
Metamodelling Architecture for Modelling Domains

with Different Mathematical Structure

Vitaliy Mezhuyev
1

1Faculty of Computer Systems and Software Engineering
University Malaysia Pahang

Gambang, Malaysia

e-mail: mejuev@ukr.net

Abstract. The new metamodelling approach for domain specific modelling is

proposed in the paper. The additional level of the metamodelling architecture is
introduced, which gives the possibility of metamodels development in the dif-

ferent mathematical semantics. This allows to take into account the mathemati-

cal structure of modelled domains, and to use the mathematical operations for

development of new effective methods for solving domain specific tasks. The

applicability of the approach for development of metamodels for modelling dif-
ferent domains is shown.

Keywords. Domain specific modelling, metamodel, metamodelling architec-

ture, mathematical structure, formal system.

1 Introduction

The methodology of Domain Specific Modelling (DSM) becomes more and more

popular today, allowing to overcome the known issues of the “universal” modelling

approach [1]. The sense of DSM is development of Domain Specific Languages

(DSLs), applicable for modelling properties of particular domains. A DSL is built

inside a so called metamodel, defining the concrete syntax of the language. The ab-

stract syntax of a DSL is defined in the frame of the meta-metamodel as e.g. MOF [2],

GOPPRR [3], MGA [4] etc.

Emphasizing the power of the existing DSM approaches, they have a number of is-

sues, caused by the lack of generalisation and formalisation:

• the metamodel based DSLs are mostly descriptive, i.e. not expressive for the

definition of methods for solving domain specific tasks;

• the applicability of a DSL by the generation of software data and code is limited;

• while the DSM approach is intended for using by domain experts, the obligatory

involvement of IT specialists for development of code generators is needed;

• for code generation an additional external language should be used, which is not

linked with specifics of a modelled domain;

• the meta-metamodel, used for metamodels development, does not reflect the

mathematical structure of a considered domain and is hardcoded inside a DSM tool.

Let’s consider the principles of the proposed approach to the metamodels develop-

ment, allowing to overcome the specified above issues:

• the formal definition of the object of modelling – the domain, as the set of enti-

ties, linked by the forming mathematical structure and the domain specific relation-

ships;

• the definition of the meta-metamodel and the metamodel as the formal systems,

allowing to fix correspondingly the structural and domain specific properties;

• the mathematical structure of a domain is defined at the meta-metamodel level

and next is used as the carrier of domain specific properties;

• the additional level of the metamodelling architecture is introduced, which al-

lows to develop the meta-metamodels, having different mathematical semantics.

While the existing metamodelling approaches use the predefined mathematical for-

malisms (mostly, graphs) for structuring domain properties, here the development of

meta-metamodels in the different mathematical semantics is possible. Additional level

of the metamodelling architecture allows to express properties of domains in terms of

set theory and to reflect different mathematical structures (algebraic, topological,

differential, geometrical etc.). Corresponding mathematical operations are integrated

in the metamodel and used for solving domain specific tasks. Generation of software

data and code becomes the partial case of the proposed metamodelling approach.

The paper is organized as follows. First the new metamodelling architecture is dis-

cussed in comparison with existing approaches. Section 3 of the paper shows applica-

bility of the proposed approach for producing the graph based metamodels for model-

ling software systems. Section 4 expands the practical applications for requirements

engineering, business process modelling and solving tasks of multidimensional physi-

cal domains. The conclusion, plan of future research and references list finalize the

paper.

2 Metamodelling architectures

The methodology MOF (Meta Object Facility) [2] was used by the OMG (Object

Management Group) consortium for development of the Unified Modelling Language

(UML). MOF has the four levels of the metamodelling architecture. The top level is

the meta-metamodel (М3), defining the language for development of the metamodels

(having the level М2). The level М2 (here, UML) used for development of the do-

main models of the level М1 (the UML-models). The last is the level of data (М0),

describing the concrete instances of M1. The MOF architecture is based on the object-

oriented methodology of software systems design.

The meta-metamodel GOPPRR (Graph-Object-Property-Port-Role-Relationship)

allows to produce metamodels inside the graph based notations, by means of connec-

tion of objects by relationships, definition of domain properties (attributes) and roles

[3]. Each of the GOPPRR concepts a metatype is called. As MOF, the metamodelling

architecture of the GOPPRR in four levels can be shown (see the fig. 1).

Fig. 1. The GOPPRR metamodelling architecture

The proposed approach also has the multiple-level metamodelling architecture, but

it semantics differs from the existing methodologies. All of the metamodels are consid-

ered to be formal systems; they contain an alphabet of types, a grammar and opera-

tions. We introduce the additional level of the metamodeling architecture - the meta-

meta-metamodel (M4), as a formal system, that is built on the basis of set theory. M4

includes the meta-metatype “element of a set”, set operations and grammar rules,

which (taken together) allow us to specify a set structure. This approach allows us to

consider a domain as a set of heterogeneous entities, having domain specific properties

and linked by different kinds of mathematical structures.

Formally, we define a domain as a set of entities D, linked by structural S and do-

main specific P relationships:

1 2{ , ... }, ,ND d d d S P D D= ⊆ × (1)

where N is a power of D. Each element of D can have attributes, which we consider

as unary relationships on D. 0-ary relationships are used to identify elements of D.

Binary and other relationships are used to fix mathematical structure of D.

All of the levels of the proposed metamodelling architecture contain not only de-

scriptive elements, such as in MOF or GOPPRR, but also procedural part, implement-

ed with software functions.

Following our proposal, the architecture for development of the graph based meta-

model on the fig. 2 is shown. Here a node and an edge of a graph serve as the mathe-

matical metatypes for development of domain specific metamodels types (an attribute

is the inherent part of a node and of an edge). The node and the edge are produced

from the meta-meta-metamodel as the having algebraic structure subsets of the com-

posing domain entities. Note, while GOPPRR [3] and MGA [4] also use the graphs for

structuring domain specific properties, this is a partial case of the proposed approach,

where development and using the different mathematical structures is possible.

The implementation of mathematical operations of the metamodels at all levels of

the proposed architecture, forms the Application Program Interface (API) of the corre-

sponding software tool. The API of М4 contains the methods for manipulation with the

elements of a set of composing domain entities. The API of М3 is the operations with

subsets (e.g., with a node and an edge of a graph, and in the general case with any

model objects of the considered domain). For M2, the API contains the metamodel

processing routines (here, the metatypes of the level M3 become domain-specific

types, i.e., to the mathematical subsets the semantics of the domain is assigned). М1

contains instances of the types and definitions of domain-specific methods, implement-

ed with the APIs of all the previous levels. М0 is data values and processes in the com-

puter memory (instances of the methods, defined at the level M1).

Fig. 2. The levels of the proposed metamodelling architecture

3 Development of graph-based metamodels

Let us consider the mathematical method for producing the graph-based meta-

metamodel in the context of proposed approach. Its alphabet includes the metatypes

node N and edge E of the graph Gr = (N, E); the grammar GGr is the set of rules, defin-

ing the possibility {true, false} of the connection of nodes ni, nj by the edge ek = (ni, nj),

n ϵ N, e ϵ E

GGr={(ni, nj) | gk ϵ {true, false}, ni, nj ϵ N, i, j = 1..M, k =1..K } (2)

where M is a power of N. The number of rules K depends on the properties of the

graph Gr (is it directed, are loops possible, etc.).

At the level of metamodel development, to the nodes and the edges of the meta-

metamodel the semantics of domain is assigned. For example, the node N can be the

metatype for definition of the types of software tasks and synchronization objects, and

the edge E can be the metatype for definition of the types of channels (communication

protocols) between tasks and synchronization objects. This metamodel will include the

alphabet, containing typical for parallel programming synchronisation objects (critical

section, mutex, semaphore, resource, FIFO etc.) and software tasks (driver, application

etc.); the grammar rules, specifying the valid interactions of software tasks via syn-

chronisation objects, and operations, used for definition of code generation functions.

Table 1 shows an example of the definition of the metamodel for modelling the par-

allel concurrent software system inside the graph based meta-metamodel.

Table 1. Levels of metamodelling architecture for a software system modelling

Level Alphabet Grammar Operations / Methods

М4

M
at

h
 s

tr
u
ct

u
re

s

Elements d of the set D

The rules of grammar,

based on the relations
d D∈ , { }d D⊆

Create / delete element d,

subset {d}

М3 Node n ϵ Node and edge

e ϵ Edge of graph G =

(Node, Edge), Node,

Edge D

Connection of nodes by

edges ek(ni, nj), ni, nj ϵ

Node, ek ϵ Edge, i, j = 1..

|Node|, i≠ j, k =1..|Edge|

Add edge G’= G + e

Delete edge G’=G - e

Add node G’ = G + n

Delete node G’ = G - n

М2

D
o
m

ai
n
 s

p
ec

if
ic

 p
ro

p
er

ti
es

Node Task, Sync;
Edge PutData, GetData;

PutData(Task, Sync);
GetData(Sync, Task)

Add / delete a type of task

Task / sync object Sync,

create communication
channel PutData, Get-

Data

М1
Task Task1, Task2;

Sync Sync1;

PutData (Task1, Sync1);

GetData (Sync1, Task1);

In this example, a Node and an Edge are the mathematical metatypes of graph based

meta-metamodel M3. Domain specific types are the nodes Task, Sync and the edges

PutData, GetData, which compose the alphabet of М2 metamodel and are used to cre-

ate instances at the M1 level. М2 also defines the grammar rules for combining in-

stances of the types by using predicates PutData(Task, Sync) and GetData(Sync, Task).

These grammar rules correspond to the edges of the graph-based meta-metamodel and

are used for development of code generation methods (implemented by walking the

graph based model M1). The M1 model of software system includes instances of

Task1, Task2 … TaskТ and synchronization objects Sync1, Sync2 … SyncS, linked by the

channels of interaction PutData, GetData (where T, S – are the number of tasks and the

number of synchronization objects in the model respectively).

For the interesting reader, to show the applicability of described graph based meta-

model, we can refer to the metamodel of interacting entities [5], which was used for

development of a real-time operation system [6] and for modelling distributed parallel

real-time software [7].

The definition of the metamodel alphabet as the set of attributed types and the do-

main model as the instances of the types, having the concrete values of attributes, make

possible the formal checking a model in its state space. Due to including mathematical

methods in the metamodel the checking properties of behaviour of a real-time system

(e.g. absence of deadlocks) was applied. The graph based methods (e.g. Dijkstra’s

algorithm) for development of the code generation functions (e.g. routing table of a

real time operation system) were used.

4 Other applications of the metamodelling approach

Except development of graph-based metamodel for software systems design, the ap-

plicability of the proposed approach was proven for the next domains:

• requirements engineering (RE), where conceptual metamodelling for systems

specification was used. The set of the typical for the RE concepts formed the alphabet

of the metamodel, which symbols were the types for instantiation – definition of the

concrete statements describing a system properties and behaviour. The methods of the

graph based meta-metamodel were used to check correspondence of the graph of

architectural decomposition to the graph of initial requirements, generate the docu-

ment of systems specifications, made the control of versions etc. The conceptual met-

amodel was further expanded by the Finite State Machine formalism [5]. This allows

us to build the domain specific models of processes on the base of the ontology of a

domain. To each concept of ontology the state transition attribute was added. The

process grammar was the set of rules, defining the state transitions of conceptual

model of a system description. E.g. only after capturing requirements user can move

to the specification stage, next to the phase of architectural modelling etc. Such the

approach allows us to manage users activity to achieve the goal of a process in a giv-

en time (up to deadline);

• development of the metamodel, based on the vector algebra and the logic of syl-

logisms. Here vectors were used as the metatypes for producing the logical types of

the metamodel alphabet. In the practical implementation [8], the alphabet of the met-

amodel on the base of the types of categorical syllogisms was developed. Due to us-

ing vector algebra for the definition of the metamodel, the operations on syllogisms as

operations on vectors in linear vector space were implemented. This allows us to de-

velop the algorithm for automatic geometrical theorem proving. The approach was

used for development of the logic for optical computers, where at physical level vec-

tors were implemented as laser beams;

• development of the metamodel for multidimensional physical domains [9]. The

alphabet of the meta-metamodel was defined as the set of the basic (corresponding to

the dimensions of the physical space) geometrical objects, i.e. point, line, surface and

3D region. For metamodels development we set distributions of physical properties

among the defined with the meta-metamodel geometrical structures. Due to consider-

ing objects as the sets of geometrical points in the physical space, the grammar of the

metamodel in the terms of Boolean operations on geometrical subsets was defined.

This grammar limits the possible compositions of the geometrical objects in the 3D

space. The mathematical methods of the metamodel correspond to the solutions of

multidimensional tasks of the integral and deferential calculus. As the interesting

application of the metamodelling approach for physical domains the design of met-

amaterials (artificial composites with specific optical properties) can be mentioned

[10].

5 Plan of future research

The plan of research is further exploring the properties of the metamodels, allowing to

fix different mathematical structures:

• the formal definition of the metamodels, the mathematical structure of its types,

grammars and operations at all levels of the metamodelling architecture;

• learning the linguistic properties of the metamodels, incl. the possibility of reduc-

tion of the grammars into the normal Chomsky form;

• definition of the method for metamodels composition, allowing to combine the

declarative and imperative constructs (alphabet, grammar and operations);

• exploring the textual and the visual forms of expression of metamodels and devel-

opment of the method for its combination;

• expansion of the approach on the other types of mathematical structures (metric,

geometrical, differential, topological, etc.).

Conclusion

The new approach for metamodels development is proposed. The metamodelling

architecture is decomposed into the layers, allowing to fix the structural and the do-

main specific properties. This allows to take into account the mathematical structure

of considered domains. The additional set-based level of the metamodelling architec-

ture is introduced, which allows to define the meta-metamodels in the different math-

ematical semantics.

References

1.Robert B. France, Sudipto Ghosh, Trung Dinh-Trong, Arnor Solberg. Model-Driven Devel-

opment Using UML 2.0: Promises and Pitfalls, IEEE Computer, February 2006.

2.ISO/IEC 19502:2005, Information technology. Meta Object Facility. – ANSI. - 2007. - 292 p.

3.Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code

Generation. - Wiley-IEEE Computer Society Pr. – 2008. - 427 p.

4.Gregory G. Nordstrom. Metamodeling – rapid design and evolution of domain-specific mod-

eling environments // Dissertation for the degree of Doctor of Philosophy in Electrical Engi-

neering. - Nashville, Tennessee, 1999 – 170 p.

5.Vitaliy Mezhuyev, Bernhard Sputh and Eric Verhulst. Interacting Entities Modelling Meth-

odology for Robust Systems Design // Second International Conference on Advances in Sys-

tem Testing and Validation Lifecycle. – CPS Publishing. – 2010. – 75-80 pp.

6.Formal Development of a Network-Centric RTOS / Eric Verhulst, Raymond T.Boute, José

Miguel Sampaio Faria, B.H.C. Sputh and Vitaliy Mezhuyev. - Springer, 2011. – 227 p.

7.Vitaliy Mezhuyev. Domain specific modelling distributed parallel real time applications //

The systems of information processing. – 2010. – 5 (86). – Pp. 98-103.

8.Vitaliy Mezhuyev. Vector logic: theoretical principles and practical implementations // The

papers of Zaporizzia National University. – Zaporizzia: ZNU, 2006. – Pp. 91-97.

9.Vitaliy Mezhuyev, Oleg Lytvyn. Metamodel for visual modelling multidimensional domains

and its practical applications // Control systems and machines. - 2010. - №4. – Pp. 31-43.

10. Vitaliy Mezhuyev, Felipe Pérez-Rodríguez. Visual Environment for Metamaterials Model-

ling // Some current topics in condensed matter physics. - Universidad Autónoma del Estado

de Morelos. – 2010. – 1-13 pp.

