Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst

Noor Hindryawati^{a, c}, Gaanty Pragas Maniam^{a, b, *}, Md. Rezaul Karim^a, Kwok Feng Chong^a

^a Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia ^b Central Laboratory, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

^c Faculty of Mathematics and Natural Sciences, Mulawarman University, Gunung Kelua, 75113 Samarinda, East Borneo, Indonesia

ABSTRACT

Investigation was conducted on three alkali metals (Li, Na, and K) supported by rice husk silica as catalysts for methyl esters production. A simple pseudo-heterogeneous transesterification process of used cooking oil with methanol was conducted to produce methyl esters using calcined alkali metal supported rice husk silica as a solid catalyst. Alkali metal silicate catalysts showed longer lasting activity than the traditional alkali catalysts. The optimum conditions for the process were: alkali metals silicate calcination temperature 500 °C, time 3 h; catalyst amount 3%; methanol to oil molar ratio 9:1; and a reaction temperature of 65 °C. The process was able to transesterify oil to methyl esters in the range of 96.5–98.2% in 1 h for all series. The catalyst is able to tolerant free fatty acid and moisture up to 1.25% and 1.75%, respectively. The catalyst was easily separated from the reaction mixture by filtration and able to reuse six times. The final product met the selected biodiesel fuel properties in accordance with Eu-ropean Standard (EN) 14214.

Keywords:

Used cooking oil Transesterification; Alkali metal; Rice husk silica; Pseudo-heterogeneous catalyst Methyl ester