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ABSTRACT 

 

 

 

 

Chitosan is made from crustacean shells by a chemical process involving 

demineralization, deproteinization, decolorization, and deacetylation. The process of 

deacetylation involves the removal of acetyl groups from the molecular chain of chitin, 

leaving behind a complete amino group (-NH2) and chitosan versatility depends mainly 

on this high degree chemical reactive amino groups. The purpose of this research is to 

observe the parameters that can enhance the degree of deacetylation of chitosan 

production to the highest percentage. The observed parameters are the temperature of 

heating, concentration of sodium hydroxide, and the time of heating. The obtained chitin 

was converted into the more useful soluble chitosan by reaction with sodium hydroxide 

(NaOH) solution of various concentrations, then the alkaline chitin was heated in an 

autoclave with different time and temperature of heating which dramatically reduced the 

time of deacetylation. The method used to determine the degree of deacetylation of 

chitosan is the linear potentiometric titration. From the result, the highest degree of 

deacetylation can be achieved at the temperature of 134oC, and 70% concentration of 

sodium hydroxide with DDA% of 98.38% and 98.79% respectively. It took only 10 

minutes to also achieve highest degree of deacetylation, 89.05%. In conclusion, the 

increasing of temperature and concentration of sodium hydroxide will increase the 

degree of deacetylation of chitin. The increasing of time of heating will decrease the 

degree of deacetylation.  
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ABSTRAK 

 

 

 

 

 Chitosan terhasil daripada kulit udang melalui proses kimia yang melibatkan 

proses “demineralization” iaitu penyingkiran bahan mineral, “deproteinization” iaitu 

penyingkiran bahan berprotin, “decolorization” iaitu penyingkiran bahan berwarna, dan 

“deacetylation” iaitu penyingkiran kumpulan ikatan polimer N-acetyl. Tujuan utama 

kajian ini dijalankan adalah untuk mengkaji factor-faktor yang meningkatkan peratusan 

proses penyingkiran ikatan polimer N-acetyl iaitu suhu pemanasan, kepekatan alkali 

iaitu natrium hidroksida, dan masa pemanasan. Chitin yang diperoleh akan ditukar 

kepada chitosan yang mempunyai lebih banyak kegunaan dan boleh melarut dalam air 

dengan baik. Ini dilakukan dengan mencampurkan chitin dengan larutan natrium 

hidroksida dengan kepekatan yang berbeza dalam masa dan suhu pemanasan yang 

berbeza dan membiarkan ia bertindakbalas. Selepas itu, chitin beralkali itu dipanaskan di 

dalam alat pemanas “autoclave” di mana proses pemanasan ini akan mempercepatkan 

masa untuk proses penyingkiran ikatan polimer N-acetyl. Kaedah yang digunakan untuk 

mengira peratusan penyingkiran ikatan polimer N-acetyl itu adalah pentitratan 

potensiometrik. Daripada hasil eksperimen yang dijalankan, didapati peratusan yang 

paling tinggi diperoleh pada suhu 134oC, dengan peratusan sebanyak 98.38% dan pada 

kepekatan natrium hidroksida sebanyak 70% dengan peratusan sebanyak 98.79%. Masa 

pemanasan dalam 10 minit pula menghasilkan peratusan penyingkiran yang paling 

tinggi iaitu sebanyak 89.05%. Kesimpulannya, semakin tinggi suhu pemanasan dan 

kepekatan alkali, semakin meningkat peratusan proses penyingkiran ikatan polimer N-

acetyl di dalam chitosan. Semakin meningkat masa pemanasan pula, semakin rendah 

peratusan proses penyingkiran ikatan polimer N-acetyl tersebut. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Chitosan is a natural polysaccharide comprising copolymers of glucosamine and 

N-acetylglucosamine, and can be obtained by the partial deacetylation of chitin, from 

crustacean shells, the second most abundant natural polymer after cellulose. Chitin can 

be converted into chitosan by enzymatic means or alkali deacetylation, this being the 

most utilized method. During the course of deacetylation, part of polymer N-acetyl links 

are broken with the formation of D-glucosamine units, which contain a free amine 

group, increasing the polymer’s solubility in aqueous means (Chen & Tsaih, 1998). 

 

 

Chitosan has been widely used in vastly diverse fields, ranging from waste 

management to food processing, medicine and biotechnology. It becomes an interesting 

material in pharmaceutical applications due to its biodegradability and biocompatibility, 

and low toxicity. Chitosan has found wide applicability in conventional pharmaceutical 

devices as a potential formulation excipient. The use of chitosan in novel drug delivery 

as mucoadhesive, peptide and gene delivery, as well as oral enhancer have been reported  
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in the literature. Chitosan exhibits myriad biological actions such as 

hypocholesterolemic, antimicrobial, and wound healing properties. Since chitosan is a 

new substance, it is important to carry out precise standardization for its pharmaceutical 

and biomedical applications like other auxiliary substances.  

 

 

Chitosan can be characterized in terms of its quality, intrinsic properties (purity, 

molecular weight, viscosity, and degree of deacetylation) and physical forms. 

Furthermore, the quality and properties of chitosan product may vary widely because 

many factors in the manufacturing process can influence the characteristics of the final 

product. Chitosan is commercially available from a number of suppliers in various 

grades of purity, molecular weight, and degree of deacetylation. The variations in 

preparation methods of chitosan result in differences in its deacetylation degree, the 

distribution of acetyl groups, the viscosity and its molecular weight (Berger et al., 2005). 

These variations influence the solubility, antimicrobial activity among other properties, 

being that commercial chitosan usually has a deacetylation degree varying from 70% to 

95%, and a molecular weight ranging from 50 to 2000 kDa (Rege et al., 2003). 

 

 

The deacetylation degree is the proportion of glucosamine monomer residues in 

chitin. It has a striking effect on the solubility and solution properties of chitin. By 

convention, chitin and chitosan are distinguished by their solubility in dilute aqueous 

acids such as acetic acid (Muzzarelli, 1977). Chitin does not dissolve in dilute acetic 

acid. When chitin is deacetylated to a certain degree (~ 60% deacetylation) where it 

becomes soluble in the acid, it is referred to as chitosan. A typical deacetylation process 

of chitin involves the reaction of chitin powder or flake in an aqueous 40-50% sodium 

hydroxide solution at 100-120°C for several hours to hydrolyze N-acetyl linkages 

(Roberts, 1992). Repetition of the process can give deacetylation values up to 98% but 

the complete deacetylation can never be achieved by this heterogeneous deacetylation 

process without modification. Fully deacetylated (nearly 100%) chitosan can be 



3 
 

prepared by the alkaline treatment of a gel form instead of the powder form of chitosan 

(Mima et al., 1983). 

 

 

 

 

1.2 Problem statement 

 

 

The degree of deacetylation could influence the performance of chitosan in many 

of its applications. It determines the content of free amino groups in the polysaccharides 

and can be employed to differentiate between chitin and chitosan. The process of 

deacetylation involves the removal of acetyl groups from the molecular chain of chitin, 

leaving behind a complete amino group (-NH2) and chitosan versatility depends mainly 

on this high degree chemical reactive amino groups. There are methods available to 

increase or decrease the degree of deacetylation. For example, increase either in 

temperature or strength of sodium hydroxide solution could enhance the removal of 

acetyl groups from chitin, resulting in a range of chitosan molecules with different 

properties and hence its applications. Preliminary experiments were carried out by 

refluxing chitin in strong NaOH solution at normal atmosphere. The experiments took 

more than 20 hours producing low deacetylation content and the reaction was 

accompanied by drastic degradation of the final chitosan.  

 

 

 

 

1.3 Objective 

 

 

The objective of this research is to enhance the degree of deacetylation of chitin in 

chitosan production. 
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1.4 Scope of study 

 

 

The scope of this study covers the effect of temperature, concentration of NaOH 

solution, and time of heating in autoclave on the degree of deacetylation. 

 

 



CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Definition and Composition of Chitosan 

 

 

Chitosan is a fiber-like substance derived from chitin. Chitin is the fiber in 

shellfish shell such as crab, lobster and shrimp. It is also found in common foods we eat 

such as grain, yeast, bananas, and mushrooms. Chitin, a naturally abundant polymer 

consists of 2-acetamido 2-deoxy-β-D-glucose through a β(1 → 4) linkage. In spite of the 

presence of nitrogen, it may be regarded as cellulose with hydroxyl at position C-2 

replaced by an acetamido group. Like cellulose, it functions as structural 

polysaccharides. Its natural production is inexhaustible; arthropods, by themselves, 

count more than 106 species from the 1.2 X 106 of total species compiled for animal 

kingdom, constitute permanent and large biomass source. The chitin is deproteinized, 

demineralized and de-acetylated. It is a dietary fiber, meaning that it cannot be digested 

by the digestive enzymes of a person (Razdan A., and Petterson D., 1994). Chitin is a 

white, hard, inelastic, nitrogenous polysaccharide and the major source of surface 

pollution in coastal areas.  
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Chitin is made up of a linear chain of acetylglucosamine groups while chitosan is 

obtained by removing enough acetyl groups (CH3-CO) for the molecule to be soluble in 

most diluted acids. This process is called deacetylation. The actual difference between 

chitin and chitosan is the acetyl content of the polymer. Chitosan having a free amino 

group is the most useful derivative of chitin (No and Meyers, 1992). 

 

 

Chitin     Chitosan 

  

 

Figure 2.1 The structural formula of chitin and chitosan 

 

 

 

Figure 2.2 The structural formula of chitin and glucose. 
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2.2 Characteristics of Chitosan 

 

 

Chitosan is a non toxic, biodegradable polymer of high molecular weight, and is 

very much similar to cellulose, a plant fiber. 

 

 

 

 (a) (b) 

 

 

(c) 

 

Figure 2.3 Structure of a) chitin, b) chitosan, and c) cellulose. 

 

 

As seen in Figure 2.3, the only difference between chitosan and cellulose is the 

amine (-NH2) group in the position C-2 of chitosan instead of the hydroxyl (-OH) group 

found in cellulose. However, unlike plant fiber, chitosan possesses positive ionic 

charges, which give it the ability to chemically bind with negatively charged fats, lipids, 

cholesterol, metal ions, proteins, and macromolecules (Li et al., 1992). In this respect, 

chitin and chitosan have attained increasing commercial interest as suitable resource 
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materials due to their excellent properties including biocompatibility, biodegradability, 

adsorption, and ability to form films, and to chelate metal ions (Rout, 2001). 

 

 

 

 

2.2.1 Degree of Deacetylation in Chitosan 

 

 

The process of deacetylation involves the removal of acetyl groups from the 

molecular chain of chitin, leaving behind a compound (chitosan) with a high degree 

chemical reactive amino group (-NH2). This makes the degree of deacetylation an 

important property in chitosan production as it affects the physicochemical properties, 

hence determines its appropriate applications (Rout, 2001). Deacetylation also affects 

the biodegradability and immunological activity (Tolaimate et al., 2000).  

 

 

A sharp nomenclature border has not been defined between chitin and chitosan 

based on the degree of N-deacetylation (Rout, 2001). In an earlier study by Rudall 

(1963), he reviewed evidences suggesting that approximately one in every six to seven 

residues in the chain has a proportion of free amino groups that manifests some 

histochemical properties. In any case, the degree of deacetylation can be employed to 

differentiate between chitin and chitosan because it determines the content of free amino 

groups in the polysaccharides. There are two advantages of chitosan over chitin. The 

first one is, in order to dissolve chitin, highly toxic solvents such as lithium chloride and 

dimethylacetamide are used whereas chitosan is readily dissolved in diluted acetic acid. 

The second advantage is that chitosan possesses free amine groups which are an active 

site in many chemical reactions (Knaul et al., 1999).  
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The degree of deacetylation of chitosan ranges from 56% to 99% with an average 

of 80%, depending on the crustacean species and the preparation methods (No and 

Meyers, 1995). Chitin with a degree of deacetylation of 75% or above is known as 

chitosan (Knaul et al., 1999). Various methods have been reported for the determination 

of the degree of deacetylation of chitosan. These included ninhydrin test, linear 

potentiometric titration, near-infrared spectroscopy, nuclear magnetic resonance 

spectroscopy, hydrogen bromide titrimetry, infrared spectroscopy, and first derivative 

UV-spectrophotometry (Khan et al., 2002).  

 

 

The infrared spectroscopy method, which was first proposed by Moore and 

Roberts (1980), is commonly used for the estimation of chitosan degree of deacetylation 

values. This method has a number of advantages and disadvantages. First, it is relatively 

fast and unlike other spectroscopic methods, does not require purity of the sample to be 

tested nor require dissolution of the chitosan sample in an aqueous solvent (Baxter et al., 

1992). However, the infrared method utilizing baseline for degree of deacetylation 

calculation, and as such there may be possible argument for employment of different 

baseline which would inevitably contribute to variation in the degree of deacetylation 

values. Secondly, sample preparation, type of instrument used and conditions may 

influence the sample analysis. Since chitosan is hygroscopic in nature and samples with 

lower degree of deacetylation may absorb more moisture than those with higher degree 

of deacetylation, it is essential that the samples under analysis be completely dry (Khan 

et al., 2001; Blair et al., 1987).  
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2.2.2 Molecular Weight 

 

 

Chitosan is a biopolymer of high molecular weight. Like its composition, the 

molecular weight of chitosan varies with the raw material sources and the method of 

preparation. Molecular weight of native chitin is usually larger than one million Daltons 

while commercial chitosan products have the molecular weight range of 100,000 – 

1,200,000 Daltons, depending on the process and grades of the product (Li et al., 1992). 

In general, high temperature, dissolved oxygen, and shear stress can cause degradation 

of chitosan. For instance at a temperature over 280˚C, thermal degradation of chitosan 

occurs and polymer chains rapidly break down, thereby lowering molecular weight 

(Rout, 2001). Also, maximal depolymerization caused by utilization of high temperature 

or concentrated acids, such as hydrochloric acid followed by acetic acid and sulfurous 

acid, results in molecular weight changes with minimal degradation with the use of 

EDTA (Rout, 2001). The molecular weight of chitosan can be determined by methods 

such as chromatography (Bough et al., 1978), light scattering (Muzzarelli, 1977), and 

viscometry (Maghami and Roberts, 1988) 

 

 

 

 

2.2.3 Viscosity 

 

 

Just as with other food matrices, viscosity is an important factor in the 

conventional determination of molecular weight of chitosan and in determining its 

commercial applications in complex biological environments such as in the food system. 

Higher molecular weight chitosans often render highly viscous solutions, which may not 

be desirable for industrial handling. But, a lower viscosity chitosan obtained from 

crawfish waste as shown in this thesis research may facilitate easy handling.  
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Some factors during processing such as the degree of deacetylation, molecular 

weight, concentration of solution, ionic strength, pH, and temperature affect the 

production of chitosan and its properties. For instance, chitosan viscosity decreases with 

an increased time of demineralization (Moorjani et al., 1975). Viscosity of chitosan in 

acetic acid tends to increase with decreasing pH but decrease with decreasing pH in HCl, 

giving rise to the definition of ‘Intrinsic Viscosity’ of chitosan which is a function of the 

degree of ionization as well as ion strength. Bough et al. (1978) found that 

deproteinization with 3% NaOH and elimination of the demineralization step in the 

chitin preparation decrease the viscosity of the final chitosan products. Moorjani et al. 

(1975) also stated that it is not desirable to bleach the material (i.e., bleaching with 

acetone or sodium hypochlorite) at any stage since bleaching considerably reduces the 

viscosity of the final chitosan product.  

 

 

Similarly, No et al. (1999) demonstrated that chitosan viscosity is considerably 

affected by physical (grinding, heating, autoclaving, ultrasonication) and chemical 

(ozone) treatments, except for freezing, and decreases with an increase in treatment time 

and temperature. Chitosan solution stored at 4˚C is found to be relatively stable from a 

viscosity point of view (No et al., 1999). The effect of particle size on the quality of 

chitosan products was investigated by Bough et al. (1978), who reported that smaller 

particle size (1mm) results in chitosan products of both higher viscosity and molecular 

weight than those of either 2 or 6.4 mm particle size. They further enumerated that a 

larger particle size requires longer swelling time, resulting in a slower deacetylation rate. 

But, in contrast, Lusena and Rose (1953) reported that the size of chitin particle within 

the 20-80 mesh (0.841-0.177 mm) range had no effect on the viscosity of the chitosan 

solutions. 
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2.2.4 Solubility 

 

 

While chitin is insoluble in most organic solvents, chitosan is readily soluble in 

dilute acidic solutions below pH 6.0. Organic acids such as acetic, formic, and lactic 

acids are used for dissolving chitosan. The most commonly used is 1% acetic acid 

solution at about pH 4.0 as a reference. Chitosan is also soluble in 1% hydrochloric acid 

but insoluble in sulfuric and phosphoric acids. Solubility of chitosan in inorganic acids is 

quite limited. Concentrated acetic acid solutions at high temperature can cause 

depolymerization of chitosan (Roberts and Domszy, 1982). Above pH 7.0 chitosan 

solubility’s stability is poor. At higher pH, precipitation or gelation tends to occur and 

the chitosan solution forms poly-ion complex with anionic hydrocolloid resulting in the 

gel formation (Kurita, 1998).  

 

 

The concentration ratio between chitosan and acid is of great importance to 

impart desired functionality (Mima, 1983). At concentrations as high as 50 percent 

organic solvent, chitosan still works as a viscosifier causing the solution to remain 

smooth. There are several critical factors affecting chitosan solubility including 

temperature and time of deacetylation, alkali concentration, and prior treatments applied 

to chitin isolation, ratio of chitin to alkali solution, and particle size.  

 

 

The solubility, however, is controlled by the degree of deacetylation and it is 

estimated that deacetylation must be at least 85% complete in order to achieve the 

desired solubility (No et al., 1995). The acid-soluble chitosans with >95% solubility in 

1% acetic acid at a 0.5% concentration could be obtained by treatment of the original 

chitin with 45-50% NaOH for 10-30 min. Chitosans treated with 45% NaOH for only 5 

min, and/or with 40% NaOH for 30 min, were not deacetylated sufficiently to be soluble 

in 1% acetic acid. Insoluble particles were found in both solutions. According to Bough 

et al. (1978), a reaction time of 5 min with 45% NaOH may not be enough for chitin 
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particles to be sufficiently swollen. A decrease of the NaOH concentration to 40% 

required increased time of >30 min to obtain a soluble chitosan (No et al., 2000). 

 

 

 

 

2.2.5 Bulk Density 

 

 

The bulk density of chitin from shrimp and crab is normally between 0.06 and 

0.17 g/ml, respectively (Shahidi and Synowiecki, 1991), indicating that shrimp chitin is 

more porous than crab chitin. Krill chitin was found to be 2.6 times more porous than 

crab chitin (Anderson et al., 1978). In a study conducted by Rout (2001), the bulk 

density of chitin and chitosan from crawfish shell, is very high (0.39 g/cm3). This 

perhaps could be due to the porosity of the material before treatment. But once crawfish 

shell had been demineralized or deproteinized or both there seem to be very minor 

variations unpacked in bulk density between chitin and chitosan produced. A 

comparison of the bulk densities of crawfish and commercial chitin and chitosan 

indicated some variations, which can be attributed to crustacean species or sources of 

chitosan and the methods of preparation (Rout, 2001), as also stated earlier by Brine and 

Austin (1981). Rout (2001) reported that increased degree of deacetylation decreased 

bulk density. 

 

 

 

 

2.2.6 Color 

 

 

The pigment in the crustacean shells forms complexes with chitin (4-keto and 

three 4, 4'-diketo-ß-carotene derivatives) (Rout, 2001). Chitosan powder is quite flabby 
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in nature and its color varies from pale yellow to white whereas starch and cellulose 

powder have smooth texture and white color. 

 

 

 

 

2.2.7 Water Binding Capacity (WBC) and Fat Binding Capacity (FBC) 

 

 

Water uptake of chitosan was significantly greater than that of cellulose and even 

chitin (Knorr, 1982). Basically, WBC for chitosan ranges between 581 to 1150% with an 

average of 702%, according to Rout (2001). In his report, Rout (2001) also noted that 

reversing the sequence of steps such as demineralization and deproteinization had a 

pronounced effect on WBC and FBC. Deproteinization of demineralized shell also gives 

higher WBC compared to the process when demineralization of the deproteinized shell 

is conducted. Besides, the process of decoloration also causes a decrease in WBC of 

chitosan than those of unbleached crawfish chitosan.  

 

 

The fat uptake of chitin and chitosan ranges from 315 to 170% with chitosan 

having the lowest and chitin the highest fat uptake (Knorr, 1982). In a study by Rout 

(2001) on this aspect, he reported that the average FBC of crawfish chitosans and 

commercial crab chitosans for soybean oil was 706% and 587%, respectively. The 

inclusion of decoloration step during the production of chitosan was found to decrease 

the fat binding capacity of crawfish chitosans, affect the viscosity of chitosan (Moorjani, 

1975). The decreased viscosity as evidenced may be a cause for decrease in fat binding 

capacity among unbleached and bleached crawfish chitosan samples.  

 

 

Rout (2001) also reported that changing the sequence of steps, i.e., when 

demineralization is conducted prior to deproteinization, followed by deacetylation, 
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caused an increase in FBC compared with when deproteinization is performed prior to 

demineralization, followed by deacetylation. 

 

 

 

 

2.2.8 Emulsification 

 

 

Even though chitosan alone does not produce emulsions, Cho et al. (1998) 

reported that emulsifying capacity of egg yolk (protein) increased with the addition of 

chitosan compared with the control. At 0.5% chitosan concentration, better emulsifying 

capacity was observed compared with at 0.1 or 0.3% chitosan. In general, chitosan 

emulsions tend to be very stable under temperature changes and aging. With viscosity, 

the degree of deacetylation is reported to be a determining factor in the emulsification 

properties of chitosan. The protein solution containing chitosan with intermediate degree 

of deacetylation produces less effective emulsion compared with that containing 

chitosan with higher DDA.  

 

 

 

 

2.2.9 Antimicrobial Properties 

 

 

Recent studies in antibacterial activity of chitosan have revealed that chitosan is 

effective in inhibiting growth of bacteria. The antimicrobial properties of chitosan 

depend on its molecular weight and the type of bacterium. Gram-positive bacteria retain 

crystal violet dye after iodine fixation and alcohol decolorization, whereas gram-

negative bacteria do not. Gram-negative bacteria have an additional outer membrane 

containing lipopolysaccharide (endotoxin). For gram-positive bacteria, chitosan with 
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470 KDa was the most effective, except for Lactbacillus sp., whereas for gram-negative 

bacteria, chitosan with 1,106 KDa was effective. Chitosan generally showed stronger 

bactericidal effects for grampositive bacteria (Listeria monocytogenes, Bacillus 

megaterium, B. cereus, Staphylococcus aureus, Lactobacillus plantarum, L. brevis, and 

L. bulgaris) than for gram-negative bacteria (E.coli, Pseudomonas fluorescens, 

Salmonella typhymurium, and Vibrio parahaemolyticus) in the presence of 0.1% 

chitosan (No et al., 2002). 

 

 

Koide (1998) reported that chitin and chitosan in vitro show antibacterial and 

anti-yeast activities. One of chitosan derivatives, N-carboxybutyl chitosan, was tested 

against 298 cultures of different pathogenic microorganisms that showed bacteriostatic 

and bactericidal activities, and there were marked morphological alterations in treated 

microorganisms when examined by electron microscopy (Muzzarelli, 1990). 

Conversely, growth inhibition and inactivation of mould and yeasts seem to depend on 

chitosan concentration, pH, and temperature (Rout, 2001). According to Cuero (1999), 

the antimicrobial action of chitosan is influenced by intrinsic and extrinsic factors such 

as the type of chitosan (e.g., plain or derivative), degree of chitosan polymerization, host 

nutrient constituency, substrate chemical and/ or nutrient composition, and 

environmental conditions such as substrate water activity.  

 

 

In an extensive research by Tsai and Su (1999) on the antimicrobial activity of 

chitosan prepared from shrimp against Ecoli, they found that higher temperature and 

acidic pH of foods increased the bactericidal effect of chitosan. They also explained the 

mechanism of chitosan antibacterial action involving a cross-linkage between 

polycations of chitosan and the anions on the bacterial surface that changes membrane 

permeability. Chitosan has been approved as a food additive in Korea and Japan since 

1995 and 1983, respectively (KFDA, 1995). Higher antibacterial activity of chitosan at 

lower pH suggests that addition of chitosan to acidic foods will enhance its effectiveness 

as a natural preservative (No et al., 2002).  
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2.2.10 Formation of Film 

 

 

Chitosan coating have been shown to significantly delay fruit spoilage or 

decaying of fruits and vegetables such as tomatoes, strawberries, etc., at different 

temperatures. Chitosan coated fruits were not only firmer and higher in titratable acidity, 

but were slow to decay and exhibited less pigmentation than control samples at the end 

of storage (El Ghaouth et al., 1992). The low molecular weight chitosan has a greater 

inhibitory effect against phytopathogens than the high molecular weight chitosan 

(Hirano et al., 1989). 

 

 

Chitosan has an ability to form film which makes it suitable for use as food 

preservation for control of psychotropic pathogen in fresh or processed meat and fish 

products packaged under modified atmosphere (Smith et al., 1994). According to 

Charles et al. (1994), the most potential application of chitosan is as a coating agent in 

the area of fruit preservation. The biodegradability of chitosan is one of the most 

advantageous features for concern of the environmental damage occurring by improper 

disposal of petrochemical based plastics (Knorr, 1991).  

 

 

N, O-carboxymethyl chitosan can form a strong film that is selectively 

permeable to such gases as oxygen and carbon dioxide. Apples coated with this material 

remain fresh for up to six months. The chitosan coating has been shown to delay 

ripening of banana for up to 30 days where as chitosan film manifests a slightly yellow 

appearance, with the color darkening as thickness increased (Setha et al., 2000). 
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2.3 Production of Chitin and Chitosan  

 

 

Chitosan is easily obtained from crab especially Dungeness crab (Cancer 

magister), shrimp particularly the Pacific shrimp (Pandalus borealis), lobster, or 

crawfish shells. These are the richest source of chitin and the major sources of 

crustaceans that are processed into chitin and chitosan (Knorr, 1991). While much 

research has been done with chitosan extraction from crab shell, limited information is 

available on the extraction possibilities with crawfish shell waste.  

 

 

Previous studies demonstrated that crawfish and crustacean wastes, as well as 

organically-rich shellfish processing streams in general, can no longer be considered as 

disposable “waste” products with minimal economic value, but should be considered as 

profitable alternatives leading to valuable products of commerce (No et al., 1992). 

Similar research studies by Lee (1989) demonstrated that the astaxanthin-rich shell from 

crawfish waste is a valuable natural resource for commercially feasible pigment which is 

marketed as a fish food additive in aquaculture, especially for Salmon.  

 

 

Apart from the recoverable pigment, it has been shown that crawfish shell waste 

possesses a significant and renewable major resource for the biopolymer chitin (23.5% 

on a dry basis compared to 14-27% and 13-15% of the dry weight of shrimp and crab 

processing waste, respectively) and chitosan (No and Meyers, 1989,1992). Therefore, 

the applications of crawfish shell wastes as a source of astaxanthin, chitin and chitosan 

represent a total byproduct utilization concept with realistic implications in other 

crustacean waste recovery industries (No and Meyers, 1989). Further significance can be 

seen in the utilization of astaxanthin pigment, chitin, and protein from crawfish shell as 

mentioned earlier in a variety of fields with different applications.  
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Chitin was obtained in pilot scale, according to the procedure of Soares, Moura, 

Vasconcelos, Rizzi, and Pinto (2003), through the stages of demineralization, that 

consists of the reduction of raw material’s ashes; deproteinization, where there is a 

reduction of shrimp wastes’ protein nitrogen; and deodorization, for the reduction of 

shrimp’s characteristic odor. Chitin was dried in a tray drier until reaching commercial 

moisture content (5.0–6.0%, wet basis). 

 

 

 

 

2.3.1 Isolation of Chitin 

 

 

Isolation of chitin from crawfish shell wastes involves four traditional steps: 

demineralization, deproteinization, decolorization, and deacetylation. However, the 

isolation of chitin specifically consists of only two steps: demineralization and 

deproteinization, which involves the dissolution of calcium carbonate with 1.0 N HCl 

and the removal of proteins with 3% NaOH, respectively. 
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Figure 2.4 Isolation of chitin. 

 

 

 

 

 

 

 

 

 

 

 

From Shrimp Shells Waste  

Step 1 : Demineralization (removing calcium carbonate,phosphate) 
Step 2 : Deproteinization 

Step 3 : Decolorization (removing mainly astaxanthin,pigment) 
 

From Chitin : 

Step 1 : Deacetylation (removing acetyl groups from polymer) 
 

 

We get Chitosan 
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Figure 2.5 Traditional Crawfish Chitosan Production Flow Scheme (Modified from No 

and Meyers, 1995) 
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2.3.2 Deproteinization 

 

 

Chitin occurs naturally in association with protein (chitinoprotein). Some of this 

protein can be extracted by mild methods, but other portion is not readily extracted, 

suggesting strong covalent bonding to chitin (Attwood and Zola, 1967). With regards to 

chemical structure, protein is bound by covalent bonds to the chitin through aspartyl or 

histidyl residues, or both, thus forming stable complexes such as glycoproteins. 

Crustacean shell waste is usually grounded and treated with dilute sodium hydroxide 

solution (1-10%) at elevated temperature (65-100ºC) to dissolve the proteins present. 

Reaction time usually ranges from 0.5 to 12 hr depending on preparation methods. 

Prolonged alkaline treatment under severe conditions causes depolymerization and 

deacetylation. To obtain uniformity in reaction, it is recommended to use relatively high 

ratios of solid to alkali solution of 1:10 or 1:15-20 with proper agitation because a 

minimum ratio of 1:4 (w/v) of shell weight to potassium hydroxide (KOH) solution, had 

only a minor effect on the deproteinization efficiency of shells (No and Meyers, 1995).  

 

 

 

 

2.3.3 Demineralization  

 

 

The conventional demineralization process of crustacean waste is costly and 

causes environmental problems. Hydrochloric acid is the most commonly used chemical 

in the demineralization of crustacean waste. The use of this strong acid are to harm the 

physiochemical properties of chitin, results in a harmful effluent wastewater, and 

increases the cost of chitin purification process. Percot et al. reported that using 

hydrochloric acid (HCl) for the demineralization of chitin results in detrimental effects 

on the molecular weight and the degree of acetylation that negatively affects the intrinsic 

properties of the purified chitin. The authors elaborated on the importance of the 
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optimization of the extraction process parameters (pH, time, temperature and solids to 

acid ratio) in order to minimize chitin degradation and bring the impurity levels down to 

the satisfactory level for specific applications. Therefore, a less harmful cheaper 

demineralization process is needed. 

 

 

The current study proposes the use of a novel demineralization process in which 

organic acids (lactic and acetic) are used. Using organic acids such as lactic and/or acetic 

acids for the demineralization process is a Am. J. (2007) promising idea, since organic 

acids can be produced from low cost biomass such as cheese whey, are less harmful to 

the environment, can preserve the characteristics of the purified chitin, and the resulting 

organic salts from the demineralization process can be used as an environmentally 

friendly deicing/ anti-icing agents and/or as preservatives.  

 

 

 

 

2.3.4 Decolorization  

 

 

Acid and alkali treatments alone produce a colored chitin product. For 

commercial acceptability, the chitin produced from crustacean sources, needs to be 

decolorized which is a process to remove astaxanthins and pigments or bleached to yield 

cream white chitin powder (No et al., 1989). The pigment in the crustacean shells forms 

complexes with chitin. In earlier research studies, one 4-keto-and three 4, 4’-diketo-

ßcarotene derivatives was firmly bound to the exoskeletal chitin of red kelp crab. The 

level of association of chitin and pigments varies from species to species among 

crustacean. Several workers have used reagents to eliminate pigments from crustacean 

exoskeleton, usually crab.  

 

 



24 
 

However, with crawfish shell the reagents alone do not seem as effective as the 

procedure developed currently. This suggests that carotenoids, are more strongly bound 

to the crawfish shell matrix than are those reported from other crustacea (No et al., 

1989). Hence, the stronger the bond the more harsh treatment is required to prepare a 

white colored chitin. During the process of decoloration, it should be noted that the 

chemical used should not affect the physicochemical or functional properties of chitin 

and chitosan. No et al. (1989) was able to prepare a near white colored crawfish chitin 

by extraction with acetone and dried for 2 hr at ambient temperature, followed by 

bleaching with 0.315 % (v/v) sodium hypochloride solution (containing 5.25% available 

chlorine) for 5 min with a solid to solvent ratio of 1:10 (w/v), based on dry shell. But, 

the color of chitin products varied from cream white to intermediate pink color (No et 

al., 1989). Without prior acetone extraction, bleaching for more than 1 hr was needed to 

obtain a commercially acceptable white product. 

 

 

 

 

2.3.5 Deacetylation 

 

 

The major procedure for obtaining chitosan is based on the alkaline deacetylation 

of chitin with strong alkaline solution. Deacetylation is the process to convert chitin to 

chitosan by removal of acetyl group. It is generally achieved by treatment with 

concentrated sodium or potassium hydroxide solution (40-50%) usually at 100ºC or 

higher for 30 min or longer to remove some or all of the acetyl groups from the polymer 

(No and Meyers, 1989). The N-acetyl groups cannot be removed by acidic reagents 

without hydrolysis of the polysaccharide, thus, alkaline methods must be employed for 

N-deacetylation (Muzzarelli, 1977). 

 

 


