believed that PE would be a suitable material to insulate 

and enclose their new undersea cable [9]. In july 1939, sufficient amount of PE was 

made to coat 1 nautical miles of cable. Polyethylene is classified by its density. The 

density reflects the level of crystallinity of each type. Usually, PE is divided as low 

density poiyethylene(LDP), rnediun, density, polyethylene (MDPE), high density 

polyethyleie ,(HEPE) and linear low densitXpolyethylene, (LLDPE). Figure 1 :1. 

shows chain type of different ,[1 ] .	 ,	 , f 

• LOW d'nait,1	 (LDPE) Hbet geui40 - 150'short alkyl 

bifieSiOr every 10O0 hlëhe units.' It can be óduicd ulider high 	 g-



sure between 15,000 psi to 50,000 psi and at'350°C. LDPE has density be-

tween 0.912 g/mL - 0.935 g/mL. The branching in LDPE matrix making it an 

amorphous with 50 % of crystallinity and allowing gas to permeate through. 

Melting point of LDPE is 100'C [9]. 

. Medium density polyethylene (MDPE) , - It can be produced by 

ion-coordination polymerization. MDPE has density between 0.93 /mL - 

0.94 g/mL. It has good shock and drop resistance [9]. 

• High density polyethylene (HDPE)- HDPE chain is packed due to its 

low level of branching. This is attributed to the regularity in structure of 

its chain. It is a 90% crystalline with density of approximately 0.96 g/ml. 

HDPE can be produced under low pressure with the presence of Ziegler- 

Natta or Phillips catalyst. It possess les 'thaii 15 shrt-alkyl bahhes for 

1,000 ethylene units. Physically, it is stiffer than LDPE witli higher iiielting 

point which is at 130°C [9]. 

• Linear low density polyethylene (LLDPE) - This material can be 

produced under 300 psi and at 1000°C. Its density lies between 0.915 to 

0.925 g/mL. It is a copolymer of ethylene with approximately 8% - 10% 

of an alpha olefin (chemical formula CH2 having a double bond at the the 

most front position) e.g. 17butene, 1-penetene, 1-hexene and 1-octene. It 

does not contain long branch as such in LDPE. It has higher tensile, im-

pact and puncture strength than the LDPE. Usual application can be seen 

as packaging for cables, toys, pipes and containers [9]. 

• Crosslinked polyethylene (XLPE) - Cross-linking method is introduced 

to PE in order to improve its chemical meéhanical'áhd electridái charteris-

tics. Chain of PE is 'binded' to each otIi& malinthXLPEable&resiliénit 

to elevating 'tëmpèätuiie 'vOlt& pliatidñ. As a .rehlts,'ther-

moset material iborñè Other than ak lealidai ' iñülätin rhateria1 XLPE 
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also used a thbinthterial! [10].: 

In the 'early 1970s, 15E iables failure were repotted. It occurred earlier than the 
I	 .	 -	 . .	 • 

estimated lifetime and at rapidly increasing rate [1]. However XLPE cables failure 

rate not so much as that of PE cables [10]. Since then, extensive approaches were 

undertaken either in cables prOdüctiôn process or the 1 polymeric material itself to 

solve the problem 

1.3 Space Charge in Solid Dielectric Material 

Mason clarified polarity effect on breakdown of solid dielectric material [11]. 

25 % greater stress was required to trigger breakdown under negative polarity volt-- 

age than under positive polarity voltage, regardless of the solid dielectric thick-
fl .	 I 	

J,.-,'	 •	 -+-,	 f 	 . 	 ••.f	 ff	 1	 3 

ness. Artbauer 1 and Griac, Coopers et al. and Fava found that impulse break-
I	 •	

.f 	 .h;j'•	 ft	 . 

down strength is . approxirnately 80,% of that under dc [12, 13, 14]. Bradw].l et al. 
I	 -	 .	 •	 .	

If l 

discovered that impulse strength of polyethylene (PE) significantly, increased, by 

applying same polarity of dc voltage prior to impulse voltage application [15]. In 

contfast, applicatiOn of opposite polarity voltage, fel duiced' im'p'ulse stidith. This. 

phenomenOn is known as pre-stress effect. During pre-stresing, space charges accu-

mulàte in bulk of solid diéletric. Pre-stress with same polarity 'voltage, preventing 

instant increase of electric field in the insulation thus reducing the impulse break-

down voltage. On the other hand, opposite polarity of residual charge byopposite 

polarity pre-sttess resiiltiigiñ the increase ' of electric fild ñëár the electrode al- 

--,  
most instantly, which• causing breakdown to occur at lower voltage. Watson studies 

.	 . 
shows that breakdown strength increase with lower voltage rise time [16]: 

Kltan f seeial-types of polymers under nanosec. 4&(ns); mpulses voltage 

[17].,,His studies was furtherextendedto a study in the influence of pre-stress to 

irnpuisebreakdowrgth[7] .,The yielded,result was in agreement with that by 

Bradwll fet s al. [15]., 1 hisothei study on . PM	 subjected to ns impulse voltage, 

hefound,that,j tree, channel (e1ectrica1at	 w re) as longer.., and. there discharge light



was more intense under positive rather than the negativeone. In addition, the tree 

grew faster under application of alternating positive and negative impulse than 

under repetitive positive impulses application. Under repetitive negative impulses, 

the tree channel did not grow instead, it got broadened [18, 19]. 

leda et al. studied the influence of oxidation on space charge in PE [20]. Oxi-

dation increased the conduction currentby a:fë* orders Of magnitudeand negative 

homo space charges were formed near the cathode. The introduction of an oxidized 

PE layer on the surface of unoxidized PE enhances both electron and hole injection. 

The enhanced electron injection predominates over the hole injection and plays an 

important role in the increase of conduction with oxidation. The negative homo 

space charge is released a 40°C and give rise to a. Thermally Stimulated Current 

(TSC) peak. They also quantitatively observed space charge by LIPP method [21]. 

The amount of negative space charge increased with applied field;, and this suggests 

that the electron injection was enhanced by the applied field.., •. 

These previous, studies indicate that understanding role of space charge in break-

down of solid dielectric is important particularly in designing high voltage appara-

tus.
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1.4 SpaceiCharge observation method 

The6rj`e à',re 2iypes of method that can be utilized iiiord& to observ6 the space 

• charge in a dielectr
I'
ic material; 1) destructive and 2) non-destructive methods. 

1. Destructive method 

• Lichtenbeg Figure/Dust Figure method- Lichtenberg figure is 

• named after. the. person: who found it, a german. physicist Georg 

Christoph Lichtenberg. In his expeiimeñt in 1700s,' he applied high volt-

age to various dielectric material such as resin, glass and ebonite (hard 

rubber). After that, he sprinkled a mixture of sulphur and minium (red 

lead/ lead tetroxide) on the surface. He found that sulphur , is attracted 

to negatively charged region while miniurn is attracted to the positively 

-chargeg fegion [22,. 23, 24]. 

• Capacitive Probe method-'This methdd allbws .roñgh esithàtin of 

chargé ttetnañd fslduâl chake distribution; Hoe/er, the idsolution 

is /e' ry poor, which isin the Order 6f rnilirñeter. 

• Thermal Simulated Current method- Allows one to obtain activa-

tion energies of the different kind of charges and their relaxation time. 

This method does not allow continuos measurement of space charge. It's 

very sensitive to polarization particularly in dipolar polarization but less 

sensitive to space charge [25, 26]. 

2. Non-destructive methods 

• Thermal Step (TS) method- It is proposed by Toureille during ex-

ternal current measurement in FE film. 2 piece of film is electrified by 

corona discharge on 1 side. Then both electrified-die film were brought 

together so that the surfaces face each other. The sample was placed in 

a thermostatic container under -10°C for 90 minutes and then the tem-

perature was raised to to 20'C.. This process creates the thermal step 
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and the corresponding current is recorded. Temporal behavior of space 

charge during voltage application in not observable by this method [26]. 

• Laser Induced Pressure Pulse (LIPP) inétho1- Spatial resolution 

of this method is said of 1.5m in Tefli5nFEP [27] Laser pulse (width 

from 70s to 1200 s) is directed to a graphite ` 61ectrode on the target 

sample, pressure wave is generated.The pressure wave travel through 

the sample. Current generated during this time is proportional to charge 

density. In spite of having very 'high , r6so1utin, this method is prone to 

noise. Plasma generated during near the electrode can the noise source 

thus disturbing the desirable space charge distribution. 

• Pulsed Electroacoustic (PEA) method- Figure 1.3 shows principal 

diagram of PEA method. This method is the most popular because 

of its comparatively easy setup and low noise. Pulse genertt is coi- 

pled to high voltage source. During voltage application, space charge is 

polarized. The application of a very short pule voltage (5ns) the the 

Piezoelectric
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— + 

— +..
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Ii
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•	
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1
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-I-I 
Digitizing oscilloscope 

Figure 1.3: PEA method. 



polârize&. sample creates a sudden distortion in the local electric field in 

bulk: of the sample thus generating ipressure wave (acoustic wave). The 

pressure wave isdetected by: .a piezoelectric transducer (in some cases 

polyvinylidene difluoride (PVDF) is : utilized) and then amplified so that 

it can be viewed on oscilloscope ,[?81. 

1.5 Contribution 

• In this thesis,: space charge behavior, and pre-breakdown phenomena in solid 

insulation is discussed. Space charge behavior measurement is carried out by PEA 

method. In some cases, external, current : measurement is carried out simultaneously 

with space charge measurement. External. current here is partially. corresponding 

to space charge behavior. It is assumed to consist. conduction :c rrent and displace-

ment current.
it 

On the other hand, it is extremely, difficult to observe, a breakdown phe-

nomenon process, in solid under dc stress, for example, , from initiating process 

(pre-breakdown process, such as partial discharge etc.) and its development (how 

the breakdown light propagate) until the breakdown complete. It can occur almost 

instantly and at an uncertain time. Dc breakdown in solid may finish in only 1 ns 

after initiation. The operating speed of currently available optical observation sys- 

tem can.'iôt match this ultra-fast phenomenon. Solid is replaced with a composite 

insulation of liquid and solid, which represents 2 region with different conductivity 

in 1 sample (will be elaborated further in chapter 2) ., in making optical observation 

of de breakdown process possible. By doing this, pre-breakdown light image can be 

observed by the optical method. In this thesis, optical observation method refers to 

image guide scope (IGS) and streak camera system. The processing delay time in 

streak camera requires one to have an image delay path (sometimes noted as light 

delay path) so that the camera can record a desired image. In this thesis, image 

delay path refers to the IGS. It is a fiber optic cable for translating image from 
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