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ABSTRACT 
 
 
 
 

This thesis is about the application of Artificial Neural Network (ANN) and 

Partial Least Square (PLS) on the chemical process plant. At the present time, the 

process and development in chemical plants are getting more complex and hard to 

measure. Therefore, the needs for a system that can help to supervise and control the 

process in the plant have to be accomplished in order to achieve higher performance 

and quality. As the emergence of Artificial Neural Network and Partial Least Square 

application nowadays to solve problem in various fields had given a great significant 

effect such as soft-sensor, lack of on-line measurement, and incorporate the safety 

issues while maintaining practicality and economic feasibility, both of the system are 

reliable to be adapted in the chemical plant. Furthermore, this thesis will be focusing 

more on the application of Artificial Neural Network and Partial Least Square as a 

estimation scheme in the chemical plant. Estimation by using Artificial Neural 

Network (ANN) and Partial Least Square (PLS) is popular in the present time as a 

mechanism to estimate the variables in the chemical plant. By implementing such 

system, the performance and quality of the plant will increased. For this thesis, the 

vinyl acetate monomer plant had been chosen as the case study to provide the 

necessary data and information to run the research. Vinyl acetate monomer process 

will provides a dependable source of data and an appropriate test for alternative 

control and optimization strategies for continuous chemical processes. 
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ABSTRAK 
 
 
 
 

Tesis ini adalah berkenaan aplikasi Rangkaian Saraf Buatan (Artificial Neural 

Network) dan Partial Least Square (PLS) pada kilang pemprosesan kimia. Pada 

masa kini, proses dan pembangunan dalam kilang kimia telah menjadi semakin 

kompleks dan susah untuk diukur. Oleh itu, satu sistem yang dapat menyelia dan 

mengawal proses di kilang perlu diadakan untuk mencapai prestasi dan kualiti yang 

lebih baik. Peningkatan penggunaan Rangkaian Saraf Buatan dan Partial Least 

Square (PLS) untuk menyelesaikan masalah di pelbagai lapangan di zaman ini telah 

memberi kesan yang positif seperti yg dilakukan pada pengesan lembut, kelemahan 

dalam pengukuran secara ‘on-line’, dan penggabungan isu keselamatan di mana 

kebolehsanaan ekonomi dan praktikalnya dikekalkan,  yang mana kedua-dua sistem 

ini sangat sesuai untuk diadaptasikan di dalam kilang kimia. Selain itu, tesis ini juga 

akan lebih memfokuskan pengaplikasian Rangkaian Saraf Buatan dan Partial Least 

Square (PLS) sebagai satu skim anggaran di dalam kilang kimia. Penganggaran 

menggunakan Rangkain Saraf Buatan (Artificial Neural Network) dan Partial Least 

Square (PLS) adalah sangat popular pada masa sekarang sebagai satu mekanisme 

untuk mengukur pembolehubah-pemboleubah yg terdapat di dalam kilang kimia. 

Dengan pengaplikasian sistem ini, tahap produktiviti dan prestasi di kilang akan 

bertambah. Dalam tesis ini, kilang Vinyl Acetate Monomer telah dijadikan sebagai 

rujukan untuk mendapatkan maklumat dan data yang diperlukan untuk menjalankan 

kajian. Proses asetat vinil akan memberikan sumber data yang tepat dan merupakan 

ujikaji yang sesuai untuk mengadakan kajian berkenaan pengawalan alternatif dan 

strategi pengoptimumtasi untuk proses kimia yang berterusan.   
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CHAPTER 1 

 
 
 
 

INTRODUCTION 
 
 
 
 
1.1  Introduction 
 
 

Stringent product specification, stiff competition among manufacturers and 

increasingly strict regulation from local authority in the face of full capacity 

operation with zero accidents and emission have forced many existing plants to 

revamp their existing control system. More advanced control schemes have been 

implemented. 

 
 

  Despite these successful implementations, many issues remained as 

hindrances to efficient process control. For example, the success in the 

implementation of any optimization scheme requires adequate performance of all 

control loops.  This is however, sometimes hampered by two issues. The first is 

related to inadequacy of conventional controller used since chemical process 

dynamics are typically non-linear whilst the controllers are based on linear theory. 

The second issue is associated with process measurement, the accuracy of which is a 

prerequisite to successful process control. 

 
 
 Since measurement devices are not one of the main factors in achieving 

effective process control, selection of appropriate sensors and their location should 

be properly consider. However, not all variables in a process plant are readily to be 

measured on-line. Product quality variables such as chemical concentration and their 

composition are rarely available on-line, and are usually obtained by laboratory 
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sample analysis. This is usually performed at long intervals and is therefore not 

practical to be used for process control. 

 
 
 Over the years, various on-line measurement devices have been developed. 

However, many of these on-line devices are still suffering from problems due to the 

availability, reliability, complexity and large delays.  For some quality variables, 

existing analytical tools used are simply unavailable for on-line applications. Hence, 

the development of inferential estimation and control has been advocated as one of 

the alternative solution to deal with measurement difficulties.          

 
 
1.1.1 Background of study 

 
 

For several years, researchers in plant wide design, optimization and control 

areas have expressed interest in getting realistic test problems for assessing new 

technologies. The most frequently studied test problem so far is the Tennessee 

Eastman Challenge (TEC) process which has been utilized by many different 

researchers in studies ranging from plant wide control to optimization to fault 

detection.  

 
 
In 1998, an additional model of a large, industrially relevant system, a vinyl 

acetate monomer (VAC) manufacturing process, was published by Luyben and 

Tyreus. The VAC process contains several standard unit operations that are typical of 

many chemical plants. Both gas and liquid recycle streams are present as well as 

process-to-process heat integration.  

 
 
Luyben and Tyreus presented a plant wide control test problem based on the 

VAC process. The VAC process was modeled in TMODS, which is a proprietary 

DuPont in-house simulation environment, and thus, it is not available for public use. 

This research presents a first-principle nonlinear dynamic model for the VAC process 

as well as associated software, based on the design details provided in references.  
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The model of the VAC process is developed in MATLAB, and both the 

steady state and dynamic behavior of the MATLAB model are designed to be close 

to the TMODS model. Since the MATLAB model does not depend on commercial 

simulation software and the source code is open to public, the model can be modified 

for use in a wide variety of process control research areas. To obtain a reasonable 

simulation speed, compiled model written in C is also available to researchers. 

Details on how the various programs can be obtained are given at the end of this 

paper.  

 
 
In this research, design details of the MATLAB model are presented. For 

each unit, design assumptions, physical data, and modeling formulations are 

discussed. There are some differences between the TMODS model and the 

MATLAB model, and these differences together with the reasons for them are 

pointed out. Steady state values of the manipulated variables and major 

measurements in the base operation are given. Production objectives, process 

constraints, and process variability are summarized based on the earlier publication. 

All of the physical property, kinetic data, and process flow sheet information in the 

MATLAB model come from sources in the open literature. 

 
 
 
 
1.2  Problem Statement 
 
 

The advancement of technology brings new challenges to the chemical 

industry especially in petrochemical sector. Due to the global nature of the chemical 

market, any addition of new industry installation throughout the world cause 

challenges to the existing ones. Additionally, the rapid growth of chemical industry 

worldwide influences the dynamics of the chemical business. Product quality 

specifications have been increasingly more difficult to satisfy. The need for reduced 

variability products has been widespread. Apart from higher demand or quality, the 

environment and safety regulation imposed on this sector are becoming more 

stringent. Due to this reason, great emphasis should be put on the method of process 

control system. It should be incorporate these safety issues while maintaining 

practicality and economic feasibility. The objective of the process control is to 
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estimate vinyl acetate monomer concentration by develop estimator using neural 

network and partial least square in order to achieve the operating requirements of the 

plant in an optimal manner.  

 
 
Lack of on-line measurement is an another issue. Efficient Vinyl Acetate 

Monomer Process is often hampered by the difficulty in measuring some of the key 

component because of the lack o robust on-line sensors. The inability to provide on-

line measurement of the process variable such as product concentration has proved to 

be a significant obstacle for the implementation of advanced control and 

optimizations solution. The availability of such measurement is important for 

establishing optimum operation and minimizing product quality variability. Although 

off-line measurement via laboratory analysis can be used to provide delayed 

measurement but sometimes a little bit too late to be useful especially for process 

control. This is perhaps the main motivation behind the use of various forms of soft-

sensor technology. 

 
 
Soft-sensor is founded on the assumption that data and theoretical 

information can be use to formulate a model that can represent the measurement of 

difficult to measure variables. Synonymous to method based on-line estimation; soft-

sensors are useful in the process since several key variables such as product, input 

and output concentration in fact difficult to measure. Several techniques have been 

reported but much works are still needed especially in making use of available 

control technology which has somewhat reached certain level of maturity when 

dealing with continuous chemical processes.   

 
 
 
 
1.3  Objective 
 
 

The aim of this study is to develop inferential estimator using Neural 

Network (NN) & Partial Least Square (PLS) in order to measure the concentration of  

Vinyl Acetate Monomer Process .  
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1.4  Scope 
 
 
To achieve the above objectives, the following research scopes had been identified:  

 
i) To simulate Vinyl Acetate Monomer Process as a case study. 

 
ii)  Analysis of dynamic response of the process. 

 

iii)  To develop base-case control for Vinyl Acetate Monomer Process 

 

iv) To develop of inferential estimator using Partial Least Square (PLS). 

 

v) To develop inferential estimation using Neural Network (NN). 

 

vi) Model Testing 
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CHAPTER 2 
 
 
 
 

LITERATURE REVIEW 
 
 
 
 
2.1  Artificial Neural Networks (ANNs) Background 

 
 

Early works in the field of neural networks centred on modelling the 

behaviour of neurons found in the human brain. Engineering systems are 

considerably less complex than the brain, hence from an engineering viewpoint ANN 

can be viewed as nonlinear empirical models that are especially useful in 

representing input-output data, making predictions in time, classifying data, and 

recognising patterns. 

 
 
Despite the above mentioned capabilities, ANNs are not a solution for all 

modelling problems. Therefore, it is necessary to understand the advantages and 

disadvantages of ANN in contrast with first principle models or other empirical 

models to determine their applicability for a particular problem. ANN has several 

advantages as described by Baughman and Liu (1995): 

 
 
i)  Distribution of information over a field of nodes. This feature allows greater 

flexibility and robustness of ANN because a slight error or failure in certain 

sections of the network will not affect the entire system. 

ii)  Learning ability of ANN. ANN is able to adjust its parameters in order to 

adapt itself to changes in the surrounding systems by using an error-

correction training algorithm. 

iii) Extensive knowledge indexing. ANN is also able to store a large amount of 

information and access it easily when needed. Knowledge is kept in the 
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network through the connection between nodes and the weights of every 

connection. 

iv) Imitation of the human learning process. The network can be trained 

iteratively, and by tuning the strengths of the parameters based on observed 

results. The network can develop its own knowledge base and determine 

cause and effect relations after repeated training and adjustments. 

v) Potential for on-line use. Once trained, ANN can yield results from a given 

input relatively quickly, which is a desired feature for the on-line use. 

 
 

Some of the limitation of ANN summarized by Baughman and Liu (1995): 

 

i)  Long training time. Training time for ANN can take too much time especially 

for large networks. 

ii) Requires large amount of data. ANN needs large amount of input-output data 

for a better generalization. Therefore, if there is only a small amount of input-

output data available, ANN may not be suitable for modeling the system. 

iii) No guarantee to optimal results and reliability. Although the network contains 

parameters that can be tuned by the training algorithm, there is no guarantee 

that the resulting model is perfect for the system. The tuned model may be 

accurate in one region but inaccurate in another 

iv) Difficulty in selecting good sets of input variables. Selection of input 

variables is difficult because too many input variables or wrongly selected 

input variables will cause over fitting and poor generalization. Too little or 

inappropriate input variables will lead to poor mapping of the system. 

 
 
2.1.1  Neuron (Node) and Neural Networks 

 
 

Figure 2.1 shows the basic structure of a single processing unit in an ANN 

which will be referred to as a node in this work and is a simplified mimic of a single 

neuron in the human brain. A node receives one or more input signals, ui, which may 

come from other nodes or from some other source. Each input is weighted according 

to the value wi,j that is called weight. These weights are similar to the synaptic 

strength between two connected neurons in the human brain. The weighted signals to 
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the node are summed and the resulting signal, called the activation, h, is sent to the 

transfer function, g, which can be any type of mathematical function, but is usually 

taken to be a simple bounded differentiable function such as the sigmoid. The 

resulting output of the node yi, may then be sent to one or more nodes as an input or 

taken as the output of a ANN model. 

 
 

 

Figure 2.1: Structure of single processing node (Basheer and Hajmeer, 2000) 

 
 

Neural network consists of interconnected neurons arranged into several 

layers. A group of nodes called the input layer receives a signal from some external 

source. In general, this input layer dos not process signal unless it needs scaling. 

Another group of nodes, called the output layer, return signals to the external 

environment. The remaining nodes in the network are called hidden nodes because 

they do not receive any signals from or send a signal to an external source or 

location. The hidden nodes may be grouped into one or more hidden layers 

depending on the architecture of the network. Each of the connection between two 

nodes has a weight associated with it. Figure 2.2 shows a network with fully 

connected layers. The connections are in forward direction and are known as a 

multilayer feed forward neural network. 
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Figure 2.2: Structure of a layered neural network (Basheer and Hajmeer, 2000) 

 
 

In the principle, connections between nodes can be in any direction for nodes 

in nonadjacent layers or within the same layer. Feedback connections from a node in 

one layer to a node in a previous layer can also be made. When feedback connections are 

involved, the network is referred to as recurrent networks. Due to the complexity of the 

network, analytical method of calculating the values of the weights for a particular 

network to represent process behaviour is not discouraging. Instead the network must be 

trained on a set of data (called the training set) collected from the process to be 

modelled.  

 
 
Training is a procedure of estimating the values of the weights and establishing 

the network structure, and the algorithm used to do this is called a “learning” algorithm. 

The learning algorithm is essentially an optimisation algorithm. Once a network is 

trained, it can be conveniently used as a model to represent the system for various 

different purposes.  

 
 
A key difficulty with optimisation for neural network problems is that multiple 

minima occur especially in large networks. Since most training procedures used for 

neural networks typically find local minima starting from randomly selected guesses for 

the parameters, it should be expected that local minima of varying quality will be found. 

While use of a global optimisation procedure, such as genetic algorithms, branch and 

bound, or simulated annealing might thus appear to be called for, the training time for 

such algorithms oftentimes expands to an unacceptable degree.  
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This practically limits their application. Regardless of what training algorithm is 

used to calculate the values of the weights, all of the training methods go through the 

same general steps. First, the available data is divided into a training and test set(s). The 

following procedure is then used to determine the values of weights of the network: 

 
 
i) For a given ANN architecture, the values of the weights in the network are 

initialized as small random numbers; 

ii) The inputs of the training set are sent to the network and the resulting outputs 

are calculated; 

iii) Some measure (an objective function) of the error between the outputs of the 

network and the known correct (target) values are calculated; 

iv) The gradient of the objective function with respect to each of the individual 

weights are calculated; 

v) The weights are changed according to the optimization search direction and 

step 

  length determined by the optimisation code; 

vi) The procedure returns to step 2; 

vi) The iteration terminates when the value of the objective function calculated 

using the data in the test set starts to increase. 

 
 
As mentioned above, the available data is divided into the training and test 

set. The purpose of partitioning the available data into the training and test set is to 

evaluate how well the network generalises (predicts) to domains that were not 

included in the training set. For non-trivial problems it is often difficult to collect all 

of the possible input-output patterns needed to span the input-output space for a 

particular behaviour or process to be modelled.  

 
 
Therefore, the network should be trained with some subset of all the possible 

input-output patterns. In addition, the training set must also be representative of the 

domain of interest. If not, the net may not predict well for similar data, and may 

predict poorly for completely novel data (extrapolate). The test set is used to evaluate 

how well the neural network generalises using the weights computed during the 

training exercise. Since it is the ability of the network to predict ‘unseen’ data serves 
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as a measure of model capability, the performance on the test set is used to select the 

optimal set of weights as well as network topology. 

 
 
2.1.2  Feedforward Neural Networks 
 
 

Two layer (sometimes called three layers) feedforward ANN are commonly 

encountered models in the literature. Computation nodes are arranged in layers and 

information feeds forward from layer to layer via weighted connections as illustrated 

in the figure 2.3. Here, circle represent computation nodes (transfer functions), and 

lines represent weighted connections. The basis thresholding nodes are represented 

by squares. 

 
 

 

Figure 2.3:  Graph of the information flow in a feedforward neural network 

(Demuth and Beale, 2000) 

 
Mathematically, the typical feedforward network can be expressed as  

 

( ) 






 ++=
oo

bbBuCy hihi ϕϕ                 (2.1) 

 
where iy  is the output vector corresponding to input vector iu ,C is the connection 

matrix (matrix of weights) represented by arcs (the lines between two nodes) from 
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the hidden layer to the output layer, B is the connection matrix from the input layer to 

the hidden layer, andhb  and
o

b  are the bias vector for the hidden and output layer, 

respectively. ( )⋅hϕ and ( )⋅
o

ϕ  are the vector valued functions corresponding to the 

activation (transfer) functions of the nodes in the hidden and output layers, 

respectively. Thus, feedforward neural network models have the general structure of  

 
( )ufyi =                   (2.2) 

 
where f ( )⋅  is a nonlinear mapping. Hence feedforward neural networks are 

structurally similar to nonlinear regression models, and Eq.(2.2) represents a steady 

state process. To use models for identification of dynamic systems or prediction of 

time series, a vector comprised of a moving window of past input values (delayed 

coordinates) must be introduced as inputs to the net. This procedure yields a model 

analogous to a nonlinear finite impulse response model where 

 

ti yy =  and [ ]mttti uuuu −−= ,...,, 1  or [ ]( )mtttt uuuy −−= ,...,, 1             (2.3) 

 
The lengths of the moving window must be long enough to capture the 

system dynamics for each variable in practice. In practice, the duration of the data 

windows are determined by trial and error (cross validation) and each individual 

input and output variable might have a separate data window for optimal 

performance.  

 
 
Backpropagation learning algorithm is one of the earliest and the most 

common method for training multilayer feedforward neural networks. Development 

of this learning algorithm was one of the main reasons for renewed interest in this 

area and this learning rule has become central to many current works on learning in 

ANN. It is used to train nonlinear, multilayered networks to successfully solve 

difficult and diverse problems.  

 
 
Standard backpropagation is a gradient descent algorithm in which the 

network weights are moved along the negative of the gradient of the performance 

function. The term backpropagation refers to the manner in which the gradient is 
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computed for nonlinear multilayer networks. There are a number of variations on the 

basic algorithm that are based on other standard optimisation techniques. These 

techniques will be discussed below (Demuth and Beale, 2000): 

 
i) Gradient Descent with Momentum Backpropagation Known as traingdm in 

MATLAB Toolbox. This batch algorithm for feedforward networks provides 

faster convergence. Momentum allows a network to respond not only to the 

local gradient, but also to recent trends in the error surface. Acting like a low-

pass filter, momentum allows the network to ignore small features in the error 

surface. Without momentum a network may get stuck in a shallow local 

minimum. With momentum a network can slide through such a minimum. 

ii) Gradient Descent with Momentum and Adaptive Learning Backpropagation 

is also known as traingdx in MATLAB Toolbox. The performance of the 

steepest descent algorithm can be improved if we allow the learning rate to 

change during the training process. An adaptive learning rate will attempt to 

keep the learning step sizes as large as possible while keeping learning stable. 

The learning rate is made responsive to the complexity of the local error 

surface.  

iii)  Levenberg-Marquardt Backpropagation is known as trainlm in MATLAB 

Toolbox, actually a hybrid of the Gauss-Newton Nonlinear Regression 

method and Steepest Gradient Descent method. Gauss- Newton method is 

slow converging while Steepest Gradient Descent method suffered local 

minimum problem. Lavenberg-Marquardt method was designed in such a 

way that it can choose wisely the direction by crossing between these two 

methods. This algorithm appears to be the fastest method for training 

moderatesized feedforward neural networks (up to several hundred weights).  

 
 

These algorithms are used in this research to train feedforward neural 

networks and their performances in term of mean squared error will be compared. 
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2.1.3  Recurrent Neural Networks 

 
 

Recurrent neural network (RNN) have architectures similar to standard 

feedforward neural networks with layers of nodes connected via weighed 

feedforward connections, but also include time delayed feedback or recurrent 

connections in the network architecture as shown in  figure 2.4. 

 
 

  

Figure 2.4: Representation of internally/externally recurrent neural networks 

(Elman,1990) 

 
 Figure 2.4 shows a representation of internally/externally recurrent neural 

networks. Circles represent computation nodes, lines represent weighted connections, 

1−z  indicates time delay. For clarity not all recurrent connection are shown and bias 

nodes are omitted. Two individual variations of RNN architectures are commonly 

employed. The first is called internally recurrent network (IRN) that is characterized 

by time delayed feedback connections from the output of hidden nodes to its input. 

This feedback path allows IRN to learn to recognize and generate temporal patterns, 

as well as spatial patterns. The remainder of the network comprises standard 

feedforward architecture. This structure also known as an Elman network (Elman, 

1990). Externally recurrent networks (ERN), on the other hand, contain time delayed 

feedback connections from the output layer to the hidden layer. 
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 Although the ERN and IRN can exhibit comparable modeling performance, 

they have different features that make one more desirable that the other for a 

particular process. Just like the conventional linear state space model, the IRN does 

not have any structural limit on the number of model states because the number of 

hidden nodes can be freely varied. The ERN, however, can only have the same 

number of states as model outputs because the outputs are the states. The IRN thus 

tends to be more flexible in modeling. 

 
 
2.1.4 Neural Learning 
 
 

In neural network, learning refers to the method of modifying the weights of 

connections between the nodes of a specific network. The training session of the 

neural network uses the error in the output values to update the weights connecting 

layers, until the accuracy is within the tolerance level. The training time for a feed 

forward neural networks using one of the variations of backpropagation can be 

substantial. For a simple two-input two-output system with 50 training samples, 100 

000 training iterations are common. For large-scale systems, memory and 

computation time required for training a neural network can exceed hardware limits. 

This has been a bottleneck in developing fault diagnosis algorithms for industrial 

applications. Like other data-driven methods, the performance of neural networks is 

determined by the available data. It is highly possible that neural networks will 

generate unpredictable output when presented with an input out of the range of the 

training data. This suggests that the neural networks need to be retrained when there 

is a slight change of the normal operation conditions.  

 
 
2.1.5  Applications of Artificial Neural Network 
 
 

The utility of artificial neural network models lies in the fact that they can be 

used to infer a function from observations. This is particularly useful in applications 

where the complexity of the data or task makes the design of such a function by hand 

impractical. The tasks to which artificial neural networks are applied tend to fall 

within the following broad categories: 
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i) Function approximation, or regression analysis, including time series 

prediction and modeling.  

ii)  Classification, including pattern and sequence recognition, novelty detection 

and sequential decision making.  

iii)  Data processing, including filtering, clustering, blind signal separation and 

compression.  

Application areas include system identification and control (vehicle control, 

process control), game-playing and decision making (backgammon, chess, racing), 

pattern recognition (radar systems, face identification, object recognition and more), 

sequence recognition (gesture, speech, handwritten text recognition), medical 

diagnosis, financial applications, data mining (or knowledge discovery in databases, 

"KDD"), visualization and e-mail spam filtering. 

 

  

2.2 Partial Least Square 

 
 

Partial Least Squares (PLS) is a wide class of methods for modeling relations 

between sets of observed variables by means of latent variables. It comprises of 

regression and classification tasks as well as dimension reduction techniques and 

modeling tools. The underlying assumption of all PLS methods are that the observed 

data is generated by a system or process which is driven by a small number of latent 

(not directly observed or measured) variables. Projections of the observed data to its 

latent structure by means of PLS were developed by Herman Wold and coworkers. 

 
 
 PLS has received a great amount of attention in the field of chemometrics. 

The algorithm has become a standard tool for processing a wide spectrum of 

chemical data problems. The success of PLS in chemometrics resulted in a lot of 

applications in other scientific areas including bioinformatics, food research, 

medicine, pharmacology, social sciences, physiology–to name but a few. 

 
  

http://en.wikipedia.org/wiki/Function_approximation
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Time_series_prediction
http://en.wikipedia.org/wiki/Time_series_prediction
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Blind_signal_separation
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/E-mail_spam
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This chapter introduces the main concepts of PLS and provides an overview 

of its application to different data analysis problems. In its general form PLS creates 

orthogonal score vectors (also called latent vectors or components) by maximising 

the covariance between different sets of variables. PLS dealing with two blocks of 

variables is considered in this chapter, although the PLS extensions to model 

relations among a higher number of sets exist. PLS is similar to Canonical 

Correlation Analysis (CCA) where latent vectors with maximal correlation are 

extracted. There are different PLS techniques to extract latent vectors, and each of 

them gives rise to a variant of PLS. PLS can be naturally extended to regression 

problems.  

 
 
The predictor and predicted (response) variables are each considered as a 

block of variables. PLS then extracts the score vectors which serve as a new predictor 

representation and regresses the response variables on these new predictors. The 

natural asymmetry between predictor and response variables is reflected in the way in 

which score vectors are computed. This variant is known under the names of PLS1 

(one response variable) and PLS2 (at least two response variables).  

 
 
PLS regression used to be overlooked by statisticians and is still considered 

rather an algorithm than a rigorous statistical model. Yet within the last years, 

interest in the statistical properties of PLS has risen. PLS has been related to other 

regression methods like Principal Component Regression (PCR) and Ridge 

Regression (RR) and all these methods can be cast under a unifying approach called 

continuum regression.  

 
 
The effectiveness of PLS has been studied theoretically in terms of its 

variance and its shrinkage properties. The performance of PLS is investigated in 

several simulation studies. PLS can also be applied to classification problems by 

encoding the class membership in an appropriate indicator matrix. There is a close 

connection of PLS for classification to Fisher Discriminant Analysis (FDA). PLS can 

be applied as a discrimination tool and dimension reduction method–similar to 

Principal Component Analysis (PCA). After relevant latent vectors are extracted, an 
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appropriate classifier can be applied. The combination of PLS with Support Vector 

Machines (SVM) has been studied in.  

 
 
Finally, the powerful machinery of kernel-based learning can be applied to 

PLS. Kernel methods are an elegant way of extending linear data analysis tools 

to nonlinear problems. 

 
 
2.2.1 Structure of PLS model 
 
 

A PLS model consists of outer relations and an inner relation.  The outer 

relations are matrices of independent and dependent variables, presented by X and Y, 

respectively.  The input X is projected into the latent space by the input-loading 

factor, P to obtain the input scores, T.  Similarly, the output scores, U is obtained by 

projecting the output Y into latent space through the output-loading factor, Q.  These 

relations are in matrix form and are written in Equation (2.4) and (2.5). 

 

 Outer relations:  X = TPT + Ef                                                            (2.4) 

 

    Y = UQT + Ff                                                           (2.5) 

 

The matrices Ef and Ff are residuals of X and Y, respectively.  X and Y are 

linked with a linear regression called inner relation, B to capture the relationship 

between the inputs and output latent scores.  The notation of the inner relation is 

written in Equation (2.6). 

 

  Inner relation:  U = TB                                                                     (2.6) 

 

The procedure of determining the scores and loadings vector is carried out 

sequentially from the first factor to the fth factor.  Scores and loading vectors for 

each factor is calculated from the previous residual matrices as shown in Equation 

(2.7) and (2.8), where initially E0 = X and F0 = Y.  

 

 For X,    Ef = Ef-1 – Tf Pf
T                                                       (2.7) 
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 For Y,    Ff = Ff-1 – Uf Qf
T                                                      (2.8) 

 

Calculation of the inner and outer relations is performed until the last factor, f 

or when residual matrices are below certain threshold.  The algorithm of the PLS 

model is attached in Table 2.1, while Figure 2.5 illustrated the PLS model 

schematically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Schematic of the PLS model (Adebiyi and Corripio, 2003) 
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Table 2.1: Algorithm of PLS model (Geladi and Kowalski, 1986) 

 
 

 
 
 
 

Step Summary of Steps  

0 Mean center and scale X and Y  

1 Set the output scores u equal to Y  

2 Compute input weights w by 

regressing X uu

Xu
w

T

T
T

⋅
⋅=  

3 Normalize w to unit length w = w/║w║ 

4 Calculate the input scores t 

ww

wX
t

T ⋅
⋅=  

5 Compute output loadings q  

tt

Yt
q

T

T
T

⋅
⋅=  

6 Normalize q to unit length q = q/║q║ 

7 Calculate new output scores u 

qq

qY
u

T ⋅
⋅=  

8 Check convergence on u 

If yes, go to step 9, else go to step 2 

 

9 Calculate the input loadings p by 

regressing X on t tt

Xt
p

T

T
T

⋅
⋅=  

10 Compute inner model regression 

coefficient b tt

ut
b

T

T

⋅
⋅=  

11 Calculate input residual matrix TptXE ⋅−= and TqtbYF ×⋅−=  

12 If additional PLS dimensions are 

necessary, replace X and Y by E and 

F, respectively and repeat steps 1 to 

12 
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2.2.2 Model Development 
 
 

In this section, development of the inferential estimator based on PLS model 

is described.  The procedure of the PLS model development is as follows: 

 

i) Measurable secondary measurements were selected as input variables of the 

model 

ii)  Several sets of data were prepared for training and validation  

iii)  Data sets were pre-processed using appropriate method 

iv) The model was trained using sets of data generated. 

v) Performance of the model was investigated. When the performance was not 

satisfactory, the dimension used in the model was adjusted until the lowest 

MSE was achieved. 

vi) The final model was finally formulated using adjusted dimension and applied 

for off-line estimation 

The procedure shown above can be illustrated in Figure 2.6 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                               
                                                       No 

                    

                Yes 
 
 
 

Figure 2.6: Procedure of formulating PLS-based estimator 

Model Input Selection 

Data Generation 

Data Pre-processing 

PLS-based Estimator 

Model Training 

Performance Evaluation 

Adjust Number of 
Dimension 
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2.2.3  Data Pre-processing   

 
 

In order to ensure the model consistency, data pre-processing was 

implemented in this estimator model.  The implementation of data pre-processing 

also prevents the latent variable from being biased towards variables with larger 

magnitude.  In this work, data pre-processing step can be divided into two parts, i.e., 

mean-centering and scaling of variables.  The data was tailored in mean-centered 

form prior to scaling.  Generally, there are three ways to treat the variables (Geladi 

and Kowalski, 1986): 

 

i) No scaling is needed when all variables in a block are measured in the same 

units 

ii)  Variance scaling is utilized as the variables are measured in different units 

iii)  Assigning smaller weights to variables with less importance as well as 

influence on the model 

 

For convenience and simplification, variance scaling was selected among the 

above method. Mean and variance scaling can be carried out using the following 

equation: 

 

xm xxx σ/)(
−

−=                                                                                           (2.9) 

 

Where 

 x   represents the original data; 

  mx  represents the mean-scaled data; 

  
_

x  represents the mean value; 

  xσ represents the standard deviation. 
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2.2.4  Model Training and Validation 

 
 

In general, the most important and easiest way to evaluate the performance of 

a model is to measure the estimation accuracy.  The estimation accuracy can be 

defined as the different between the actual and estimated values.  Some of the 

approaches of measuring the accuracy is sum square error (SSE), root mean square 

error (RMSE) and mean absolute percentage error (MAPE).  But the most frequently 

used is the mean square error of prediction (MSE) (Zhang and Lennox, 2004).  The 

calculation of MSE is shown in Equation (2.10). 

 

   2

1

))(
1
∑

=

−=
N

i
ii xx

N
MSE

)
                                                                            (2.10) 

 

Where 

  x     is the measurement of the product composition; 

  x̂     is its estimation value; 

  N    is the number of measurement. 

 

In addition, explained prediction variance (EPV) as shown in Equation (2-11) 

that describes the statistical properties of the estimation model was also computed.  

EPV of X indicates how much of the X block is used in the estimation model and 

EPV of Y indicates how far the Y block has been estimated. 
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Where 

  x     is the measurement of the product composition; 

  x     is the mean value of measurement; 

  x̂     is its estimation value; 

  N    is the number of measurement. 
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CHAPTER 3 
 
 
 
 

METHODOLOGY 
 
 
 
 
3.1  Introduction 
 
 

This chapter focuses on the achievement of the conceptual study, simulation 

work, analyzing and completion of the project. The detailed experimental procedure 

will be discussed throughout this chapter. There are seven main stages in achieving 

estimation of vinyl acetate monomer concentration.  

 
 
 
 
 
3.2  Research Stages 
 
 
 The objective of this work was to develop and implement of process 

estimator using Neural Network (NN) and Partial Least Square (PLS) scheme for 

vinyl acetate monomer process. To achieve this target, the research methodologies 

were divided into several main phases. These were data preparation, NN model 

development, PLS model development, and finally process estimation. The steps of 

these phases are summarized in the flowchart as shown in Figure 3.1.  
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