

DEVELOPMENT OF MOTOR CONTROL USING

GRAPHICAL USER INTERFACE

KHAIRUL ANUAR BIN ARIS

UNIVERSITY MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS♦

 JUDUL:

SESI PENGAJIAN: 2007/2008

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

Tarikh: 26 NOVEMBER 2007 Tarikh: : 26 NOVEMBER 2007

NO 833 JALAN LIMBONG, KG.
LIMBONG, 24000 CUKAI,
KEMAMAN TERENGGANU.

MR. MUHAMMAD SHARFI
BIN NAJIB

(Nama Penyelia)

DEVELOPMENT OF MOTOR CONTROL USING
GRAPHICAL USER INTERFACE

KHAIRUL ANUAR BIN ARIS (850811-11-5225)

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

“I hereby acknowledge that the scope and quality of this thesis is

qualified for the award of the degree of Bachelor of Electrical

Engineering (Power Systems)”

Signature: _____________________________

Name: MUHAMMAD SHARFI BIN NAJIB

Date: 26 NOVEMBER 2007

DEVELOPMENT OF MOTOR CONTROL USING

GRAPHICAL USER INTERFACE

KHAIRUL ANUAR BIN ARIS

This thesis is submitted as partial fulfillment of the

requirements for the award of the Bachelor Degree of

 Electrical Engineering (Power Systems)

Faculty of Electrical & Electronics Engineering

University Malaysia Pahang

NOVEMBER 2007

ii

“All the trademark and copyrights use here in are property of their

respective owner. References of information from other sources are

quoted accordingly; otherwise the information presented in this report is

solely work of the author.”

 Signature : _______________________________

 Author : KHAIRUL ANUAR BIN ARIS

 Date : 26 NOVEMBER 2007

iii

Specially dedicated to

my beloved family and those people who have guided and inspired me

throughout my journey of education.

iv

ACKNOWLEDGEMENT

 First and foremost, I am very grateful to the almighty ALLAH S.W.T for

giving me this opportunity to accomplish my Final Year Project.

 Firstly, I wish to express my deep gratitude to my supervisor, Mr.

Muhammad Sharfi bin Najib for all his valuable guidance, assistance and support all

through this work.

 Secondly, I wish to thank lecturers and technicians, for their suggestions and

support on this project. Their comments on this project are greatly appreciated. My

thanks are also to all my friends who have involved and helped me in this project.

 Most importantly I extend my gratitude to my parents who have encouraged

me throughout my education and I will always be grateful for their sacrifice,

generosity and love.

v

ABSTRACT

DC Motor control is very common in robotic application. The developments

of this kind of project are widely used in most electronic devices nowadays. There

are many application that have been developed based on motor control in electronic

field such as in automation, Flexible Manufacturing System (FMS) and Computer

Integrated Manufacturing (CIM). The purpose of this project is to develop the

Graphical User Interface of Motor Control through MATLAB GUIDE, interface the

MATLAB GUI with hardware via communication port and control the DC motor

through MATLAB GUI. By using MATLAB GUIDE, it provides a set of tools

which simplify the process of laying out and programming GUIs and interface with

PIC via serial communication port to control the DC motor. The PIC is used to

control motor. As a result, the DC motor is able to be controlled through MATLAB

GUI and interface the MATLAB GUI with PIC via serial communication port.

vi

ABSTRAK

 Motor DC umumnya dikaitkan dengan bidang robotik dan pembangunan

projek-projek yang berkaitan dalam bidang ini sangat meluas yang digunakan dalam

kebanyakan peralatan elektrik hari ini. Banyak applikasi yang telah dibangunkan

berdasarkan kawalan motor dalam bidang automasi seperti Flexible Manufacturing

System(FMS) dan Computer Integrated Manufacturing(CIM). Tujuan projek ini

adalah untuk membina grafik antaramuka pengguna untuk mengawal motor DC

melalui MATLAB dan membina antaramuka antara MATLAB GUI dengan

perkakasan elektronik melalui communication port. Dengan menggunakan

MATLAB GUIDE, ia telah menyediakan peralatan yang mana set peralatan ini

memudahkan pengguna dengan proses meletak dan membina program untuk grafik

antaramuka pengguna untuk mengawal motor DC. PIC digunakan dalam projek ini

adalah bertujuan untuk mengawal motor. Sebagai kesimpulanya, motor DC dapat

dikawal melalui MATLAB GUI dan berantaramuka dengan perkakasan elektronik

melalui serial communication port.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

TITLE PAGE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF APPENDICES xiv

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 1 INTRODUCTION

 1.1 Overview 1

 1.2 Objective 2

 1.3 Scope 2

 1.4 Problem Statement 3

 1.5 Thesis Organization 3

 2 LITERATURE REVIEW

 2.1 Graphical User Interface (GUI) 4

 2.1.1 General Definition of GUI 4

 2.1.2 MATLAB GUI 5

 2.1.3 Operation of GUI 6

 2.1.4 A brief introduction of GUIDE 7

 2.1.4.1 Two Basic Task in Process

 of implementing a GUI 7

 2.2 DC Motors

 2.2.1 Introduction 8

 2.2.2 The Advantages 9

 2.2.3 The drawbacks 10

 2.2.4 Type of DC Motor

 2.2.4.1 Stepper motors 10

 2.2.4.2 Brushless DC motors 11

 2.2.4.3 Coreless DC motors 11

ix

 2.3 PIC Microcontroller 12

 2.3.1 ORIGINS 12

 2.3.2 PIC Microcontroller Option 13

 2.3.3 Variants 14

 2.4 PIC Basic Pro Compiler 14

 2.5 LDmicro 15

 3 METHODOLOGY

 3.1 Introduction 16

 3.2 Methodology 16

 3.2.1 Develop MATLAB GUI Using

 MATLAB GUIDE 18

 3.2.2 Build MATLAB Programming 22

 3.2.3 Build PIC programming 27

 3.2.4 Hardware Installation 32

 4 RESULT DISCUSSION

 4.1 Introduction 37

 4.2 Main Menu of the GUI 37

 4.3 Interface MATLAB GUI Software 39

 4.4 Advance Development of GUI 42

 4.5 User Information GUI 45

 4.6 Observation of PIC Output

 4.6.1 5V DC Motor output Observation 47

 4.6.2 Steeper Motor Output Observation 48

 5 CONCLUSION

5.1 Conclusion 52

5.2 Future Recommendations 53

5.3 Costing and Commercialization 53

x

REFERENCES 54

Appendices A – H 56 - 85

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Basic MATLAB GUI Component 22
3.2 Kind of Callback 23
3.3 Major Sections of the GUI M-file 25
3.4 List of Standard Baud Rate 28
3.5 Modifier Support by SERIN2 Command 30
3.6 Direction Control of Stepper Motor 31
3.7 Serial Port Pin and Signal Assignments 33

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Part of an Electric Motor 8
3.1 Flowcharts for Whole Project 17

3.2 MATLAB GUIDE Layouts 19

3.3 Property Inspector 20

3.4 Example GUI 21

3.5 Example M-files for GUI 22

3.6 Initialize Communication Port 26

3.7 Open and Close of Communication Port 26

3.8 Transmit data to PIC 27

3.9 Construction of Stepper Motor 30
3.10 General PIC Program Flow 32
3.11 Power Supply Modules 32
3.12 Pins and Signals Associated With the

 9-pin Connector 33
3.13 Serial Port Connections to PIC 34
3.14 Stepper Motor and Switching Circuit 35
3.15 5V DC Motor Connections 36

3.16 Hardware (Top View) 36

4.1 Main menu of the GUI 38
4.2 Credit 38
4.3 Exit Button Confirmations 39
4.4 Motor Control Menus 40
4.5 5V DC Motor Menus 41
4.6 Communication Port Statuses 41

xiii

4.7 Basic Stepper Motor Control 42
4.8 Warning pop up Menu 42
4.9 Pulse Control GUI Menu 43
4.10 Advance Stepper Motor Control GUI Menu 44
4.11 Brushed/Brushless DC Motor GUI Menu 44
4.12 Help Menu 45
4.13 Info Menu 46
4.14 Output for Forward & Reverse 5V DC Motor 47

4.15 Output during Stop Condition 48

4.16 Speed 1 Output for Stepper Motor 49

4.17 Speed 2 Output for Stepper Motor 50

4.18 Speed 3 Output for Stepper Motor 51

4.19 Speed 4 Output for Stepper Motor 51

xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A PIC Programming 56

B PIC 16F877 Data sheet 59

C MAX232 Data Sheet 62

D Main Menu GUI Programming 66

E Motor Control Menu GUI Programming 69

F 5V DC Motor Control GUI Programming 72

G Stepper Motor Control GUI Programming 77

H Credit Menu GUI Programming 83

1

CHAPTER 1

INTRODUCTION

1.1 Overview

The serial port found on the back of the most PC and it is extremely useful

for robotics work. Variety devices are configured to communicate via a serial port.

This Project is focus on designing the Graphical User Interface (GUI) through

MATLAB to control the DC motor using PIC. The PIC is a programmable interface

devices or controller between PC (MATLAB GUI) and the DC motor. The main

contribution of this project is the interfacing of the MATLAB with PIC and

Graphical User Interface (GUI).

The Peripheral Interface Controller (PIC) use in this project is as controller

device between Personal Computer and the DC motor to control DC motor. The PIC

is use because of wide availability and economical. Beside that PIC is a free

development tools and can perform many function without needed extra circuitry.

The PIC is program using the PICBasic Pro Compiler. The PicBasic Pro Compiler

produces code that may be programmed into a wide variety of PICmicro

2

microcontrollers having from 8 to 84 pins and various on-chip features including

A/D converters, hardware timers and serial ports. The purpose using MATLAB in

creating the GUI is because it already has Graphical User Interface Development

Environment (GUIDE) that provides a set of tools for creating GUI. These tools

simplify the process of laying out and programming GUIs.

The GUI create in MATLAB with appropriate coding will control the DC

motor via serial port that interface with the PIC. There are many advantage by using

the DC motor, among that the DC motor has no adverse effect on power quality and

the speed is proportional to the magnetic flux.

1.2 Objective

At the end of this Project:

i. Able to control DC motor through MATLAB GUI.

ii. Able to interface the MATLAB GUI with hardware using PIC.

 The important part of this project is to interface the MATLAB GUI with the

PIC. This part is done if the PIC produces a signal. The output from PIC will monitor

by using the oscilloscope. After that the DC motor can be control via MATLAB

GUI.

1.3 Scope of Project

 The scopes of this project are laying out the GUI in MATLAB GUIDE and

create programming for the GUI’s. Secondly Prepare the PIC circuitry and serial

3

connection (DB9) circuit for interfacing part. And the third part is creating program

for PIC using PICBasic Pro Compiler to control the DC motor.

1.4 Problem Statement

 The main objective in this project to interface the MATLAB GUI with the

PIC. It is a difficult part to develop the program for MATLAB and the PIC

simultaneously to make the interfacing part. By using the PicBasic Pro Compiler

software to develop programming to control DC motor, it can reduces the difficulty

by comprises a list of statements that written in a programming language like

assembler, C, or BASIC. With this opportunity, the men in charge do not have to

take long time to written and troubleshoot the program.

1.5 Thesis Organization

 This thesis consists of five chapters including this chapter. The contents of

each chapter are outlined as follows;

 Chapter 2 contains a detailed description each part of project. It will explain

about the MATLAB GUIDE, PIC, and DC motor. Chapter 3 includes the project

methodology. This will explain how the project is organized and the flow of the

process in completing this project. Chapter 4 presents the expected result of

simulation runs using MATLAB GUIDE. Finally the conclusions for this project are

presented in Chapter 5.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Graphical User Interface (GUI)

2.1.1 General Definition of GUI

A graphical user interface (or GUI, often pronounced "gooey"), is a

particular case of user interface for interacting with a computer which employs

graphical images and widgets in addition to text to represent the information and

actions available to the user [4][5]. Usually the actions are performed through direct

manipulation of the graphical elements.

The first graphical user interface was designed by Xerox Corporation's Palo

Alto Research Center in the 1970s, but it was not until the 1980s and the emergence

of the Apple Macintosh that graphical user interfaces became popular. One reason

for their slow acceptance was the fact that they require considerable CPU power and

a high-quality monitor, which until recently were prohibitively expensive [4].

5

A graphical user interface (GUI) is a pictorial interface to a program. A good

GUI can make programs easier to use by providing them with a consistent

appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus,

and so forth [2][4]. A true GUI includes standard formats for representing text and

graphics [4]. The GUI should behave in an understandable and predictable manner,

so that a user knows what to expect when he or she performs an action. For example,

when a mouse click occurs on a pushbutton, the GUI should initiate the action

described on the label of the button.

Many DOS programs include some features of GUIs, such as menus, but are

not graphics based. Such interfaces are sometimes called graphical character-based

user interfaces to distinguish them from true GUIs [4].

2.1.2 MATLAB GUI

A graphical user interface (GUI) is a graphical display that contains devices,

or components, that enable a user to perform interactive tasks. To perform these

tasks, the user of the GUI does not have to create a script or type commands at the

command line. Often, the user does not have to know the details of the task at hand

[1] [2] [16].

The GUI components can be menus, toolbars, push buttons, radio buttons, list

boxes, and sliders — just to name a few. In MATLAB, a GUI can also display data

in tabular form or as plots, and can group related components [1] [2] [3].

6

2.1.3 Operation of GUI

Each component, and the GUI itself, is associated with one or more user-

written routines known as callbacks. The execution of each callback is triggered by a

particular user action such as, mouse click, pushbuttons, toggle buttons, lists, menus,

text boxes, selection of a menu item, or the cursor passing over a component and so

forth [1] [2].

Clicking the button triggers the execution of a callback [1]. A mouse click or

a key press is an event, and the MATLAB program must respond to each event if the

program is to perform its function. For example, if a user clicks on a button, that

event must cause the MATLAB code that implements the function of the button to be

executed. The code executed in response to an event is known as a call back [1] [2].

 This kind of programming is often referred to as event-driven programming.

The event in the example is a button click. In event-driven programming, callback

execution is asynchronous, controlled by events external to the software. In the case

of MATLAB GUIs, these events usually take the form of user interactions with the

GUI. The writer of a callback has no control over the sequence of events that leads to

its execution or, when the callback does execute, what other callbacks might be

running simultaneously [1].

Callbacks

• Routine that executes whenever you activate the uicontrol object

• Define this routine as a string that is a valid MATLAB expression or the

name of an M-file

• The expression executes in the MATLAB workspace.

7

2.1.4 A brief introduction of GUIDE

GUIDE, the MATLAB graphical user interface development environment, provides

a set of tools for creating graphical user interfaces (GUIs). These tools simplify the

process of laying out and programming GUIs [1].

• GUIDE is primarily a set of layout tools

• GUIDE also generates an M-file that contains code to handle the initialization

and launching of the GUI

– This M-file also provides a framework for the implementation of the

callbacks - the functions that execute when users activate a

component in the GUI [1].

2.1.4.1Two Basic Task in Process of implementing a GUI

 The two basic tasks in Process of implementing a GUI is first, laying out a

GUI where MATLAB implement GUIs as figure windows containing various styles

of uicontrol (User Interface) objects. The second task is programming the GUI,

where each object must be program to perform the intended action when activated by

the user of GUI [14].

8

2.2 DC Motors

2.2.1 Introduction

 Electric motors are everywhere! In a house, almost every mechanical

movement that you see around you is caused by a DC (direct current) electric motor.

An electric motor is a device that transforms electrical energy into mechanical

energy by using the motor effect [7] [8].

Every DC motor has six basic parts -- axle, rotor (a.k.a., armature), stator,

commutator, field magnet(s), and brushes. In most common DC motors, the external

magnetic field is produced by high-strength permanent magnets. The stator is the

stationary part of the motor -- this includes the motor casing, as well as two or more

permanent magnet pole pieces. The rotor rotates with respect to the stator. The rotor

consists of windings (generally on a core), the windings being electrically connected

to the commutator [7] [8].

Industrial applications use dc motors because the speed-torque relationship

can be varied to almost any useful form -- for both dc motor and regeneration

applications in either direction of rotation. Continuous operation of dc motors is

Figure 2.1: Part of an Electric Motor

9

commonly available over a speed range of 8:1. Infinite range (smooth control down

to zero speed) for short durations or reduced load is also common [6].

Dc motors are often applied where they momentarily deliver three or more

times their rated torque. In emergency situations, dc motors can supply over five

times rated torque without stalling (power supply permitting) [6].

Dc motors feature a speed, which can be controlled smoothly down to zero,

immediately followed by acceleration in the opposite direction -- without power

circuit switching. And dc motors respond quickly to changes in control signals due to

the dc motor's high ratio of torque to inertia [6] [7].

2.2.2 The Advantages

 The greatest advantage of DC motors may be speed control. Since speed is

directly proportional to armature voltage and inversely proportional to the magnetic

flux produced by the poles, adjusting the armature voltage and/or the field current

will change the rotor speed [7].

• Today, adjustable frequency drives can provide precise speed control for AC

motors, but they do so at the expense of power quality, as the solid-state

switching devices in the drives produce a rich harmonic spectrum. The DC

motor has no adverse effects on power quality [6] [7].

10

2.2.3 The drawbacks

• Power supply, initial cost, and maintenance requirements are the

negatives associated with DC motors

• Rectification must be provided for any DC motors supplied from the grid.

It can also cause power quality problems.

• The construction of a DC motor is considerably more complicated and

expensive than that of an AC motor, primarily due to the commutator,

brushes, and armature windings. An induction motor requires no

commutator or brushes, and most use cast squirrel-cage rotor bars instead

of true windings — two huge simplifications [6].

2.2.4 Type of DC Motor

2.2.4.1 Stepper motors

 A stepper motor is a brushless, synchronous electric motor that can divide a

full rotation into a large number of steps, for example, 200 steps. Thus the motor can

be turned to a precise angle [7]. A stepper motor is an electromechanical device

which converts electrical pulses into discrete mechanical movements and is a unique

type of dc motor that rotates in fixed steps of a certain number of degrees. Step size

can range from 0.9 to 90 degree [6] [7].

 The speed of the motor shafts rotation is directly related to the frequency of

the input pulses and the length of rotation is directly related to the number of input

pulses applied. The motors rotation has several direct relationships to these applied

input pulses. The sequence of the applied pulses is directly related to the direction of

11

Motor shafts rotation [6] [8]. The stepper motors has an excellent response to start-

up, stopping and reverse [7].

 There are three main of stepper motor type. First is Permanent Magnet (PM)

Motors second is Variable Reluctance (VR) Motors and the third is Hybrid Motors.

2.2.4.2 Brushless DC motors

• A brushless DC motor (BLDC) is an AC synchronous electric motor that

from a modeling perspective looks very similar to a DC motor.

• In a BLDC motor, the electromagnets do not move; instead, the permanent

magnets rotate and the armature remains static.

• In order to do this, the brush-system/commutator assembly is replaced by an

• Intelligent electronic controller. The controller performs the same power-

distribution found in a brushed DC-motor, but using a solid-state circuit

rather than a commutator/brush system [6].

2.2.4.3 Coreless DC motors

• Optimized for rapid acceleration, these motors have a rotor that is constructed

without any iron core.

• Because the rotor is much lighter in weight (mass) than a conventional rotor

formed from copper windings on steel laminations, the rotor can accelerate

much more rapidly, often achieving a mechanical time constant under 1 ms.

12

• These motors were commonly used to drive the capstan(s) of magnetic tape

drives and are still widely used in high-performance servo-controlled systems

[6].

2.3 PIC Microcontroller

PIC is a family of Harvard architecture microcontrollers made by Microchip

Technology, derived from the PIC1650 originally developed by General Instrument's

Microelectronics Division[9] [10].

PICs are popular with developers due to their low cost, wide availability,

large user base, extensive collection of application notes, availability of low cost or

free development tools, and serial programming (and re-programming with flash

memory) capability[9].

2.3.1 ORIGINS

1. The original PIC was built to be used with GI's new 16-bit CPU, the CP1600.

While generally a good CPU, the CP1600 had poor I/O performance, and the

8-bit PIC was developed in 1975 to improve performance of the overall

system by offloading I/O tasks from the CPU.

2. The PIC used simple microcode stored in ROM to perform its tasks, and

although the term wasn't used at the time, it is a RISC design that runs one

instruction per cycle (4 oscillator cycles).

13

3. In 1985 General Instruments spun off their microelectronics division, and the

new ownership cancelled almost everything — which by this time was mostly

out-of-date. The PIC, however, was upgraded with EPROM to produce a

programmable channel controller, and today a huge variety of PICs are

available with various on-board peripherals (serial communication modules,

UARTs, motor control kernels, etc.) and program memory from 512 words to

32k words and more[9].

2.3.2 PIC Microcontroller Option

A PIC Microcontroller chip combines the function of microprocessor, ROM

program memory, some RAM memory and input-output interface in one single

package which is economical and easy to use [10][14].

The PIC – Logicator system is designed to be used to program a range of 8,

18, 28 pin reprogrammable PIC microcontroller which provide a variety of input –

output, digital input and analogue input options to suit students project uses [10].

Reprogrammable “FLASH Memory” chips have been selected as the most

economical for student use. If a student needs to amend to control system as the

project is evaluated and developed, the chip can simply be taken out of the product

and reprogrammed with an edited version of the floe sheet [10].

 The PIC devices generally feature is sleep mode (power saving), watchdog

timer and various crystal or RC oscillator configuration, or an external clock.

14

2.3.3 Variants

Within a series, there are still many device variants depending on what hardware

resources the chip features [9].

• general purpose i/o pins

• internal clock oscillators

• 8/16 Bit Timers

• Internal EEPROM Memory

• Synchronous/Asynchronous Serial Interface USART

• MSSP Peripheral for I²C and SPI Communications

• Capture/Compare and PWM modules

• Analog-to-digital converters

• USB, Ethernet, CAN interfacing support

• external memory interface

• Integrated analog RF front ends (PIC16F639, and rfPIC)

• KEELOQ Rolling code encryption peripheral (encode/decode)

2.4 PIC Basic Pro Compiler

The PicBasic Pro Compiler (or PBP) makes it even quicker and easier to

program Microchip Technology’s powerful PICmicro microcontrollers (MCUs). The

English-like BASIC language is much easier to read and write than the quirky

Microchip assembly language [11].

The PicBasic Pro Compiler is “BASIC Stamp II like” and has most of the

libraries and functions of both the BASIC Stamp I and II. Being a true compiler,

programs execute much faster and may be longer than their Stamp equivalents. PBP

is not quite as compatible with the BASIC Stamps as our original [11] [17].

15

The PicBasic Pro Compiler produces code that may be programmed into a

wide variety of PICmicro microcontrollers having from 8 to 84 pins and various on-

chip features including A/D converters, hardware timers and serial ports [11].

2.5 LDmicro

LDmicro generates native code for certain Microchip PIC16 and Atmel AVR

microcontrollers. Usually software for these microcontrollers is written in a

programming language like assembler, C, or BASIC. A program in one of these

languages comprises a list of statements. These languages are powerful and well-

suited to the architecture of the processor, which internally executes a list of

instructions. PLCs, on the other hand, are often programmed in `ladder logic.'

oject

16

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents the methodology of this project. It describes on how the

project is organized and the flow of the steps in order to complete this project. The

methodology is diverged in two parts, which is developing the hardware to interface

with MATLAB. The other is developing the programming for MATLAB and the PIC

to control DC motor.

3.2 Methodology

There are three mains method in order to develop this project. Before the

project is developing using MATLAB, it is needed to do the study on MATLAB

GUIDE and the hardware (especially PIC). The flowchart in Figure 3.1 illustrated the

17

sequence of steps for this project. The first method is developing GUI in MATLAB

and programs every GUI component. Secondly is to develop PIC programming to

control 5V DC and stepper motor. And lastly is hardware design which is use to

interface with MATLAB GUI.

 Figure 3.1: Flowchart for Whole Project

START

Case Study

Determination of Hardware
And programming

Hardware design MATLAB GUI Study

Identify PIC &
DC Motor

GUI Design

Program
Development

OK

Identify
appropriate

Coding

Interfacing
Circuit

NO

Integrated
hardware
& program

YES

Design
OK

NO

YES

Simulation & Analysis

Testing
OK

Demo

END

YES

NO

18

 Figure 3.1 show the flow of the whole project. The project begins after

registering the PSM title with doing case study about the project. The flow of the

project is separate into two main tasks that are hardware design and MATLAB GUI

design. In hardware design part flow, the main target is to create appropriate

programming for PIC to interface with personal computer via serial port to control

DC motor. The second part, the prior task is to develop program in MATLAB to

interface with PIC and the DC motor. After that the both part is combine and do the

analysis until achieve the needed objective. The main contribution of this project is

to interface MATLAB GUI with the PIC.

3.2.1 Development MATLAB GUI Using MATLAB GUIDE

 GUIDE, the MATLAB graphical user interface development environment,

provides a set of tools for creating graphical user interfaces (GUIs). These tools

simplify the process of laying out and programming GUIs.

 There are 5 steps in build the MATLAB GUI. First Use a MATLAB tool

called guide (GUI Development Environment) to layout the components that show in

figure 3.2. This tool allows a programmer to layout the GUI, selecting and aligning

the GUI components to be placed in it. The basic component of the MATLAB GUI

is shown in Table 3.1.

19

Figure 3.2: MATLAB GUIDE Layouts

 Next is Use a MATLAB tool called the Property Inspector (built into guide)

to give each component a name (a "tag") and to set the characteristics of each

component, such as its color, the text it displays, and so on. After that, save the figure

to a file. When the figure is saved, two files will be created on disk with the same

name but different extents. The fig file contains the actual GUI that has been created,

and the M-file contains the code to load the figure and skeleton call backs for each

GUI element. These two files usually reside in the same directory. They correspond

to the tasks of laying out and programming the GUI. When you lay out the GUI in

the Layout Editor, your work is stored in the FIG-file. When you program the GUI,

your work is stored in the corresponding M-file.

Align
Object

Menu
Editor

Tab Order
Editor

M-File
Editor

Property
Inspector Object

Browser

Run

20

Figure 3.3: Property Inspector

Table 3.1: Basic MATLAB GUI Component [12]

21

 After laying out the GUI component and set the property, the GUI will be

look like in figure 3.4 for example according to the user creativity.

Figure 3.4: Example GUI

 And finally write code to implement the behavior associated with each

callback function in m-files show in figure 3.5. A callback is a function that writes

and associates with a specific GUI component or with the GUI figure. It controls

GUI or component behavior by performing some action in response to an event for

its component. This kind of programming is often called event-driven programming.

This last step is the difficult one and has to make an extra reading on how to write

the coding before the GUI component can perform some task that user desire.

22

Figure 3.5: Example M-files for GUI

3.2.2 Build MATLAB Programming

 After layed out the GUI, it need to program its behavior. The code is to write

controls how the GUI responds to events such as button clicks, slider movement,

menu item selection, or the creation and deletion of components. This programming

takes the form of a set of functions, called callbacks, for each component and for the

GUI figure itself.

 A callback is a function that writes and associates with a specific GUI

component or with the GUI figure. It controls GUI or component behavior by

performing some action in response to an event for its component. This kind of

programming is often called event-driven programming.

23

 The GUI figure and each type of component have specific kinds of callbacks

with which it can be associated. The callbacks that are available for each component

are defined as properties of that component. Each kind of callback has a triggering

mechanism or event that causes it to be called. The kind of callback is shown in table

3.2.

Table 3.2: Kind of Callback

Callback Property Triggering Event Components

DeleteFcn Component deletion. It

can be used to perform

cleanup operations just

before the component or

figure is destroyed.

Axes, figure, button

group,

context menu, menu,

panel,

user interface controls

KeyPressFcn

Executes when the user

presses a keyboard key

and the callback’s

component or figure has

focus.

Figure, user interface

controls

ResizeFcn

SelectionChangeFcn

Executes when a user
resizes a panel, button
group, or figure whose
figure. Resize property is
set to On.
Executes when a user

selects a different radio

button or toggle button in

a button group

component.

Button group, figure,
panel

Button group

WindowButtonDownFcn Executes when you press

a mouse button while the

pointer is in the figure

window.

Figure

24

WindowButtonMotionFcn Executes when you move

the pointer within the

figure window.

Figure

WindowButtonUpFcn Executes when you

release a mouse button.

Figure

ButtonDownFcn

Executes when the user

presses a mouse button

while the pointer is on or

within five pixels of a

component or figure. If

the component is a user

interface control, its

Enable property must be

on.

Axes, figure, button

group, panel, user

interface controls

Callback

Component action.

Executes, for example,

when a user clicks a push

button or selects a menu

item.

Context menu, menu, user

interface controls

CloseRequestFcn

CreateFcn

Executes before the figure

closes.

Component creation. It

can be use to initialize the

component when it is

created. It executes after

the component or figure is

created, but before it is

displayed.

Figure

Axes, figure, button

group, context menu,

menu,

panel, user interface

controls

25

 The GUI M-file that GUIDE generates is a function file. The name of the

main function is the same as the name of the M-file. For example, if the name of the

M-file is mygui.m, then the name of the main function is mygui. Each callback in the

file is a sub function of the main function. When GUIDE generates an M-file, it

automatically includes templates for the most commonly used callbacks for each

component. The major sections of the GUI M-file are ordered as shown in table 3.3.

Table 3.3: Major Sections of the GUI M-file [13]

 GUIDE automatically includes two callbacks, the opening function and the

output function, in every GUI M-file it creates. The opening function programming

is importance in initialize the communication port in MATLAB GUI before it can

transmit data to the PIC. The data send from MATLAB GUI to PIC is in decimal

form and PIC will control the DC motor with the preset programming according to

the data received. Here is the example programming in figure 3.6 and figure 3.7 to

initialize and close communication port at the back of computer using radio button in

MATLAB GUI. In figure 3.8 is example to transmit data to PIC.

26

Figure 3.6: Initialize Communication Port

Figure 3.7: Open and Close of Communication Port

27

Figure 3.8: Transmit data to PIC

 In opening and closing the communication port the command fclose (SerPIC)

is use to disconnect a serial port object from the device. The baud rate from

MATLAB GUI must be set same with the baud rate in PIC before it can transmit and

receive the data. For example if baud rate in MATLAB GUI is 9600bps, so the baud

rate in PIC also 9600bps.

3.2.3 Build PIC programming

 There many ways to program the PIC either the user can use LDmicro,

assembly language or PICBasic Pro Compiler. The LDmicro use ladder diagram

approach like PLC while PICBasic Pro compiler is English-like BASIC language and

much easier to read and write than the quirky Microchip assembly language.

 The data from MATLAB GUI is send to PIC in decimal form, so the PIC is

program to read or receive the data also in decimal form. The communication

28

between MATLAB GUI and PIC is in standard asynchronous format where the

device uses its own internal clock resulting in bytes that are transferred at arbitrary

times. The baud rate is specifying according to MATLAB GUI. Some standard baud

rates are listed in table 3.4. For PIC programming, 9600bps is using which same with

the MATLAB GUI.

Table 3.4: List of Standard Baud Rate [11]

 The input data at PIC that transmit from MATLAB GUI is set to PORTC.0

before it run certain program to control the DC motor. Here is the example to

program the stepper motor run in clockwise and anticlockwise direction. If

MATLAB send data ‘001’, so the PIC will perform case 001 according the

programming.

INCLUDE "bs2defs.bas" 'has some definition in it
DEFINE OSC 8 'define the oscillator speed in MHz
SerI VAR PORTC.0 'define input port

x VAR BYTE

TRISA = %00000000 'set PortA as an output port

Start:
 portc = %00000000 'clear port C
 Serin2 SerI, 84, [dec3 B0] 'get three digit decimal number data from
 MATLAB GUI

 SELECT CASE B0

29

 CASE 001 'clockwise
 FOR x=1 to 80
 GOSUB qwe
 NEXT x

 CASE 002 'anti clockwise
 FOR x=1 to 80
 GOSUB ewq
 NEXT x

GOTO Start

 qwe:
 porta=%00000101
 PAUSE 30
 porta=%00001001
 PAUSE 30
 porta=%00001010
 PAUSE 30
 porta=%00000110
 PAUSE 30

 RETURN

 ewq:
 porta=%00000101
 PAUSE 30
 porta=%00000110
 PAUSE 30
 porta=%00001010
 PAUSE 30
 porta=%00001001
 PAUSE 30

 RETURN

END

 To program the PIC, make sure the oscillator that defines in programming is

same as use at hardware to avoid instability during transmit and receive data. The

SERIN2 command in the program support many different data modifier which may

be mixed and matches freely within single SERIN2 statement to provide various

input formatting. The modifier support is shown in table 3.5. The number 84 on

30

“Serin2 SerI, 84, [dec3 B0]” command is refer to baud rate that equal to 9600bps

according table 3.4.

Table 3.5: Modifier Support by SERIN2 Command [11]

 In the PM type stepper motor, a permanent magnet is used for rotor and coils

are put on stator. The stepper motor model which has 4-poles is shown in the figure

3.9. In case of this motor, step angle of the rotor is 90 degrees. The turn of the motor

is controlled by the electric current which pours into X, X’ and Y, Y’. The direction

of stepper run can be fixed according table 3.6.

Figure 3.9: Construction of Stepper Motor

31

Table 3.6: Direction Control of Stepper Motor

Clockwise
Control

X X’ Y Y’ Counter
Clockwise
Control

X X’ Y Y’
0 1 0 1 0 1 0 1
1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1

Step
Angle

0º 90 º 180 º 270 º 0 º -90 º -180 º -270 º

 The command “PAUSE 30” on the programming will determine the rotation

speed of stepper motor in millisecond. If the value of PUASE is decrease, it means

the step of stepper motor is greater. The total rotation of stepper motor also can be set

with user needed at “FOR x 1 to 80” command.

 In this project the programming for PIC has been develop which can control

four variable speed of motor either in clockwise or counters clockwise direction. All

the speed and rotation of the motor can be control via MATLAB GUI. Beside can

control stepper motor in same time the PIC also can control 5V DC motor.

 The general flow of the PIC program is show in figure 3.10. The PIC will

wait the data transfer from MATLAB GUI before it run a specific task to control the

motor according the data transferred. For example, if MATLAB GUI sends three

decimal number data “030”, the PIC will run the task or specific program under

CASE 030 in PIC. If the data send by MATLAB GUI is not valid, there is nothing

happen to the PIC until the valid data received again.

32

Wait Data
Transferred From

MATLAB GUI

Find Program
According to Data

Transferred
Motor

YES

NO

Figure 3.10: General PIC Program Flow

3.2.4 Hardware Installation

 For hardware design, first is to design the power supply module which is to

supply 5V fixed to PIC and max232 IC. Power supply module is importance to PIC

and max232 to prevent damage if users give the higher input supply to device. The

schematic diagram for power supply module is like in figure 3.11. Input to the power

supply must greater than 7V to 7805 voltage regulator IC to achieve the 5V output

supply to PIC and max232.

Figure 3.11: Power Supply Modules

C1

1u

5V

0

>7.0V

C3

1u

7805

1

2

3VIN

G
N

D

VOUT

C3

100u

33

 Second is to design the connection from communication port (DB9 female

connection) from computer to the device which is the pin assignment is shown in

table 3.7 below and the figure of RS 232 communication port shown on figure 3.12.

In fact, only three pins are required for serial port communications: one for receiving

data, one for transmitting data, and one for the signal ground. The connection from

computer to device only on pin 2, 3 and pin 5. The circuit in figure 3.13 shows the

connection between RS232 with MAX232 and the PIC.

Figure 3.12: Pins and Signals Associated With the 9-pin Connector

Table 3.7: Serial Port Pin and Signal Assignments

Pin Label Signal Name Signal Type
1 CD Carrier Detect Control
2 RD Received Data Data
3 TD Transmitted Data Data
4 DTR Data Terminal Ready Control
5 GND Signal Ground Ground
6 DSR Data Set Ready Control
7 RTS Request to Send Control
8 CTS Clear to Send Control
9 RI Ring Indicator Control

34

Figure 3.13: Serial Port Connection to PIC

 In this project the output data from MAX232 is send directly to PIC at

PORTC.0. This connection is depending on the PIC programming that has been

developing before it can perform specific task according the data send from the

MATLAB GUI. The oscillator use in the circuit diagram also same with the define

one in the PIC programming to avoid instability.

 The output on the PIC port is approximately 4.7 V low current which is

cannot run the stepper motor or DC motor directly. So, to run the motor, switching

approach is use by using additional source with high current supply. To done this

method the Darlington transistor (C1815) is use like the circuit in figure 3.14. To run

the DC motor in forward or reverse direction it has to use relay because it cannot

directly control via PIC. In this project, the PORTA.0 to PORTA.3 will be use to

35

control the coil of stepper motor while PORTD.0 and PORTD.1 is use to control 5V

DC motor like in figure 3.15. Figure 3.16 show the hardware installation use in this

project in control the 5V DC motor and stepper motor. The hardware installation for

this project is shown in figure 3.16.

Figure 3.14: Stepper Motor and Switching Circuit

36

Figure 3.15: 5V DC Motor Connection

Figure 3.16: Hardware (Top View)

Stepper Motor 5V DC Motor
DB 9
Connector

PIC 16F877A

Power Supply
Module

MAX 232 Relay

37

CHAPTER 4

RESULT DISCUSSION

4.1 Introduction

This chapter consists of the discussions on the results from the MATLAB

GUI layout that has been developing using MATLAB Graphical User Interface

Development Environment. The MATLAB GUI in this project can be divided to four

parts. First part is main menu of the whole GUI. Second part is interfacing MATLAB

GUI software. The third part is advance MATLAB GUI development and the last

part is user information GUI.

4.2 Main Menu of the GUI

 The main menu of the GUI in this project contain of four pushbutton which

38

link to motor control, general info about the project abstract and credit and lastly is

exit button. The main menu of the GUI and info of the project is shown in figure 4.1.

For motor control pushbutton will explain detail in the next sub chapter. In credit part

shown in figure 4.2 contains the detail about the GUI developer and the supervisor.

For the exit button user will ask about the confirmation either to exit the GUI or not.

The confirmation figure is shown in figure 4.3.

Figure 4.1: Main menu of the GUI

Figure 4.2: Credit

39

Figure 4.3: Exit Button Confirmations

4.3 Interface MATLAB GUI Software

 For motor control part, it divides into two parts where the first part is

interfacing software and the second part is advance GUI development for future. The

first part of the motor control GUI is the main objective of this project where to

interface between MATLAB GUI with the device (motor) to control the motor.. The

figure of motor control menu is shown in figure 4.4. The interface software is

developing only for 5V DC motor and basic stepper motor control. The rest is for

advance development. In the menu motor control menu also, user can get the

information to using this software and will discuss in the next chapter.

40

Figure 4.4: Motor Control Menu

 The menu of the 5V DC motor is shown in figure 4.5. Before the motor can

be control, the user has to tick the ‘PORT’ button in open/close port panel to

initialize the port. If users not tick the button, the GUI cannot send the data to PIC.

To check the status of the port, user only has to push the check status button. It will

display either the port is opened or closed condition like in figure 4.6. For 5V DC

motor the user can control either forward or reverse direction. The user also can stop

the motor with click on Stop button in operation panel. The graph on the menu is

only to give information about the output from PIC supply to the motor. For future

development the graph will shown the actual voltage that supply to the motor directly

and has close loop feedback.

41

Figure 4.5: 5V DC Motor Menu

Figure 4.6: Communication Port Status

 The second software that has been developed is for basic stepper motor

control. In this software, the stepper motor can be control either in forward or reverse

direction with four variable speeds where 1 is slowest and 4 is the fastest. The

stepper motor also can be control to forward and reverse with one button click. This

feature also can be control in four different speeds. Beside that, the stepper motor

also can be control in random speed. The menu of basic stepper motor is shown in

figure 4.7. The open/close port part is same like in 5V DC motor control.

42

Figure 4.7: Basic Stepper Motor Control

 For both motor controls, before user quit the GUI, the reminder warning will

pop up like in figure 4.8. The user will remind about to close the port before exit in

order to avoid error to run next interface GUI software. If errors happen, user must

restart the MATLAB and run the GUI back.

Figure 4.8: Warning pop up Menu

4.4 Advance Development of GUI

 In this part the software is develop also to control the motor but in different

way. But the development this kind of project need further study. This part contains

pulse control to control either stepper motor or Brushed/Brushless DC motor shown

43

in figure 4.9, advance stepper motor control shown in figure 4.10 and

Brushed/Brushless DC motor shown in figure 4.11.

 For the pulse menu, the graph will plot the actual output that generate after

the properties is set on the GUI menu. The output actually can be compare with the

oscilloscope with the graph plot in the GUI. This software actually design to run

either stepper motor or Brushed/BLDC motor that use PWM concept.

 In the Brushed/BLDC motor control menu the user control PWM mode and

frequency beside can control direction in clockwise or counter clockwise. PWM duty

cycle is to change the speed of the motor in three decimal numbers where 255 is the

maximum speed.

Figure 4.9: Pulse Control GUI Menu

44

Figure 4.10: Advance Stepper Motor Control GUI Menu

Figure 4.11: Brushed/Brushless DC Motor GUI Menu

45

4.5 User Information GUI

 This part (mark with blue line in figure 4.4) provides the user manual as

guidance to use these MATLAB GUI software. The manual is important for the first

time user to get the information on how to operate the GUI in right way. The user

can get the information on how to setting the port shown in figure 4.12, because if

this software use in different computer, the communication port configuration also

differ. So the GUI software cannot control the motor or in other word the interface

between MATLAB GUI and device is failed. The data is not send to the PIC. Beside

that user can get the information what to do before, during or after using the software

shown in figure 4.13.

Figure 4.12: Help Menu

46

Figure 4.13: Info Menu

47

4.6 Observation of PIC Output

 In this part, the PIC output observation is made to ports which control the 5V

DC motor and the stepper motor. The observation of the output is monitor using

oscilloscope.

4.6.1 5V DC Motor output Observation

 The output for the motor in forward and reverse condition is shown in figure

4.14 where the output is approximately 4.72V maximum. The forward and reverse

of the motor is control by additional circuit using relay. So the output for PORTD.0

and PORTD.1 is same and just to active the relay. In stop condition the output that

has been monitor is shown in figure 4.15 where the output is nearly 0V.

48

Figure 4.14: Output for Forward & Reverse 5V DC Motor

Figure 4.15: Output during Stop Condition

4.6.2 Stepper Motor Output Observation

 This project use unipolar stepper motor. In a unipolar stepper motor, there are

four separate electromagnets. To turn the motor, first coil "1" is given current, then

it's turned off and coil 2 is given current, then coil 3, then 4, and then 1 again in a

repeating pattern. Current is only sent through the coils in one direction; thus the

name unipolar.

49

Figure 4.16: Speed 1 Output for Stepper Motor

 To control stepper motor, the each of the coil must be supply with pulse

width modulation (PWM). In this project there are four different width of the PWM

where it determines the speed of the stepper motor. When the width of PWM supply

is decrease or small, the speed of the stepper motor is increase and when the width of

PWM is increase, the speed is decrease or slow. The output monitor using

oscilloscope for PORTA in four different speeds is shown in figure 4.16 to figure

4.19.

50

Figure 4.17: Speed 2 Output for Stepper Motor

 The outputs for speed 1 that produce by PIC is like figure 4.16. The width of

the PWM is program in PIC for 240ms gap between each on and off sequence. For

speed 2 the PWM program in PIC for 160ms and for speed 3 the delay set to 90ms

and lastly for speed 4 the delay set in PIC programming is 30ms.

51

Figure 4.18: Speed 3 Output for Stepper Motor

Figure 4.19: Speed 4 Output for Stepper Motor

52

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

 The design and implementation of Motor control GUI has been presented in

this project. The development of the MATLAB GUI using MATLAB GUIDE was

done after detail study and analysis. Through the development of this project it has

conclude that the MATLAB GUI can control the motor and interface with the device

with the proper hardware installation and knowledge. The GUI seems easy to

develop using simple pushbutton but it needs more knowledge and effort to do

advanced programming on MATLAB GUI.

 The objective of this project is to interface the MATLAB GUI and to control

the DC motor is achieve. The main contribution of this project is interfacing the GUI

with the device.

53

5.2 Future Recommendations

 For the future recommendations, to improve this project, other features on

GUI control can be added like slider to control the motor speed simultaneously with

the slider change. For the information this project can be develop to control four

stepper motor in time and can be use in store and retrieve application. Beside that

other motor also can be added to be control through MATLAB GUI such as AC

motor.

 To make this project look more interesting, the close loop feedback from

hardware is added. From this there are many things that we can develop such as the

rotation or speed of the motor can be measure in MATLAB GUI. We also can

include sensor to make specific task to detect object or detect change in surface

condition if the user to apply in pick or place application using this software.

5.3 Costing and Commercialization

 The cost of the project is divided into two parts. First part is for hardware cost

and second part is for software. For hardware, it will cost approximately RM 100.

For software cost it more on to get the license from MATLAB and usually the cost is

high where the license must be renew by year.

 This project can be used in picking and placing or store and retrieve

application. Whereas commercially available software such as Flexible

Manufacturing System and Computer Integrated Manufacturing but this project

provides basic GUI capability for controlling that kind of the DC motor. This project

approach of imparting advanced GUI capability to microcontrollers using MATLAB

can be used to develop microcontroller-based low-cost control platforms. In addition,

this approach can be used to impart GUI capability to any microcontroller that

supports serial communication, such as the PIC series microcontrollers.

54

REFERENCE

[1] 17 January 2007, Citing Internet source URL

 http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/buildgui.p

df

[2] Chapman, Stephen J, (2001) MATLAB Programming for Engineers, Brooks

 Cole.

[3] Creating Graphical User Interfaces (GUI’s) with MATLAB

 By Jeffrey A. Webb

 OSU Gateway Coalition Member

[4] 19 January 2007, Citing Internet source URL

 http://www.webopedia.com/TERM/G/Graphical_User_Interface_GUI.html

[5] 20 January 2007, Citing Internet source URL

 http://en.wikipedia.org/wiki/Graphical_user_interface

[6] 20 January 2007, Citing Internet source URL

 http://en.wikipedia.org/wiki/Electric_motor

[7] Notes from subject - BEE2123 ELECTRICAL MACHINES

 Prepared by Abu Zaharin Bin Ahmad

[8] 17 January 2007, Citing Internet source URL

 http://www.solarbotics.net/starting/200111_dcmotor/200111_dcmotor2.html

55

[9] http://en.wikipedia.org/wiki/PIC_microcontroller

[10] 18 January 2007, Citing Internet source URL

 http://www.flhs.org.uk/Departments/technology/Word/PIC.htm

[11] PicBasic Pro Compiler, (2004). microEngineering Labs, Inc.

 Available at: http://www.melabs.com

[12] Introduction to Graphical User Interface (GUI) MATLAB 6.5

 By Prof. Abdulla Ismail Abdulla

[13] Creating Graphical User Interface Version 7

 By The MathWork, Inc

[14] Yan-Fang Li, Saul Harari, Hong Wong, and Vikram Kapila (2004). Matlab-

 Based Graphical User Interface Development for Basic Stamp 2

 Microcontroller Projects.

 Department of Mechanical, Aerospace, and Manufacturing Engineering

 Polytechnic University, Brooklyn, NY.

[15] Duane Hanselman & Bruce Littlefield (2005). Mastering MATLAB 7.

 Pearson, Prentice Hall.

[16] Marc E. Herniter (2001). Programming In MATLAB. Northern Arizona

 University, Brooks/Cole.

[17] Robert DeMoyer and E. Eugene Mitchell (1999). Use of the MATLAB

 Graphical User Interface Development Environment for Some Control

 System Applications.

56

APPENDIX A

PIC Programming

INCLUDE "bs2defs.bas"
define OSC 8
SerI var PORTC.0

p var byte
x var byte
y var byte
z var byte

TRISA = %00000000
TRISB = %00000000
TRISC = %00000000
TRISD = %00000000

Start:
 portc = %00000000
 Serin2 SerI, 84, [dec3 B0]

 select case B0

 case 001 'forward
 for x=1 to 80
 gosub qwe
 next x

 case 002 'reverse
 for x=1 to 80
 gosub ewq
 next x

 case 003 'forward
 for y=1 to 50
 gosub asd
 next y

 case 004 'reverse
 for y=1 to 50
 gosub dsa
 next y

 case 005 'froward
 for z=1 to 50
 gosub zxc
 next z

 case 006 'reverse
 for z=1 to 50
 gosub cxz
 next z

 case 007 'forward
 for z=1 to 50
 gosub rty
 next z

 case 008 'reverse
 for z=1 to 50
 gosub ytr
 next z

 case 010 'forward & reverse
 for x=1 to 50
 gosub qwe
 next x
 for y=1 to 50
 gosub ewq
 next y

 case 011
 for x=1 to 50
 gosub asd
 next x
 for y=1 to 50
 gosub dsa
 next y

 case 012
 for x=1 to 50
 gosub zxc
 next x
 for y=1 to 50
 gosub cxz
 next y

 case 013
 for x=1 to 50
 gosub rty

57

 next x
 for y=1 to 50
 gosub ytr
 next y

 case 020 'variable speed forward
 for x=1 to 50
 gosub qwe
 next x
 for y=1 to 50
 gosub zxc
 next y

 case 021 'variable speed forward
 for x=1 to 50
 gosub rty
 next x
 for y=1 to 50
 gosub asd
 next y

 case 022 'variable speed reverse
 for z=1 to 50
 gosub ewq
 next z
 for y=1 to 50
 gosub ytr
 next y

 case 023 'variable speed reverse
 for z=1 to 50
 gosub ytr
 next z
 for y=1 to 50
 gosub dsa
 next y

 CASE 030 'for dc motor
 high portd.0

 case 031
 portd = 0

 case 032
 high portd.1

 end select

goto start

 qwe:

 porta=%00000101
 pause 30
 porta=%00001001
 pause 30
 porta=%00001010
 pause 30
 porta=%00000110
 pause 30

 return

 ewq:
 porta=%00000101
 pause 30
 porta=%00000110
 pause 30
 porta=%00001010
 pause 30
 porta=%00001001
 pause 30

 return

 asd:
 porta=%00000101
 pause 90
 porta=%00001001
 pause 90
 porta=%00001010
 pause 90
 porta=%00000110
 pause 90

 return

 dsa:
 porta=%00000101
 pause 90
 porta=%00000110
 pause 90
 porta=%00001010
 pause 90
 porta=%00001001
 pause 90

 return

 zxc:
 porta=%00000101
 pause 160
 porta=%00001001
 pause 160
 porta=%00001010
 pause 160
 porta=%00000110

58

 pause 160

 return

 cxz:
 porta=%00000101
 pause 160
 porta=%00000110
 pause 160
 porta=%00001010
 pause 160
 porta=%00001001
 pause 160

 return

 rty:
 porta=%00000101
 pause 240
 porta=%00001001
 pause 240

 porta=%00001010
 pause 240
 porta=%00000110
 pause 240

 return

 ytr:
 porta=%00000101
 pause 240
 porta=%00000110
 pause 240
 porta=%00001010
 pause 240
 porta=%00001001
 pause 240

 return

end

59

APPENDIX B

PIC 16F877 Data sheet

60

61

62

APPENDIX C

MAX232 Data Sheet

63

64

65

66

APPENDIX D

Main Menu GUI Programming

function varargout = main(varargin)
% MAIN M-file for main.fig
% MAIN, by itself, creates a new MAIN or raises the existing
% singleton*.
%
% H = MAIN returns the handle to a new MAIN or the handle to
% the existing singleton*.
%
% MAIN('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MAIN.M with the given input arguments.
%
% MAIN('Property','Value',...) creates a new MAIN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before main_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to main_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help main

% Last Modified by GUIDE v2.5 23-Oct-2007 00:44:22

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @main_OpeningFcn, ...
 'gui_OutputFcn', @main_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before main is made visible.
function main_OpeningFcn(hObject, eventdata, handles, varargin)
movegui ('center')
% This function has no output args, see OutputFcn.
% hObject handle to figure

67

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to main (see VARARGIN)
% Choose default command line output for main
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes main wait for user response (see UIRESUME)
% uiwait(handles.figure1);

movegui('center')

% --- Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function varargout=pushbutton1_Callback(h,eventdata,handles,varagin)
figure(motorcontrol)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

user_response = modaldlg1('Title','Confirm Close');
switch lower(user_response)
case 'no'
 % take no action
case 'yes'
 % Prepare to close GUI application window
 % .
 % .
 % .
 close all

end

% --- Executes on button press in pushbutton3.
function varargout=pushbutton3_Callback(h,eventdata,handles,varagin)
figure(Info)
% hObject handle to pushbutton3 (see GCBO)

68

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton4.
function varargout=pushbutton4_Callback(h,eventdata,handles,varagin)
figure(credit)

% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function axes1_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes1
[x,map]=imread('main','jpg');
image(x)
set(gca,'visible','off')

69

APPENDIX E

Motor Control Menu GUI Programming

function varargout = motorcontrol(varargin)
% MOTORCONTROL M-file for motorcontrol.fig
% MOTORCONTROL, by itself, creates a new MOTORCONTROL or raises the existing
% singleton*.
%
% H = MOTORCONTROL returns the handle to a new MOTORCONTROL or the handle to
% the existing singleton*.
%
% MOTORCONTROL('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MOTORCONTROL.M with the given input arguments.
%
% MOTORCONTROL('Property','Value',...) creates a new MOTORCONTROL or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before motorcontrol_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to motorcontrol_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help motorcontrol

% Last Modified by GUIDE v2.5 28-Oct-2007 14:19:18

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @motorcontrol_OpeningFcn, ...
 'gui_OutputFcn', @motorcontrol_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before motorcontrol is made visible.
function motorcontrol_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

70

% varargin command line arguments to motorcontrol (see VARARGIN)

% Choose default command line output for motorcontrol
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes motorcontrol wait for user response (see UIRESUME)
% uiwait(handles.figure1);

movegui('center')

% --- Outputs from this function are returned to the command line.
function varargout = motorcontrol_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

[x,map]=imread('bg1','jpg');
image(x)
set(gca,'visible','off')

% --- Executes on button press in pushbutton1.
function varargout=pushbutton1_Callback(h,eventdata,handles,varagin)
figure(pushbutton)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close(gcbf)
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close (gcbf)

% --- Executes on button press in pushbutton4.
function varargout=pushbutton4_Callback(h,eventdata,handles,varagin)
figure(pulse)

% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcbf)

% --- Executes on button press in pushbutton5.
function varargout=pushbutton5_Callback(h,eventdata,handles,varagin)

71

figure(steppermotor)

% hObject handle to pushbutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcbf)

% --- Executes on button press in pushbutton6.
function varargout=pushbutton6_Callback(h,eventdata,handles,varagin)
figure(brushedbldcmotor)
% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcbf)

% --- Executes on button press in pushbutton7.
function varargout=pushbutton7_Callback(h,eventdata,handles,varagin)
figure(Help)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in help.
function varargout=help_Callback(h,eventdata,handles,varagin)
figure(help1)
% hObject handle to help (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton9.
function varargout=pushbutton9_Callback(h,eventdata,handles,varagin)
figure(stepperinterface)
% hObject handle to pushbutton9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close(gcbf)

% --- Executes on button press in pushbutton10.
function varargout=pushbutton10_Callback(h,eventdata,handles,varagin)
figure(main)
% hObject handle to pushbutton10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close (gcbf)

72

APPENDIX F

5V DC Motor Control GUI Programming

function varargout = pushbutton(varargin)
% PUSHBUTTON M-file for pushbutton.fig
% PUSHBUTTON, by itself, creates a new PUSHBUTTON or raises the existing
% singleton*.
%
% H = PUSHBUTTON returns the handle to a new PUSHBUTTON or the handle to
% the existing singleton*.
%
% PUSHBUTTON('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in PUSHBUTTON.M with the given input arguments.
%
% PUSHBUTTON('Property','Value',...) creates a new PUSHBUTTON or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before pushbutton_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to pushbutton_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help pushbutton

% Last Modified by GUIDE v2.5 28-Oct-2007 14:25:49

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @pushbutton_OpeningFcn, ...
 'gui_OutputFcn', @pushbutton_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before pushbutton is made visible.
function pushbutton_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB

73

% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to pushbutton (see VARARGIN)

SerPIC=serial('COM1') %define the port available
Check=SerPIC.status %to check port status data
handles.status=Check %store data
handles.op=SerPIC; % store data
guidata(hObject, handles); %save data

set(findobj(gca,'Type','line','Color',[0 0 1]),'Color',[0 1 0],'LineWidth',2.5)
set(gca,'color',[0.027 0.702 0.894])
grid on;
axis([0 30 -10 10]);
xlabel('Time');
ylabel('Voltage');
title('Voltage vs Time Linear signal');

% Choose default command line output for pushbutton
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes pushbutton wait for user response (see UIRESUME)
% uiwait(handles.figure1);

movegui('center')

% --- Outputs from this function are returned to the command line.
function varargout = pushbutton_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in open_close_port.
function open_close_port_Callback(hObject, eventdata, handles)
% hObject handle to open_close_port (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of open_close_port

if (get(hObject,'Value')==get(hObject,'Max'));
 SerPIC=handles.op % retrieve data
 set(SerPIC,'BaudRate',9600,'DataBits',8,'Parity','none','StopBits',1,'FlowControl','none');
 fopen(SerPIC)
 guidata(hObject,handles); %save data ;
else
 SerPIC=handles.op
 fclose(SerPIC)
 guidata(hObject,handles)

end
guidata(hObject,handles);

% --- Executes on button press in close_button.

74

function close_button_Callback(hObject, eventdata, handles)
% hObject handle to close_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

user_response = modaldlg2('Title','Confirm Close');
switch lower(user_response)
case 'no'
 % take no action
case 'yes'
 % Prepare to close GUI application window
 % .
 % .
 % .
 delete(handles.figure1)
end

% --- Executes on button press in forward_PB.
function forward_PB_Callback(hObject, eventdata, handles)
% hObject handle to forward_PB (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op %retrieve data

m=1:0.1:1000;
n=-m;
c=m+n;
plot(c+5);
set(findobj(gca,'Type','line','Color',[0 0 1]),'Color',[0 1 0],'LineWidth',2.5)
set(gca,'color',[0.027 0.702 0.894])
grid on;
axis([0 30 -10 10]);
xlabel('Time');
ylabel('Voltage');
title('Voltage vs Time Linear signal');

fprintf(SerPIC,'%s','031');
fprintf(SerPIC,'%s','030');

% --- Executes during object creation, after setting all properties.
function axes1_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes1

% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op %retrieve data
m=1:0.1:1000;
n=-m;
c=m+n;
plot(c-5);
set(findobj(gca,'Type','line','Color',[0 0 1]),'Color',[0 1 0],'LineWidth',2.5)

75

set(gca,'color',[0.027 0.702 0.894])
grid on;
axis([0 30 -10 10]);
xlabel('Time');
ylabel('Voltage');
title('Voltage vs Time Linear signal');

fprintf(SerPIC,'%s','031');
fprintf(SerPIC,'%s','032');

% --- Executes on button press in stop_PB.
function stop_PB_Callback(hObject, eventdata, handles)
% hObject handle to stop_PB (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op %retrieve data

m=1:0.1:1000;
n=-m;
c=m+n;
plot(c);
set(findobj(gca,'Type','line','Color',[0 0 1]),'Color',[0 1 0],'LineWidth',2.5)
set(gca,'color',[0.027 0.702 0.894])
grid on;
axis([0 30 -10 10]);
xlabel('Time');
ylabel('Voltage');
title('Voltage vs Time Linear signal');

fprintf(SerPIC,'%s','031');

% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1

val = get(hObject,'Value');
str = get(hObject, 'String');
switch str{val};
case 'linear'
 handles.current_data = handles.peaks;
case 'pulse'
 handles.current_data = handles.membrane;

end
guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

76

% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SerPIC=handles.op
Check=handles.status
u=SerPIC.status

set(handles.text2,'String',u)

77

APPENDIX G

Stepper Motor Control GUI Programming

function varargout = stepperinterface(varargin)
% STEPPERINTERFACE M-file for stepperinterface.fig
% STEPPERINTERFACE, by itself, creates a new STEPPERINTERFACE or raises the existing
% singleton*.
%
% H = STEPPERINTERFACE returns the handle to a new STEPPERINTERFACE or the handle
to
% the existing singleton*.
%
% STEPPERINTERFACE('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in STEPPERINTERFACE.M with the given input arguments.
%
% STEPPERINTERFACE('Property','Value',...) creates a new STEPPERINTERFACE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before stepperinterface_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to stepperinterface_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help stepperinterface

% Last Modified by GUIDE v2.5 28-Oct-2007 15:01:23

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @stepperinterface_OpeningFcn, ...
 'gui_OutputFcn', @stepperinterface_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before stepperinterface is made visible.
function stepperinterface_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB

78

% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to stepperinterface (see VARARGIN)

SerPIC=serial('COM1') %define the port available
Check=SerPIC.status %to check port status data
handles.status=Check %store data
handles.op=SerPIC; % store data
guidata(hObject, handles); %save data

% Choose default command line output for stepperinterface
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes stepperinterface wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = stepperinterface_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in radiobutton1.
function radiobutton1_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton1
if (get(hObject,'Value')==get(hObject,'Max'));
 SerPIC=handles.op % retrieve data
 set(SerPIC,'BaudRate',9600,'DataBits',8,'Parity','none','StopBits',1,'FlowControl','none');
 fopen(SerPIC)
 guidata(hObject,handles); %save data ;
else
 SerPIC=handles.op
 fclose(SerPIC)
 guidata(hObject,handles)

end
guidata(hObject,handles);

% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1

79

% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on selection change in popupmenu2.
function popupmenu2_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu2 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu2

% --- Executes during object creation, after setting all properties.
function popupmenu2_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on selection change in popupmenu3.
function popupmenu3_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu3 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu3

% --- Executes during object creation, after setting all properties.
function popupmenu3_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc

80

 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in close.
function close_Callback(hObject, eventdata, handles)
% hObject handle to close (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

user_response = modaldlg2('Title','Confirm Close');
switch lower(user_response)
case 'no'
 % take no action
case 'yes'
 % Prepare to close GUI application window
 % .
 % .
 % .
 delete(handles.figure1)
end

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op %retrieve data
fprintf(SerPIC,'%s','007');

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','005');

% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','003');

% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','001');

% --- Executes on button press in pushbutton7.

81

function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','008');

% --- Executes on button press in pushbutton8.
function pushbutton8_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','006');

% --- Executes on button press in pushbutton9.
function pushbutton9_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','004');

% --- Executes on button press in pushbutton10.
function pushbutton10_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','002');

% --- Executes on button press in pushbutton11.
function pushbutton11_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton11 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','013');

% --- Executes on button press in pushbutton12.
function pushbutton12_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','012');

% --- Executes on button press in pushbutton13.
function pushbutton13_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op

82

fprintf(SerPIC,'%s','011');

% --- Executes on button press in pushbutton14.
function pushbutton14_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','010');

% --- Executes on button press in pushbutton15.
function pushbutton15_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','020');

% --- Executes on button press in pushbutton16.
function pushbutton16_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton16 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','021');

% --- Executes on button press in pushbutton17.
function pushbutton17_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton17 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','022');

% --- Executes on button press in pushbutton18.
function pushbutton18_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton18 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','023');

% --- Executes on button press in pushbutton19.
function pushbutton19_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton19 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SerPIC=handles.op
Check=handles.status
y=SerPIC.status

set(handles.text8,'String',y)

83

APPENDIX H

Credit Menu GUI Programming

function varargout = Credit(varargin)
% CREDIT M-file for Credit.fig
% CREDIT, by itself, creates a new CREDIT or raises the existing
% singleton*.
%
% H = CREDIT returns the handle to a new CREDIT or the handle to
% the existing singleton*.
%
% CREDIT('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in CREDIT.M with the given input arguments.
%
% CREDIT('Property','Value',...) creates a new CREDIT or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Credit_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Credit_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help Credit

% Last Modified by GUIDE v2.5 21-Oct-2007 14:38:11

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Credit_OpeningFcn, ...
 'gui_OutputFcn', @Credit_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Credit is made visible.
function Credit_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

84

% varargin command line arguments to Credit (see VARARGIN)
movegui('center')
% Choose default command line output for Credit
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Credit wait for user response (see UIRESUME)
% uiwait(handles.figure1);

whitebg('k')

% --- Outputs from this function are returned to the command line.
function varargout = Credit_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

[a,map]=imread('nuar','jpg');
image(a)
set(gca,'visible','off')

% --- Executes during object creation, after setting all properties.
function axes5_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes5

[x,map]=imread('mrsharfi','jpg');
image(x)
set(gca,'visible','off')

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as a double

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

85

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function edit2_Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text
% str2double(get(hObject,'String')) returns contents of edit2 as a double

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

