DEVELOPMENT OF MOTOR CONTROL USING
GRAPHICAL USER INTERFACE

KHAIRUL ANUAR BIN ARIS

UNIVERSITY MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS*

JupuL: DEVELOPMENT OF MOTOR CONTROL USING
GRAPHICAL USER INTERFACE

SESI PENGAJIAN: 2007/2008

Saya KHAIRUL ANUAR BIN ARIS (850811-11-5225)
(HURUF BESAR)

mengaku membenarkan tesis (Sarjana Muda/Sarjana /Dekter-Falsafah)* ini disimpan di
Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi
pengajian tinggi.
**Sjla tandakan (V)

(Mengandungi maklumat yang berdarjah keselamatan
SULIT atau kepentingan Malaysia seperti yang termaktub
di dalam AKTA RAHSIA RASMI 1972)
TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)
Alamat Tetap:
NO 833 JALAN LIMBONG, KG. MR. MUHAMMAD SHARFI

LIMBONG, 24000 CUKAI, BIN NAJIB
KEMAMAN TERENGGANU. (' Nama Penyelia)

Tarikh: 26 NOVEMBER 2007 Tarikh: : 26 NOVEMBER 2007

CATATAN: * Potong yang tidak berkenaan.
foled Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
dikelaskan sebagai atau TERHAD.
. Tesis dimaksudkan sebagai tesis bagi ljazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

“l hereby acknowledge that the scope and quality of this thesis is
qualified for the award of the degree of Bachelor of Electrical

Engineering (Power Systems)”

Signature:
Name: MUHAMMAD SHARFI BIN NAJIB
Date: 26 NOVEMBER 2007

DEVELOPMENT OF MOTOR CONTROL USING
GRAPHICAL USER INTERFACE

KHAIRUL ANUAR BIN ARIS

This thesis is submitted as partial fulfillment of the
requirements for the award of the Bachelor Degree of

Electrical Engineering (Power Systems)

Faculty of Electrical & Electronics Engineering
University Malaysia Pahang

NOVEMBER 2007

“All the trademark and copyrights use here in are property of their
respective owner. References of information from other sources are
quoted accordingly; otherwise the information presented in this report is

solely work of the author.”

Signature
Author : KHAIRUL ANUAR BIN ARIS
Date : 26 NOVEMBER 2007

Specially dedicated to
my beloved family and those people who have guided and inspired me

throughout my journey of education.

ACKNOWLEDGEMENT

First and foremost, | am very grateful to the almighty ALLAH S.W.T for

giving me this opportunity to accomplish my Final Year Project.

Firstly, 1 wish to express my deep gratitude to my supervisor, Mr.
Muhammad Sharfi bin Najib for all his valuable guidance, assistance and support all

through this work.

Secondly, | wish to thank lecturers and technicians, for their suggestions and
support on this project. Their comments on this project are greatly appreciated. My

thanks are also to all my friends who have involved and helped me in this project.

Most importantly | extend my gratitude to my parents who have encouraged
me throughout my education and | will always be grateful for their sacrifice,

generosity and love.

ABSTRACT

DC Motor control is very common in robotic application. The developments
of this kind of project are widely used in most electronic devices nowadays. There
are many application that have been developed based on motor control in electronic
field such as in automation, Flexible Manufacturing System (FMS) and Computer
Integrated Manufacturing (CIM). The purpose of this project is to develop the
Graphical User Interface of Motor Control through MATLAB GUIDE, interface the
MATLAB GUI with hardware via communication port and control the DC motor
through MATLAB GUI. By using MATLAB GUIDE, it provides a set of tools
which simplify the process of laying out and programming GUIs and interface with
PIC via serial communication port to control the DC motor. The PIC is used to
control motor. As a result, the DC motor is able to be controlled through MATLAB
GUI and interface the MATLAB GUI with PIC via serial communication port.

Vi

ABSTRAK

Motor DC umumnya dikaitkan dengan bidang robotik dan pembangunan
projek-projek yang berkaitan dalam bidang ini sangat meluas yang digunakan dalam
kebanyakan peralatan elektrik hari ini. Banyak applikasi yang telah dibangunkan
berdasarkan kawalan motor dalam bidang automasi seperti Flexible Manufacturing
System(FMS) dan Computer Integrated Manufacturing(CIM). Tujuan projek ini
adalah untuk membina grafik antaramuka pengguna untuk mengawal motor DC
melalui MATLAB dan membina antaramuka antara MATLAB GUI dengan
perkakasan elektronik melalui communication port. Dengan menggunakan
MATLAB GUIDE, ia telah menyediakan peralatan yang mana set peralatan ini
memudahkan pengguna dengan proses meletak dan membina program untuk grafik
antaramuka pengguna untuk mengawal motor DC. PIC digunakan dalam projek ini
adalah bertujuan untuk mengawal motor. Sebagai kesimpulanya, motor DC dapat
dikawal melalui MATLAB GUI dan berantaramuka dengan perkakasan elektronik

melalui serial communication port.

CHAPTER

TABLE OF CONTENTS

TITLE

TITLE PAGE
DECLARATION
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT

ABSTRAK

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES
LIST OF APPENDICES

vii

PAGE

iv

Y
vii
xi
xii

Xiv

viii

TABLE OF CONTENTS
CHAPTER TITLE PAGE
1 INTRODUCTION

11 Overview
1.2 Objective
1.3 Scope

1.4 Problem Statement

w W NN N

1.5 Thesis Organization

2 LITERATURE REVIEW
2.1 Graphical User Interface (GUI) 4
2.1.1 General Definition of GUI 4
2.1.2 MATLAB GUI 5
2.1.3 Operation of GUI 6
2.1.4 A brief introduction of GUIDE 7

2.1.4.1 Two Basic Task in Process

of implementing a GUI 7
2.2 DC Motors

2.2.1 Introduction 8
2.2.2 The Advantages 9
2.2.3 The drawbacks 10
2.2.4 Type of DC Motor

2.2.4.1 Stepper motors 10

2.2.4.2 Brushless DC motors 11

2.2.4.3 Coreless DC motors 11

2.3 PIC Microcontroller
2.3.1 ORIGINS
2.3.2 PIC Microcontroller Option
2.3.3 Variants

2.4 PIC Basic Pro Compiler

2.5 LDmicro

METHODOLOGY

3.1 Introduction

3.2 Methodology

3.2.1 Develop MATLAB GUI Using
MATLAB GUIDE

3.2.2 Build MATLAB Programming

3.2.3 Build PIC programming

3.2.4 Hardware Installation

RESULT DISCUSSION

4.1 Introduction

4.2 Main Menu of the GUI

4.3 Interface MATLAB GUI Software

4.4 Advance Development of GUI

4.5 User Information GUI

4.6 Observation of PIC Output
4.6.1 5V DC Motor output Observation
4.6.2 Steeper Motor Output Observation

CONCLUSION

5.1 Conclusion
5.2 Future Recommendations

5.3 Costing and Commercialization

12
12
13
14
14
15

16
16

18
22
27
32

37
37
39
42
45

47
48

52
53
53

REFERENCES 54

Appendices A-H 56 - 85

TABLE NO.

3.1
3.2
3.3
3.4
3.5
3.6
3.7

LIST OF TABLES

TITLE

Basic MATLAB GUI Component

Kind of Callback

Major Sections of the GUI M-file

List of Standard Baud Rate

Modifier Support by SERIN2 Command
Direction Control of Stepper Motor

Serial Port Pin and Signal Assignments

PAGE

22
23
25
28
30
31
33

Xi

FIGURE NO.

2.1
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13
3.14
3.15
3.16
4.1
4.2
4.3
4.4
4.5
4.6

LIST OF FIGURES

TITLE

Part of an Electric Motor
Flowcharts for Whole Project
MATLAB GUIDE Layouts
Property Inspector

Example GUI

Example M-files for GUI
Initialize Communication Port

Open and Close of Communication Port

Transmit data to PIC

Construction of Stepper Motor
General PIC Program Flow

Power Supply Modules

Pins and Signals Associated With the
9-pin Connector

Serial Port Connections to PIC
Stepper Motor and Switching Circuit
5V DC Motor Connections
Hardware (Top View)

Main menu of the GUI

Credit

Exit Button Confirmations

Motor Control Menus

5V DC Motor Menus

Communication Port Statuses

Xii

PAGE

17
19
20
21
22
26
26
27
30
32
32

33
34
35
36
36
38
38
39
40
41
41

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

Basic Stepper Motor Control

Warning pop up Menu

Pulse Control GUI Menu

Advance Stepper Motor Control GUI Menu
Brushed/Brushless DC Motor GUI Menu
Help Menu

Info Menu

Output for Forward & Reverse 5V DC Motor
Output during Stop Condition

Speed 1 Output for Stepper Motor

Speed 2 Output for Stepper Motor

Speed 3 Output for Stepper Motor

Speed 4 Output for Stepper Motor

42
42
43
44
44
45
46
47
48
49
50
51
51

Xiii

Xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE
A P1C Programming 56
B PIC 16F877 Data sheet 59
C MAX232 Data Sheet 62
D Main Menu GUI Programming 66
E Motor Control Menu GUI Programming 69
F 5V DC Motor Control GUI Programming 72
G Stepper Motor Control GUI Programming 77
H Credit Menu GUI Programming 83

CHAPTER 1

INTRODUCTION

1.1 Overview

The serial port found on the back of the most PC and it is extremely useful

for robotics work. Variety devices are configured to communicate via a serial port.

This Project is focus on designing the Graphical User Interface (GUI) through
MATLARB to control the DC motor using PIC. The PIC is a programmable interface
devices or controller between PC (MATLAB GUI) and the DC motor. The main
contribution of this project is the interfacing of the MATLAB with PIC and
Graphical User Interface (GUI).

The Peripheral Interface Controller (PIC) use in this project is as controller
device between Personal Computer and the DC motor to control DC motor. The PIC
is use because of wide availability and economical. Beside that PIC is a free
development tools and can perform many function without needed extra circuitry.
The PIC is program using the PICBasic Pro Compiler. The PicBasic Pro Compiler

produces code that may be programmed into a wide variety of PICmicro

microcontrollers having from 8 to 84 pins and various on-chip features including
A/D converters, hardware timers and serial ports. The purpose using MATLAB in
creating the GUI is because it already has Graphical User Interface Development
Environment (GUIDE) that provides a set of tools for creating GUI. These tools

simplify the process of laying out and programming GUIs.

The GUI create in MATLAB with appropriate coding will control the DC
motor via serial port that interface with the PIC. There are many advantage by using
the DC motor, among that the DC motor has no adverse effect on power quality and

the speed is proportional to the magnetic flux.

1.2 Objective

At the end of this Project:
i. Able to control DC motor through MATLAB GUI.
ii. Able to interface the MATLAB GUI with hardware using PIC.

The important part of this project is to interface the MATLAB GUI with the
PIC. This part is done if the PIC produces a signal. The output from PIC will monitor
by using the oscilloscope. After that the DC motor can be control via MATLAB
GUIL.

1.3 Scope of Project

The scopes of this project are laying out the GUI in MATLAB GUIDE and

create programming for the GUI’s. Secondly Prepare the PIC circuitry and serial

connection (DB9) circuit for interfacing part. And the third part is creating program

for PIC using PICBasic Pro Compiler to control the DC motor.

1.4 Problem Statement

The main objective in this project to interface the MATLAB GUI with the
PIC. It is a difficult part to develop the program for MATLAB and the PIC
simultaneously to make the interfacing part. By using the PicBasic Pro Compiler
software to develop programming to control DC motor, it can reduces the difficulty
by comprises a list of statements that written in a programming language like
assembler, C, or BASIC. With this opportunity, the men in charge do not have to

take long time to written and troubleshoot the program.

1.5 Thesis Organization

This thesis consists of five chapters including this chapter. The contents of

each chapter are outlined as follows;

Chapter 2 contains a detailed description each part of project. It will explain
about the MATLAB GUIDE, PIC, and DC motor. Chapter 3 includes the project
methodology. This will explain how the project is organized and the flow of the
process in completing this project. Chapter 4 presents the expected result of
simulation runs using MATLAB GUIDE. Finally the conclusions for this project are

presented in Chapter 5.

CHAPTER 2

LITERATURE REVIEW

2.1 Graphical User Interface (GUI)

2.1.1 General Definition of GUI

A graphical user interface (or GUI, often pronounced "gooey"), is a
particular case of user interface for interacting with a computer which employs
graphical images and widgets in addition to text to represent the information and
actions available to the user [4][5]. Usually the actions are performed through direct

manipulation of the graphical elements.

The first graphical user interface was designed by Xerox Corporation's Palo
Alto Research Center in the 1970s, but it was not until the 1980s and the emergence
of the Apple Macintosh that graphical user interfaces became popular. One reason
for their slow acceptance was the fact that they require considerable CPU power and

a high-quality monitor, which until recently were prohibitively expensive [4].

A graphical user interface (GUI) is a pictorial interface to a program. A good
GUI can make programs easier to use by providing them with a consistent
appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus,
and so forth [2][4]. A true GUI includes standard formats for representing text and
graphics [4]. The GUI should behave in an understandable and predictable manner,
so that a user knows what to expect when he or she performs an action. For example,
when a mouse click occurs on a pushbutton, the GUI should initiate the action

described on the label of the button.

Many DOS programs include some features of GUIs, such as menus, but are
not graphics based. Such interfaces are sometimes called graphical character-based

user interfaces to distinguish them from true GUIs [4].

2.1.2 MATLAB GUI

A graphical user interface (GUI) is a graphical display that contains devices,
or components, that enable a user to perform interactive tasks. To perform these
tasks, the user of the GUI does not have to create a script or type commands at the

command line. Often, the user does not have to know the details of the task at hand

[1] [2] [16].

The GUI components can be menus, toolbars, push buttons, radio buttons, list
boxes, and sliders — just to name a few. In MATLAB, a GUI can also display data

in tabular form or as plots, and can group related components [1] [2] [3].

2.1.3 Operation of GUI

Each component, and the GUI itself, is associated with one or more user-
written routines known as callbacks. The execution of each callback is triggered by a
particular user action such as, mouse click, pushbuttons, toggle buttons, lists, menus,
text boxes, selection of a menu item, or the cursor passing over a component and so
forth [1] [2].

Clicking the button triggers the execution of a callback [1]. A mouse click or
a key press is an event, and the MATLAB program must respond to each event if the
program is to perform its function. For example, if a user clicks on a button, that
event must cause the MATLAB code that implements the function of the button to be

executed. The code executed in response to an event is known as a call back [1] [2].

This kind of programming is often referred to as event-driven programming.
The event in the example is a button click. In event-driven programming, callback
execution is asynchronous, controlled by events external to the software. In the case
of MATLAB GUIs, these events usually take the form of user interactions with the
GUI. The writer of a callback has no control over the sequence of events that leads to
its execution or, when the callback does execute, what other callbacks might be

running simultaneously [1].

Callbacks
* Routine that executes whenever you activate the uicontrol object
» Define this routine as a string that is a valid MATLAB expression or the
name of an M-file

» The expression executes in the MATLAB workspace.

2.1.4 A brief introduction of GUIDE

GUIDE, the MATLAB graphical user interface development environment, provides
a set of tools for creating graphical user interfaces (GUIs). These tools simplify the

process of laying out and programming GUIs [1].

» GUIDE is primarily a set of layout tools
* GUIDE also generates an M-file that contains code to handle the initialization
and launching of the GUI
— This M-file also provides a framework for the implementation of the
callbacks - the functions that execute when users activate a

component in the GUI [1].

2.1.4.1Two Basic Task in Process of implementing a GUI

The two basic tasks in Process of implementing a GUI is first, laying out a
GUI where MATLAB implement GUIs as figure windows containing various styles
of uicontrol (User Interface) objects. The second task is programming the GUI,
where each object must be program to perform the intended action when activated by
the user of GUI [14].

2.2 DC Motors

2.2.1 Introduction

Electric motors are everywhere! In a house, almost every mechanical
movement that you see around you is caused by a DC (direct current) electric motor.
An electric motor is a device that transforms electrical energy into mechanical

energy by using the motor effect [7] [8].

Every DC motor has six basic parts -- axle, rotor (a.k.a., armature), stator,
commutator, field magnet(s), and brushes. In most common DC motors, the external
magnetic field is produced by high-strength permanent magnets. The stator is the
stationary part of the motor -- this includes the motor casing, as well as two or more
permanent magnet pole pieces. The rotor rotates with respect to the stator. The rotor

consists of windings (generally on a core), the windings being electrically connected

=

Commutator

*——Brushes

to the commutator [7] [8].

NORTH
L

HLNOS

Axle

Armature

To Battery

Field Magnet

Figure 2.1: Part of an Electric Motor

Industrial applications use dc motors because the speed-torque relationship
can be varied to almost any useful form -- for both dc motor and regeneration

applications in either direction of rotation. Continuous operation of dc motors is

commonly available over a speed range of 8:1. Infinite range (smooth control down

to zero speed) for short durations or reduced load is also common [6].

Dc motors are often applied where they momentarily deliver three or more
times their rated torque. In emergency situations, dc motors can supply over five

times rated torque without stalling (power supply permitting) [6].

Dc motors feature a speed, which can be controlled smoothly down to zero,
immediately followed by acceleration in the opposite direction -- without power
circuit switching. And dc motors respond quickly to changes in control signals due to

the dc motor's high ratio of torque to inertia [6] [7].

2.2.2 The Advantages

The greatest advantage of DC motors may be speed control. Since speed is
directly proportional to armature voltage and inversely proportional to the magnetic
flux produced by the poles, adjusting the armature voltage and/or the field current

will change the rotor speed [7].

e Today, adjustable frequency drives can provide precise speed control for AC
motors, but they do so at the expense of power quality, as the solid-state
switching devices in the drives produce a rich harmonic spectrum. The DC

motor has no adverse effects on power quality [6] [7].

10

2.2.3 The drawbacks

e Power supply, initial cost, and maintenance requirements are the
negatives associated with DC motors

o Rectification must be provided for any DC motors supplied from the grid.
It can also cause power quality problems.

e The construction of a DC motor is considerably more complicated and
expensive than that of an AC motor, primarily due to the commutator,
brushes, and armature windings. An induction motor requires no
commutator or brushes, and most use cast squirrel-cage rotor bars instead

of true windings — two huge simplifications [6].

2.2.4 Type of DC Motor

2.2.4.1 Stepper motors

A stepper motor is a brushless, synchronous electric motor that can divide a
full rotation into a large number of steps, for example, 200 steps. Thus the motor can
be turned to a precise angle [7]. A stepper motor is an electromechanical device
which converts electrical pulses into discrete mechanical movements and is a unique
type of dc motor that rotates in fixed steps of a certain number of degrees. Step size

can range from 0.9 to 90 degree [6] [7].

The speed of the motor shafts rotation is directly related to the frequency of
the input pulses and the length of rotation is directly related to the number of input
pulses applied. The motors rotation has several direct relationships to these applied

input pulses. The sequence of the applied pulses is directly related to the direction of

11

Motor shafts rotation [6] [8]. The stepper motors has an excellent response to start-

up, stopping and reverse [7].

There are three main of stepper motor type. First is Permanent Magnet (PM)

Motors second is Variable Reluctance (VR) Motors and the third is Hybrid Motors.

2.2.4.2 Brushless DC motors

A brushless DC motor (BLDC) is an AC synchronous electric motor that
from a modeling perspective looks very similar to a DC motor.

In a BLDC motor, the electromagnets do not move; instead, the permanent
magnets rotate and the armature remains static.

In order to do this, the brush-system/commutator assembly is replaced by an
Intelligent electronic controller. The controller performs the same power-
distribution found in a brushed DC-motor, but using a solid-state circuit

rather than a commutator/brush system [6].

2.2.4.3 Coreless DC motors

Optimized for rapid acceleration, these motors have a rotor that is constructed
without any iron core.

Because the rotor is much lighter in weight (mass) than a conventional rotor
formed from copper windings on steel laminations, the rotor can accelerate

much more rapidly, often achieving a mechanical time constant under 1 ms.

12

e These motors were commonly used to drive the capstan(s) of magnetic tape

drives and are still widely used in high-performance servo-controlled systems

[6].

2.3 PIC Microcontroller

PIC is a family of Harvard architecture microcontrollers made by Microchip
Technology, derived from the PIC1650 originally developed by General Instrument's

Microelectronics Division[9] [10].

PICs are popular with developers due to their low cost, wide availability,
large user base, extensive collection of application notes, availability of low cost or
free development tools, and serial programming (and re-programming with flash

memory) capability[9].

2.3.1 ORIGINS

1. The original PIC was built to be used with Gl's new 16-bit CPU, the CP1600.
While generally a good CPU, the CP1600 had poor 1/O performance, and the
8-bit PIC was developed in 1975 to improve performance of the overall
system by offloading 1/0O tasks from the CPU.

2. The PIC used simple microcode stored in ROM to perform its tasks, and
although the term wasn't used at the time, it is a RISC design that runs one

instruction per cycle (4 oscillator cycles).

13

3. In 1985 General Instruments spun off their microelectronics division, and the
new ownership cancelled almost everything — which by this time was mostly
out-of-date. The PIC, however, was upgraded with EPROM to produce a
programmable channel controller, and today a huge variety of PICs are
available with various on-board peripherals (serial communication modules,
UARTS, motor control kernels, etc.) and program memory from 512 words to

32k words and more[9].

2.3.2 PIC Microcontroller Option

A PIC Microcontroller chip combines the function of microprocessor, ROM
program memory, some RAM memory and input-output interface in one single

package which is economical and easy to use [10][14].

The PIC - Logicator system is designed to be used to program a range of 8,
18, 28 pin reprogrammable PIC microcontroller which provide a variety of input —

output, digital input and analogue input options to suit students project uses [10].

Reprogrammable “FLASH Memory” chips have been selected as the most
economical for student use. If a student needs to amend to control system as the
project is evaluated and developed, the chip can simply be taken out of the product

and reprogrammed with an edited version of the floe sheet [10].

The PIC devices generally feature is sleep mode (power saving), watchdog

timer and various crystal or RC oscillator configuration, or an external clock.

14

2.3.3 Variants

Within a series, there are still many device variants depending on what hardware

resources the chip features [9].

e general purpose i/o pins

« internal clock oscillators

o 8/16 Bit Timers

e Internal EEPROM Memory

e Synchronous/Asynchronous Serial Interface USART

e MSSP Peripheral for I12C and SPI Communications

o Capture/Compare and PWM modules

e Analog-to-digital converters

o USB, Ethernet, CAN interfacing support

o external memory interface

o Integrated analog RF front ends (PIC16F639, and rfPIC)
o KEELOQ Rolling code encryption peripheral (encode/decode)

2.4 PIC Basic Pro Compiler

The PicBasic Pro Compiler (or PBP) makes it even quicker and easier to
program Microchip Technology’s powerful PICmicro microcontrollers (MCUSs). The
English-like BASIC language is much easier to read and write than the quirky
Microchip assembly language [11].

The PicBasic Pro Compiler is “BASIC Stamp Il like” and has most of the
libraries and functions of both the BASIC Stamp | and Il. Being a true compiler,
programs execute much faster and may be longer than their Stamp equivalents. PBP

is not quite as compatible with the BASIC Stamps as our original [11] [17].

ject

15

The PicBasic Pro Compiler produces code that may be programmed into a
wide variety of PICmicro microcontrollers having from 8 to 84 pins and various on-

chip features including A/D converters, hardware timers and serial ports [11].

2.5 LDmicro

LDmicro generates native code for certain Microchip PIC16 and Atmel AVR
microcontrollers. Usually software for these microcontrollers is written in a
programming language like assembler, C, or BASIC. A program in one of these
languages comprises a list of statements. These languages are powerful and well-
suited to the architecture of the processor, which internally executes a list of
instructions. PLCs, on the other hand, are often programmed in “ladder logic.'

16

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents the methodology of this project. It describes on how the
project is organized and the flow of the steps in order to complete this project. The
methodology is diverged in two parts, which is developing the hardware to interface
with MATLAB. The other is developing the programming for MATLAB and the PIC

to control DC motor.

3.2 Methodology

There are three mains method in order to develop this project. Before the
project is developing using MATLAB, it is needed to do the study on MATLAB
GUIDE and the hardware (especially PIC). The flowchart in Figure 3.1 illustrated the

17

sequence of steps for this project. The first method is developing GUI in MATLAB
and programs every GUI component. Secondly is to develop PIC programming to
control 5V DC and stepper motor. And lastly is hardware design which is use to
interface with MATLAB GUI.

START

Case Study

A 4

Determination of Hardware
And programming

A 4 h 4
Hardware design MATLAB GUI Study
| ldentify PIC & GUI Design
| DC Motor i
v Program
- Development
NO Interfacing
Circuit ¢
ldentify
appropriate <
Design Coding
oK l
Integrated \
S| e 2
prog YES NO

YES

\ 4
Simulation & Analysis [€

NO

Figure 3.1: Flowchart for Whole Project

18

Figure 3.1 show the flow of the whole project. The project begins after
registering the PSM title with doing case study about the project. The flow of the
project is separate into two main tasks that are hardware design and MATLAB GUI
design. In hardware design part flow, the main target is to create appropriate
programming for PIC to interface with personal computer via serial port to control
DC motor. The second part, the prior task is to develop program in MATLAB to
interface with PIC and the DC motor. After that the both part is combine and do the
analysis until achieve the needed objective. The main contribution of this project is
to interface MATLAB GUI with the PIC.

3.2.1 Development MATLAB GUI Using MATLAB GUIDE

GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating graphical user interfaces (GUIs). These tools

simplify the process of laying out and programming GUIs.

There are 5 steps in build the MATLAB GUI. First Use a MATLAB tool
called guide (GUI Development Environment) to layout the components that show in
figure 3.2. This tool allows a programmer to layout the GUI, selecting and aligning
the GUI components to be placed in it. The basic component of the MATLAB GUI

is shown in Table 3.1.

19

Menu Tah Order M-File Property

’ Editor Egitor Editor Inspector Object
Align Browser
Object

Fle Edit Wew LayouMNigols Hel

D& @) L » Run

Push Button

m=m Slider

® Radio Button

4 Check Box

elf Edlit Text

T Static Text

=3 Pop-up Menu

Ell Listhox

I Toggle Button

kﬂAxes

%] Pangl

"% Button Group

=X Activex Contral

Figure 3.2: MATLAB GUIDE Layouts

Next is Use a MATLAB tool called the Property Inspector (built into guide)
to give each component a name (a "tag") and to set the characteristics of each
component, such as its color, the text it displays, and so on. After that, save the figure
to a file. When the figure is saved, two files will be created on disk with the same
name but different extents. The fig file contains the actual GUI that has been created,
and the M-file contains the code to load the figure and skeleton call backs for each
GUI element. These two files usually reside in the same directory. They correspond
to the tasks of laying out and programming the GUI. When you lay out the GUI in
the Layout Editor, your work is stored in the FIG-file. When you program the GUI,

your work is stored in the corresponding M-file.

Es Property Inspector

uicentral (pushbuttond "Push Button")

HarizontalAlignment
Interruptible

SelectionHighlight

FontAngle [=]norma =
FontMName MS Sans Serif
FontSize a.0
FontUnits (=) points
Fontielght [=]) norma
- ForegroundColor () I
Handlevisibility [x)en
HitTest [=)en

KeyPressFcn
ListhoxTap 1.0
Mz 1.0
Min 0.0
Position [2916.76913.8 1.769]

- Sliderstep 0.01 0.1]
String Push Button
Style [) pushbutton
Tag pushbutton?
TooltipString
i = =

[=] center

an

[*)en

Figure 3.3: Property Inspector

Table 3.1: Basic MATLAB GUI Component [12]

Element

Created By

Description

Graphical Controls

Pushbutton

Toggle button

Radio button

Check box

Edit box

List box

Popup menus

Slider

Static Elements

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

uicontrol

A graphical component that implements a pushbutton. It triggers a
callback when clicked with a mouse.

A graphical component that implements a toggle button. A toggle
button is either “on™ or “off,” and it changes state each time that it
is clicked. Each mouse button click also triggers a callback.

A radio button is a type of togzle button that appears as a small
circle with a dot in the middle when it is “on.” Groups of radio

buttons are used to implement mutually exclusive choices. Each
mouse click on a radio button triggers a callback.

A check box is a type of toggle button that appears as a small
square with a check mark in it when it is “on.” Each mouse click
on a check box triggers a callback.

An edit box displays a text string and allows the user to modify
the information displayed. A callback is triggered when the user
presses the Enter key.

A list box is a graphical control that displays a series of text
strings. A user can select one of the text strings by single- or
double-clicking on it. A callback is triggered when the user selects
a string.

A popup menu is a graphical control that displays a series of text
strings in response to a mouse click. When the popup menu is not
clicked on, only the currently selected string is visible.

A slider is a graphical control to adjust a value in a smooth,
continuous fashion by dragging the control with a mouse. Each
slider change triggers a callback.

Frame uicontrol Creates a frame, which is a rectangular box within a figure. Frames
are used to group sets of controls together. Frames never trigger
callbacks.

Text field uicontrol Creates a label, which is a text string located at a point on the
figure. Text fields never trigger callbacks.

Menus and Axes

Menu items uimenu Creates a menu item. Menu items trigger a callback when a mouse
button is released over them.

Context menus uicontextmenu Creates a context menu, which is a menu that appears over a graph-
ical object when a user right-clicks the mouse on that object.

Axes axes Creates a new set of axes to display data on, Axes never trigger

callbacks.

20

21

After laying out the GUI component and set the property, the GUI will be

look like in figure 3.4 for example according to the user creativity.

@ pushbutton.fig

File Edit Wew Layout Tools Help
=2 sBH % »
R Select

(=] Push Button
m=n Slider

@ Radio Button
B4 Check Box axesh
[ecfT Edlit Text
T Static Text

= Pap-up Menu
=l Listhox

[Togale Button
I pves

%] Panal

%] Button Group o -

=X Activex Control
- Faorward Reverse

OpeniClose Port |
peniiiose Fal Close
O PORT

Check Status |

Stop |

Figure 3.4: Example GUI

And finally write code to implement the behavior associated with each
callback function in m-files show in figure 3.5. A callback is a function that writes
and associates with a specific GUI component or with the GUI figure. It controls
GUI or component behavior by performing some action in response to an event for
its component. This kind of programming is often called event-driven programming.
This last step is the difficult one and has to make an extra reading on how to write

the coding before the GUI component can perform some task that user desire.

22

& Editor - C:AMATLAB7\Wwork\PSMipushbutton.m

File Edit Text Cell Tools Debug Deskbop ‘Window Help ¥ X

DEE {BRRo | & #MF 88 8% E D8 steck HOB 20O

49 % ——— Executes just hefore pushbutton is made wisible. L

50 function pushbutton CpeningFen(hObject, ewventdata, handles, wvarargin)

51 % This function has no output args, sees CJutputFon.

5z % hibject handle to figure

53 % eventdata reserved - to he defined in & future version of MATLAE

54 % handles structure with handles and user data (see GUIDATL) i

55 % wvarargin command line arguments to pushbutton (See VARARGIN)

56

57 SJerPIC=serial (' COM1") tdefine the port available

55 Check=3erPIC.status tto check port status data

59 handlez.status=Check zatore data

&0 handles.op=5erPIC; % =store data

51 guidata (hCbject, handles);: isave data

-]

53 set (findob] {goea, ' Type', 'line' ,'Color' [0 O 1]),'Color', [0 1 0], 'Lin=eWidth',2.5)

54 set (gos, 'color!' [[0.027 0.702 0.854])

65 grid on;

513 axis ([0 30 -10 101;):

a7 xlebel (' Time' |;

55 vlabel ('Voltage');

59 title('Voltage ws Time Linear signal'):

0 bt
< | >

pushbutton Ln 1 Col 1

Figure 3.5: Example M-files for GUI

3.2.2 Build MATLAB Programming

After layed out the GUI, it need to program its behavior. The code is to write

controls how the GUI responds to events such as button clicks, slider movement,

menu item selection, or the creation and deletion of components. This programming

takes the form of a set of functions, called callbacks, for each component and for the
GUI figure itself.

A callback is a function that writes and associates with a specific GUI

component or with the GUI figure. It controls GUI or component behavior by

performing some action in response to an event for its component. This kind of

programming is often called event-driven programming.

23

The GUI figure and each type of component have specific kinds of callbacks

with which it can be associated. The callbacks that are available for each component

are defined as properties of that component. Each kind of callback has a triggering

mechanism or event that causes it to be called. The kind of callback is shown in table

3.2.

Table 3.2: Kind of Callback

Callback Property Triggering Event Components
DeleteFcn Component deletion. It | Axes, figure, button
can be used to perform | group,
cleanup operations just | context ~menu, menu,
before the component or | panel,
figure is destroyed. user interface controls
KeyPressFcn Executes when the user | Figure, user interface
presses a keyboard key | controls
and the callback’s
component or figure has
focus.
ResizeFcn Executes when a user | Button group, figure,
resizes a panel, button | panel

SelectionChangeFcn

group, or figure whose
figure. Resize property is
set to On.

Executes when a user

selects a different radio
button or toggle button in
a button group

component.

Button group

WindowButtonDownFcn

Executes when you press
a mouse button while the
pointer is in the figure

window.

Figure

24

WindowButtonMotionFcn | Executes when you move | Figure
the pointer within the
figure window.

WindowButtonUpFcn Executes when you | Figure
release a mouse button.

ButtonDownFcn Executes when the user | Axes, figure, button
presses a mouse button | group, panel, user
while the pointer is on or | interface controls
within five pixels of a
component or figure. If
the component is a user
interface control, its
Enable property must be
on.

Callback Component action. | Context menu, menu, user
Executes, for example, | interface controls

when a user clicks a push
button or selects a menu

item.

CloseRequestFcn

CreateFcn

Executes before the figure
closes.

Component creation. It
can be use to initialize the
component when it is
created. It executes after
the component or figure is
created, but before it is

displayed.

Figure
Axes, figure, button
group, context menu,
menu,
panel, user interface
controls

25

The GUI M-file that GUIDE generates is a function file. The name of the
main function is the same as the name of the M-file. For example, if the name of the
M-file is mygui.m, then the name of the main function is mygui. Each callback in the
file is a sub function of the main function. When GUIDE generates an M-file, it
automatically includes templates for the most commonly used callbacks for each

component. The major sections of the GUI M-file are ordered as shown in table 3.3.

Table 3.3: Major Sections of the GUI M-file [13]

Section Description

Comments Dizplayed at the command line in response to the
help command. Edit these as necessary for your

GULL
Initialization GUIDE initialization tasks. Do neé edit this code.

Opening function Performe your initialization tasks before the user
has acceas to the GUL

Crutput function Returns outputs to the MATLAR command line
after the opening function returns control and
before control returna to the command line.

Component and Control the behavior of the GUI figure and of

figure callbacks individual compenents, MATLAR calls a callback
in response to a particular event for a component
or for the figure itself.

Utilityhelper Perform miscellaneous functicns not directly
functions associated with an event for the figure ora
cornpon ert.

GUIDE automatically includes two callbacks, the opening function and the
output function, in every GUI M-file it creates. The opening function programming
is importance in initialize the communication port in MATLAB GUI before it can
transmit data to the PIC. The data send from MATLAB GUI to PIC is in decimal
form and PIC will control the DC motor with the preset programming according to
the data received. Here is the example programming in figure 3.6 and figure 3.7 to
initialize and close communication port at the back of computer using radio button in
MATLAB GUI. In figure 3.8 is example to transmit data to PIC.

26

43
49 % ———= Executes just hefore pushbhutton is mwade visible.
50 function pushbutton OpeningFon(hObject, eventdata, handles, varargin)
51 % Thiz function has no output args, sSee CutputFeon.
52 % hibject handle to figure
53 % eventdata reserved - to be defined in a future version of MATLAE
=5 % handles structure with handles and user data (see GUIDLTL)
55 % warargin command line arguments to pushbutton (see VARARGIN)
56
57 SJerPIC=serial ('COM1') tdefine the port availahle
58 Check=3erPIC.status (to check port status data
59 handle=s.status=Check fatore data
a0 handles.op=3erPIC; % store data
61 guidatahlbject, handles); ssave data
Figure 3.6: Initialize Communication Port
r
ag % --- Executes on button press in open close port.
a5 function open close port Callback(hobject, eventdata, handles)
Qg5 % hibject handle to open close _port (see GCBO)
a7 % eventdata reserved - to be defined in a future version of MATLLE
a5 % handles structure with handles and user data [see GUIDATA)
EE]
100 % Hint: get(hoObject, 'Value'] returns toggle state of open close port
101
102 - if (gecihCbjectc,'Value')==get (hObject, 'Max'));
103 - SerPIC=handles.op % retrieve data
104 - get (SerPIC, 'EBaudRate' 9600, 'Databits' 8, 'Parity', 'none' , 'StopBits' 1, 'FlowControl' , 'none')
105 - fopen(Z3erPIC)
106 — guidata (hObject, handles) tzave data H
107 - else
108 - SerPIC=handles.op
109 - frolose (3erPIC)
110 - guidata(hObject, handles)
111
112 - end
113 - guidataihOhject,handles);

Figure 3.7: Open and Close of Communication Port

27

193 % —--— Executes on button press in stop PB. Ce:
194 function stop FPE Callback(hCbject, eventdata, handles)

135 % hibject handle to stop_PE (ses GCEO)

194 % eventdata reserved - to be defined in a future version of MATLLE
197 % handles structure with handles and user data (see GUIDATL)

195

199 - ZerPIC=handles.op tretrieve data

200

201 - mw=1:0.1:1000;

202 - n=-m;

203 - c=mtn:

204 - plotic):

205 - set(findobjigcs, ' Type','line' 'Color! , [0 O 1]),'Calor! [0 1 0], 'LineWidch' , 2.5)
206 - setigoa, 'color! , [0.027 0.702 0.894])

207 - grid on;

208 - axis([0 30 -10 10]):

209 - xlshel('Tim='):

210 - vwlahel('Voltage']:

211 - title|'Voltage ws Timwe Linear signal');

212

213 - fprintf (SerPIC, '%s','031'); %tranmit data to PIC|

Figure 3.8: Transmit data to PIC

In opening and closing the communication port the command fclose (SerPIC)
is use to disconnect a serial port object from the device. The baud rate from
MATLAB GUI must be set same with the baud rate in PIC before it can transmit and
receive the data. For example if baud rate in MATLAB GUI is 9600bps, so the baud
rate in PIC also 9600bps.

3.2.3 Build PIC programming

There many ways to program the PIC either the user can use LDmicro,
assembly language or PICBasic Pro Compiler. The LDmicro use ladder diagram
approach like PLC while PICBasic Pro compiler is English-like BASIC language and
much easier to read and write than the quirky Microchip assembly language.

The data from MATLAB GUI is send to PIC in decimal form, so the PIC is

program to read or receive the data also in decimal form. The communication

28

between MATLAB GUI and PIC is in standard asynchronous format where the
device uses its own internal clock resulting in bytes that are transferred at arbitrary
times. The baud rate is specifying according to MATLAB GUI. Some standard baud
rates are listed in table 3.4. For PIC programming, 9600bps is using which same with
the MATLAB GUIL.

Table 3.4: List of Standard Baud Rate [11]

Baud Rate Bits0-12
300 3313
600 1646
1200 813
2400 396
4800 188
9600" 84

19200° 32

The input data at PIC that transmit from MATLAB GUI is set to PORTC.0
before it run certain program to control the DC motor. Here is the example to
program the stepper motor run in clockwise and anticlockwise direction. If
MATLAB send data ‘001’, so the PIC will perform case 001 according the

programming.

INCLUDE "bs2defs.bas" 'has some definition in it
DEFINE 0SC 8 ‘define the oscillator speed in MHz
Serl VAR PORTC.0 ‘define input port
X VAR BYTE
TRISA = %00000000 'set PortA as an output port
Start:
portc = %00000000 ‘clear port C
Serin2 Serl, 84, [dec3 BO] 'get three digit decimal number data from
MATLAB GUI

SELECT CASE B0

CASE 001
FOR x=1to 80
GOSUB gwe
NEXT x

CASE 002

FOR x=1to 80

GOSUB ewq

NEXT x
GOTO Start

qwe:

PAUSE 30

porta=%00001001

PAUSE 30

porta=%00001010

PAUSE 30

porta=%00000110

PAUSE 30
RETURN

ewq:

porta=%00000101

PAUSE 30

porta=%00000110

PAUSE 30

porta=%00001010

PAUSE 30

porta=%00001001

PAUSE 30

RETURN

END

porta=%00000101

‘clockwise

‘anti clockwise

29

To program the PIC, make sure the oscillator that defines in programming is

same as use at hardware to avoid instability during transmit and receive data. The

SERIN2 command in the program support many different data modifier which may

be mixed and matches freely within single SERIN2 statement to provide various

input formatting. The modifier support is shown in table 3.5. The number 84 on

30

“Serin2 Serl, 84, [dec3 B0]” command is refer to baud rate that equal to 9600bps

according table 3.4.

Table 3.5: Modifier Support by SERIN2 Command [11]

Modifier

Operation

BIN{1l..16}

Receive binary digits

DEC{1..5} Receive decimal digits
HEX{1l..4} Receive upper case hexadecimal
digits
SKIP n Skip n received characters

STR ArrayVarin{\c}

Receive string of n characters
optionally ended in character ¢

WAIT ()

Wait for sequence of characters

WAITSTR ArrayVar{\n}

W ait for character string

In the PM type stepper motor, a permanent magnet is used for rotor and coils

are put on stator. The stepper motor model which has 4-poles is shown in the figure

3.9. In case of this motor, step angle of the rotor is 90 degrees. The turn of the motor

is controlled by the electric current which pours into X, X’ and Y, Y’. The direction

of stepper run can be fixed according table 3.6.

Stator
{Elect ramaznet)

Rotor

Figure 3.9: Construction of Stepper Motor

31

Table 3.6: Direction Control of Stepper Motor

Clockwise | X X’ Y Y’ Counter X X’ Y Y’
Control 0 1 0 1 Clockwise [g 1 0 1

1] o 0 1 | Control 0| 1 1 0

1 0 1 0 1 0 1 0

0 1 1 0 1 0 0 1
Step 0° | 90° | 180° | 270° 0°]-90°|-180° | -270°
Angle

The command “PAUSE 30” on the programming will determine the rotation
speed of stepper motor in millisecond. If the value of PUASE is decrease, it means
the step of stepper motor is greater. The total rotation of stepper motor also can be set

with user needed at “FOR x 1 to 80” command.

In this project the programming for PIC has been develop which can control
four variable speed of motor either in clockwise or counters clockwise direction. All
the speed and rotation of the motor can be control via MATLAB GUI. Beside can

control stepper motor in same time the PIC also can control 5V DC motor.

The general flow of the PIC program is show in figure 3.10. The PIC will
wait the data transfer from MATLAB GUI before it run a specific task to control the
motor according the data transferred. For example, if MATLAB GUI sends three
decimal number data “030”, the PIC will run the task or specific program under
CASE 030 in PIC. If the data send by MATLAB GUI is not valid, there is nothing

happen to the PIC until the valid data received again.

32

Wait Data Find Program
Transferred From According to Data
MATLAB GUI Transferred

Figure 3.10: General PIC Program Flow

3.2.4 Hardware Installation

For hardware design, first is to design the power supply module which is to
supply 5V fixed to PIC and max232 IC. Power supply module is importance to PIC
and max232 to prevent damage if users give the higher input supply to device. The
schematic diagram for power supply module is like in figure 3.11. Input to the power
supply must greater than 7V to 7805 voltage regulator IC to achieve the 5V output
supply to PIC and max232.

>7.0V

"" 7805
1 3

VIN vouT ™ >sv

GND

1u 100u 1u

Figure 3.11: Power Supply Modules

33

Second is to design the connection from communication port (DB9 female
connection) from computer to the device which is the pin assignment is shown in
table 3.7 below and the figure of RS 232 communication port shown on figure 3.12.
In fact, only three pins are required for serial port communications: one for receiving
data, one for transmitting data, and one for the signal ground. The connection from
computer to device only on pin 2, 3 and pin 5. The circuit in figure 3.13 shows the
connection between RS232 with MAX232 and the PIC.

Figure 3.12: Pins and Signals Associated With the 9-pin Connector

Table 3.7: Serial Port Pin and Signal Assignments

Pin | Label Signal Name Signal Type
1 CD | Carrier Detect Control
2 RD | Received Data Data
3 TD | Transmitted Data Data
4 DTR | Data Terminal Ready | Control
5 GND | Signal Ground Ground
6 DSR | Data Set Ready Control
7 RTS | Request to Send Control
8 CTS | Clear to Send Control
9 RI Ring Indicator Control

34

57
Reset Button 10K
16FE7TA
= WICLRAsbp H REF/FGD B— > RBT
AND o RA0/AND RBE/FGC B—< > RBG
KT C—— RAlAANA RBS f—— > RBS
Dallas <_——0 RAZIANI et Cubef RB4 p— > RB4
O RAZANTAtet+ RE/PG ——_r RB3
g RATOCKIC10UT RB: p——__> RB2
o RAGAANSASSCIOUT RB1 — > RB1 5V
RED < >——t] REDARD/ANS RBOANT f— > REBO
5Y RE1 <_——t] RE1AWWRIAHE Widd

RE: <—1 REZALC S/ANT Wes
“widd ROT/PSPT B——r RO7
o s ROBPSPE — > ROB 100n
J_ 0 OSC1/CLKI ROS/PEPS f— > ROS

05C2/CLKD RDHPiPd — > RO —
—Serer—=— RCWTI0SOMICKl RCT/RNDT p— Hhw -
— Servo? <_— RCUTI0SICCR2 ROBMWCK o— »Fe—
Lﬂj Pk «—_—=o] RC2/CCP RC&MS00 p——__r Sdo

SokSel < — RCHSCRSECL RCHSO0KE0A B— > Sdifsda

EMHz RO0 <_——] ROO/PSPO ROPEP: p—__» RD3
RO1<_——=] RD1/P5P1 ROZ/P5P2 b— > ROZ
- 5V 5%
et

470R 470R
LI
Cl+ i [
Wt Gnd g— T B
- T p * 3 *
3 "y

Ci+ Riin g Led Led
C2- Rilotp _L_
e Tiinp =
T2out T2in [.
Riin RIon

L i

Figure 3.13: Serial Port Connection to PIC

In this project the output data from MAX232 is send directly to PIC at
PORTC.0. This connection is depending on the PIC programming that has been
developing before it can perform specific task according the data send from the
MATLAB GUI. The oscillator use in the circuit diagram also same with the define

one in the PIC programming to avoid instability.

The output on the PIC port is approximately 4.7 V low current which is
cannot run the stepper motor or DC motor directly. So, to run the motor, switching
approach is use by using additional source with high current supply. To done this
method the Darlington transistor (C1815) is use like the circuit in figure 3.14. To run
the DC motor in forward or reverse direction it has to use relay because it cannot
directly control via PIC. In this project, the PORTA.O to PORTA.3 will be use to

35

control the coil of stepper motor while PORTD.0 and PORTD.1 is use to control 5V

DC motor like in figure 3.15. Figure 3.16 show the hardware installation use in this

project in control the 5V DC motor and stepper motor. The hardware installation for

this project is shown in figure 3.16.

T
"' 7405
—un wouT
o
=
o
1 = o3
o “ 100U fu
fu
=
5%
10K
16FETTA
= T LRABp H RE7/FG0 p—< > RBT
Mg O RADSAND REG/FGC p—< > REG
R _—— RA1ANT RBS p—_> RBS
Dallas—<__——0 RAZANEZAtef- AT et RB4 B— > RB4
RAGIANIAbet+ RE/PGM B— > REZ
o RAKTOCKIC OUT REZ B RB2
O RAG/ANANG 5/C2 OUT RE1 b RE1
RED __— REOARD/ANS REOANT f—— > RBOD
W RE! <_— RE1ANWRAANG “ild
REZ <__—1 REZACH/ANT WEE
wild ROVPSP? B— > RO7
e ROB/PSPG — > RDG
DSC1/CLE RO4/PSPS B—_» RDS
= OSCHCLKD RO4PSF4 f—<__> RD4
Servol <_— ROOTIOSOVTICKI RCPRNDT p—__1Rx
— Servol <_—C RCUTI0SICCRZ RCBMYCK p—T > Tx
Lﬂj PM] RCZ/CCR REE/S00 f—(—> Sdo
SiokfSol <_——L RCHECKISTL ROHSONS0A f—> SdifSda
SMHz RO0 <_—0 ROOPSPO ROMPSP3 p— > RO3
RO < —C RO1/PSRI ROPSPZ p— > ROZ

5V

i

STEPPER MOTOR

02

C1815 _ X
D3

. "'V

¥

Figure 3.14: Stepper Motor and Switching Circuit

36

- Ci == 3

o B 100u 1u
1u

DO RELAY 1

- 3.3K 4@7 :
£

FELATZ |

o
MOTOR

Qv L
Figure 3.15: 5V DC Motor Connection
DB 9 PIC 16F877A
Stepper Motor 5V DC Motor Connector
Power Supply
Module

Relay

MAX 232

Figure 3.16: Hardware (Top View)

37

CHAPTER 4

RESULT DISCUSSION

4.1 Introduction

This chapter consists of the discussions on the results from the MATLAB
GUI layout that has been developing using MATLAB Graphical User Interface
Development Environment. The MATLAB GUI in this project can be divided to four
parts. First part is main menu of the whole GUI. Second part is interfacing MATLAB
GUI software. The third part is advance MATLAB GUI development and the last
part is user information GUI.

4.2 Main Menu of the GUI

The main menu of the GUI in this project contain of four pushbutton which

38

link to motor control, general info about the project abstract and credit and lastly is
exit button. The main menu of the GUI and info of the project is shown in figure 4.1.
For motor control pushbutton will explain detail in the next sub chapter. In credit part
shown in figure 4.2 contains the detail about the GUI developer and the supervisor.
For the exit button user will ask about the confirmation either to exit the GUI or not.

The confirmation figure is shown in figure 4.3.

J Abstract |E:E‘|g‘
~

File Edt Wew Insert Tools Deskiop MWindow Help

Universiti
Malaysia @ ABSTRACT
PAHAN he

DC Motar contral is very common with robotic and the development of this
kind of project are widely use in most electronic devices nowadays. There are
many application that have been develop base on motor control in electronic
field such as in automation, Flexible Manufacturing System(FMS)and Computer
Integrated Manufacturing(CIM). The purpose of this project is to develop the
Graphical User interface of Motor Control through MATLAB GUIDE interface,
the MATLAE GUI with hardware via communication port and control the DC mator
through W ATLAE GUI. By using MATLAE GUIDE, it provides a set of tools
which these tools simplify the procese of laying out and programming GUls and
interface with PIC via serial communication part ta contral the DC motor. The

Engrzerig + = reat o

MOTOR CONTROL GUI

PIC is used to contral motor. As the result, the DC motor is able to be control
through MATLAB GUIl and interface the MATLAB GUI with hardware wvia
communication port

Close

Figure 4.1: Main menu of the GUI

J (Credit

Project by: Khairul Anuar bin Aris
Bachelor of Electrical Engineering
Power System{04/08)
1D no.: EC04024

Project title: PFKE040 Motor
Centrol GUI

HP.: 012-9358584
E-mail: anuar1108@yahoo.com.my

Supervised by:
Special Thank to...
Mr. Muhammad Sharfi bin Najik
Lecturer
Faculty of Electrical & Electronic
Engineering

HP : 019-2222620

E-mail: sharfi@ump.edu.my

Figure 4.2: Credit

39

Confirm Close E|

@ Are yaou sure you swant to exit’y

[Yes] [flo]

Figure 4.3: Exit Button Confirmations

4.3 Interface MATLAB GUI Software

For motor control part, it divides into two parts where the first part is
interfacing software and the second part is advance GUI development for future. The
first part of the motor control GUI is the main objective of this project where to
interface between MATLAB GUI with the device (motor) to control the motor.. The
figure of motor control menu is shown in figure 4.4. The interface software is
developing only for 5V DC motor and basic stepper motor control. The rest is for
advance development. In the menu motor control menu also, user can get the

information to using this software and will discuss in the next chapter.

40

<) Imotarcontrol

~DC MOTOR AC MOTOR———

Svolt DC AC Mator
Eiasic Stepper Motor Contral

Stepper Mator Acvance)
BrushedBLDC Maotor

i

Figure 4.4: Motor Control Menu

The menu of the 5V DC motor is shown in figure 4.5. Before the motor can
be control, the user has to tick the ‘PORT’ button in open/close port panel to
initialize the port. If users not tick the button, the GUI cannot send the data to PIC.
To check the status of the port, user only has to push the check status button. It will
display either the port is opened or closed condition like in figure 4.6. For 5V DC
motor the user can control either forward or reverse direction. The user also can stop
the motor with click on Stop button in operation panel. The graph on the menu is
only to give information about the output from PIC supply to the motor. For future
development the graph will shown the actual voltage that supply to the motor directly

and has close loop feedback.

41

) pushbutton

Yaltage vs Tirme Linear signal
10

Yoltage
o

-10
0 10 20 30

Tirne

— Operation

Farward ‘ [Reverse] l Stop l

OpeniClase Port
@ PORT Check Status

Figure 4.5: 5V DC Motor Menu

closed open
OpenfCloze Port OpenfClose Port p

O PoRT Check Status (& PORT Check Status

Figure 4.6: Communication Port Status

The second software that has been developed is for basic stepper motor
control. In this software, the stepper motor can be control either in forward or reverse
direction with four variable speeds where 1 is slowest and 4 is the fastest. The
stepper motor also can be control to forward and reverse with one button click. This
feature also can be control in four different speeds. Beside that, the stepper motor
also can be control in random speed. The menu of basic stepper motor is shown in

figure 4.7. The open/close port part is same like in 5V DC motor control.

42

<} stepperinterface
o Operation — Warighle Speead
— Forward & Reverse - — Forward-Reverse
Speed
1 ’ Forward 1 ” Reverse 1] [Forwatrd & Reverse 1] Forward Reverse
2 ’ Forward 2 ” Reverse 2] ’ Forward & Reverse 2] ’ sl] [el]
3 [Forwatd 3] [Reverse 3] [Forwatrd & Reverse 3] ’ ks 2] [e]
4 ’ Forward 4] [Reverse 4] ’ Forward & Reverse 4]
|7 CpeniCloze Port
() PORT [—]
. Check Status

Figure 4.7: Basic Stepper Motor Control

For both motor controls, before user quit the GUI, the reminder warning will
pop up like in figure 4.8. The user will remind about to close the port before exit in
order to avoid error to run next interface GUI software. If errors happen, user must
restart the MATLAB and run the GUI back.

Confirm Close fz|

WARHING!
MAKE SURE THE PORT IS CLOSE BEFORE
TERMIHATE THIS PROGRAM.

Are you sure you want to exit’?

[Yes] [Mo l

Figure 4.8: Warning pop up Menu

4.4 Advance Development of GUI

In this part the software is develop also to control the motor but in different
way. But the development this kind of project need further study. This part contains

pulse control to control either stepper motor or Brushed/Brushless DC motor shown

43

in figure 4.9, advance stepper motor control shown in figure 4.10 and

Brushed/Brushless DC motor shown in figure 4.11.

For the pulse menu, the graph will plot the actual output that generate after
the properties is set on the GUI menu. The output actually can be compare with the
oscilloscope with the graph plot in the GUI. This software actually design to run
either stepper motor or Brushed/BLDC motor that use PWM concept.

In the Brushed/BLDC motor control menu the user control PWM mode and
frequency beside can control direction in clockwise or counter clockwise. PWM duty
cycle is to change the speed of the motor in three decimal numbers where 255 is the

maximum speed.

Yoltage vs Time pulse signal

Titne

30

“oltage

Speed

100

o 10 20 a0
Time
— Operatian

Forward ‘ l Reverse] l Stop]

O PORT Check Status

Figure 4.9: Pulse Control GUI Menu

J steppermotor

OM-OFF LEFT-RIGHT
{ OFF (DIRECTION 'R’
DELAY
Stepper Cortrol
Step Type .
(&) Fullf1 8 Degree) Chack Status
(") Half{0.9 Degres)
() Microstep —
—_— OpeniClose Paort
Range Select O PORT
(%) Stepper-1440rpm _—
() Stepper-720rpm
-

Figure 4.10: Advance Stepper Motor Control GUI Menu

} brushedbldemotor,

—MOTOR TYPE

OpeniClose Port
() BLDC (¥) BRUSHED
O PORT Check Status
— BRUSHED/BLDC CONTROLS
— BLDC DRIVE— — PAMMODE P FREQUERNCY —
(31 HALL 3
Complimentar F9KHz
() BEMF ®© : : o
(" High Sice 71 48HHZ
iR (" Low Side 1 105KHz
AT
®© () Bath Side () #2KHz
) PV COFF
— MASTER COMTROL
— Button Group
® Clockwise [F‘WM Duty Cycle SPEED l 255
() Counter-Clockwise
[Start l [Stop] [Step l

Claze

Figure 4.11: Brushed/Brushless DC Motor GUI Menu

45

45 User Information GUI

This part (mark with blue line in figure 4.4) provides the user manual as
guidance to use these MATLAB GUI software. The manual is important for the first
time user to get the information on how to operate the GUI in right way. The user
can get the information on how to setting the port shown in figure 4.12, because if
this software use in different computer, the communication port configuration also
differ. So the GUI software cannot control the motor or in other word the interface
between MATLAB GUI and device is failed. The data is not send to the PIC. Beside
that user can get the information what to do before, during or after using the software

shown in figure 4.13.

r = Ports

| Close

Figure 4.12: Help Menu

HELP??

This programme assumed that you have MATLAE hooked

up to aFIC microcontroller via the PC's serial port through a
MAXZ232 IC which connects the computer to the FIC
{aka Pin 3 andfor Pin 2). Fin 3 or the DE-9 port is the T line,
akathe line that carries serial datafromthe PC to the PIC.
Fin 2 carries serial data the other way (PIC to PC) if you want
to dothat Pin & isthe DB-9 ground pin which y ou should

use to connect the PC ground with the PIC ground.

MNOTE

1. Please remember to deselect back openfclose port after
run each program to avoid error.

2. f MATLAE evergives a serial error, itwill most likely
say 'Unable to open serial port’ nexttime you run the
program, so you have to restart MATLAB

Close

Figure 4.13: Info Menu

46

47

4.6 Observation of PIC Output

In this part, the PIC output observation is made to ports which control the 5V
DC motor and the stepper motor. The observation of the output is monitor using
oscilloscope.

4.6.1 5V DC Motor output Observation

The output for the motor in forward and reverse condition is shown in figure
4.14 where the output is approximately 4.72V maximum. The forward and reverse
of the motor is control by additional circuit using relay. So the output for PORTD.0
and PORTD.1 is same and just to active the relay. In stop condition the output that

has been monitor is shown in figure 4.15 where the output is nearly 0V.

M Pos: 00T

- e

125k ?
CH1
Max

47

CHY
Nane

CH1
Nane

(1

48

M Pos: DL0O00s AT
| H
Mean
1 155mv
CH1
] Freq
1 416.7kHz?
CH1
May

1 240my

CH1
None

CH1
hone

Figure 4.14: Output for Forward & Reverse 5V DC Motor

Figure 4.15: Output during Stop Condition

4.6.2 Stepper Motor Output Observation

This project use unipolar stepper motor. In a unipolar stepper motor, there are
four separate electromagnets. To turn the motor, first coil "1" is given current, then
it's turned off and coil 2 is given current, then coil 3, then 4, and then 1 again in a
repeating pattern. Current is only sent through the coils in one direction; thus the

name unipolar.

49

O
{ Peak Detect

i | I
hverage

1 Averages

Figure 4.16: Speed 1 Output for Stepper Motor

To control stepper motor, the each of the coil must be supply with pulse
width modulation (PWM). In this project there are four different width of the PWM
where it determines the speed of the stepper motor. When the width of PWM supply
is decrease or small, the speed of the stepper motor is increase and when the width of
PWM is increase, the speed is decrease or slow. The output monitor using
oscilloscope for PORTA in four different speeds is shown in figure 4.16 to figure
4.19.

50

Figure 4.17: Speed 2 Output for Stepper Motor

The outputs for speed 1 that produce by PIC is like figure 4.16. The width of
the PWM is program in PIC for 240ms gap between each on and off sequence. For
speed 2 the PWM program in PIC for 160ms and for speed 3 the delay set to 90ms
and lastly for speed 4 the delay set in PIC programming is 30ms.

K . [15a = ACQUIRE

IS

Aver age

1 Averages

........................

AVETages

M ims CHI J —41.7mV
<10Hz

Figure 4.19: Speed 4 Output for Stepper Motor

52

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The design and implementation of Motor control GUI has been presented in
this project. The development of the MATLAB GUI using MATLAB GUIDE was
done after detail study and analysis. Through the development of this project it has
conclude that the MATLAB GUI can control the motor and interface with the device
with the proper hardware installation and knowledge. The GUI seems easy to
develop using simple pushbutton but it needs more knowledge and effort to do
advanced programming on MATLAB GUI.

The objective of this project is to interface the MATLAB GUI and to control
the DC motor is achieve. The main contribution of this project is interfacing the GUI

with the device.

53

5.2 Future Recommendations

For the future recommendations, to improve this project, other features on
GUI control can be added like slider to control the motor speed simultaneously with
the slider change. For the information this project can be develop to control four
stepper motor in time and can be use in store and retrieve application. Beside that
other motor also can be added to be control through MATLAB GUI such as AC

motor.

To make this project look more interesting, the close loop feedback from
hardware is added. From this there are many things that we can develop such as the
rotation or speed of the motor can be measure in MATLAB GUI. We also can
include sensor to make specific task to detect object or detect change in surface

condition if the user to apply in pick or place application using this software.

53 Costing and Commercialization

The cost of the project is divided into two parts. First part is for hardware cost
and second part is for software. For hardware, it will cost approximately RM 100.
For software cost it more on to get the license from MATLAB and usually the cost is

high where the license must be renew by year.

This project can be used in picking and placing or store and retrieve
application. Whereas commercially available software such as Flexible
Manufacturing System and Computer Integrated Manufacturing but this project
provides basic GUI capability for controlling that kind of the DC motor. This project
approach of imparting advanced GUI capability to microcontrollers using MATLAB
can be used to develop microcontroller-based low-cost control platforms. In addition,
this approach can be used to impart GUI capability to any microcontroller that

supports serial communication, such as the PIC series microcontrollers.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

54

REFERENCE

17 January 2007, Citing Internet source URL
http://www.mathworks.com/access/helpdesk/help/pdf doc/matlab/buildgui.p

df

Chapman, Stephen J, (2001) MATLAB Programming for Engineers, Brooks
Cole.

Creating Graphical User Interfaces (GUI’s) with MATLAB
By Jeffrey A. Webb
OSU Gateway Coalition Member

19 January 2007, Citing Internet source URL
http://www.webopedia.com/TERM/G/Graphical User Interface GUI.html

20 January 2007, Citing Internet source URL

http://en.wikipedia.org/wiki/Graphical user interface

20 January 2007, Citing Internet source URL

http://en.wikipedia.org/wiki/Electric motor

Notes from subject - BEE2123 ELECTRICAL MACHINES
Prepared by Abu Zaharin Bin Ahmad

17 January 2007, Citing Internet source URL
http://www.solarbotics.net/starting/200111 dcmotor/200111 dcmotor2.html

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

55

http://en.wikipedia.org/wiki/PIC microcontroller

18 January 2007, Citing Internet source URL
http://www.flhs.org.uk/Departments/technology/Word/PIC.htm

PicBasic Pro Compiler, (2004). microEngineering Labs, Inc.

Available at: http://www.melabs.com

Introduction to Graphical User Interface (GUI) MATLAB 6.5
By Prof. Abdulla Ismail Abdulla

Creating Graphical User Interface Version 7
By The MathWork, Inc

Yan-Fang Li, Saul Harari, Hong Wong, and Vikram Kapila (2004). Matlab-
Based Graphical User Interface Development for Basic Stamp 2
Microcontroller Projects.

Department of Mechanical, Aerospace, and Manufacturing Engineering

Polytechnic University, Brooklyn, NY.

Duane Hanselman & Bruce Littlefield (2005). Mastering MATLAB 7.

Pearson, Prentice Hall.

Marc E. Herniter (2001). Programming In MATLAB. Northern Arizona

University, Brooks/Cole.

Robert DeMoyer and E. Eugene Mitchell (1999). Use of the MATLAB
Graphical User Interface Development Environment for Some Control
System Applications.

APPENDIX A
PIC Programming

INCLUDE "bs2defs.bas"
define OSC 8
Serl var PORTC.0

p var byte
X var byte
y var byte
Z var byte

TRISA = %00000000
TRISB = %00000000
TRISC = %00000000
TRISD = %00000000

Start:
portc = %00000000

Serin2 Serl, 84, [dec3 BO]

select case BO

case 001 ‘forward

for x=1to0 80
gosub qwe
next x

case 002 'reverse

for x=11t0 80
gosub ewq
next x

case 003 ‘forward

for y=1to 50
gosub asd
nexty

case 004 'reverse

for y=1to 50
gosub dsa
next y

case 005 ‘froward

for z=1to 50
gosub zxc
next z

case 006

for z=1to 50
gosub cxz
next z

case 007

for z=1t0 50
gosub rty
next z

case 008

for z=1to 50
gosub ytr
next z

case 010

for x=1 to 50
gosub qwe
next x

for y=1to 50
gosub ewq
nexty

case 011

for x=1t0 50
gosub asd
next x

for y=1to 50
gosub dsa
nexty

case 012

for x=1to 50
gosub zxc
next x

for y=1to 50
gosub cxz
nexty

case 013
for x=1to 50
gosub rty

56

'reverse

‘forward

'reverse

‘forward & reverse

next x

for y=1to 50
gosub ytr
nexty

case 020

for x=1to 50
gosub qwe
next x

for y=1to 50
gosub zxc
nexty

case 021

for x=1to0 50
gosub rty
next x

for y=1to 50
gosub asd
nexty

case 022

for z=1t0 50
gosub ewq
next z

for y=1to 50
gosub ytr
nexty

case 023

for z=1t0 50
gosub ytr
next z

for y=1to 50
gosub dsa
nexty

CASE 030
high portd.0

case 031
portd =0

case 032
high portd.1

end select
goto start

qwe:

'variable speed forward

'variable speed forward

‘variable speed reverse

'variable speed reverse

‘for dc motor

porta=%00000101
pause 30
porta=%00001001
pause 30
porta=%00001010
pause 30
porta=%00000110
pause 30

return

ewq:
porta=%00000101
pause 30
porta=%00000110
pause 30
porta=%00001010
pause 30
porta=%00001001
pause 30

return

asd:
porta=%00000101
pause 90
porta=%00001001
pause 90
porta=%00001010
pause 90
porta=%00000110
pause 90

return

dsa:
porta=%00000101
pause 90
porta=%00000110
pause 90
porta=%00001010
pause 90
porta=%00001001
pause 90

return

ZXC:
porta=%00000101
pause 160
porta=%00001001
pause 160
porta=%00001010
pause 160
porta=%00000110

57

pause 160
return

CXZ:
porta=%00000101
pause 160
porta=%00000110
pause 160
porta=%00001010
pause 160
porta=%00001001
pause 160

return

rty:
porta=%00000101
pause 240
porta=%00001001
pause 240

porta=%00001010
pause 240
porta=%00000110
pause 240

return

ytr:

porta=%00000101
pause 240
porta=%00000110
pause 240
porta=%00001010
pause 240
porta=%00001001
pause 240

return

58

APPENDIX B
PIC 16F877 Data sheet

MICROCHIP

PIC16F7X7

28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with
10-Bit A/D and nanoWatt Technology

Low-Power Features:

» Power-Managed modes:
- Primary Run (XT, RC oscillator, 76 pA,
1 MHz, 2V)
- RC_RUM (7 uA, 31.25 kHz, 2V)
- SEC_RUN (9@ pA, 32 kHz, 2V)
- Sleep (0.1 pA, 2V)
= Timer1 Oscillator (1.8 pA, 32 kHz, 2V)
= ‘Watchdog Timer (0.7 wA, 2V)
* Two-Speed Oscillator Star-up

Oscillators:

* Thrae Crystal modes:
- LP, XT, HS (up to 20 MHz)
* Two External RC modes
+ One External Clock mode:
- ECIO {up to 20 MHz)
+ Internal Gscillator Block:

- & user-selectable frequencies (31 kHz,
125 kHz, 250 kHz, 500 kHz. 1 MHz, 2 MHz,
4 MHz, 8 MHz)

Analog Features:

+ 10-bit, up to 14-channel Analog-to-Digital Converter:

- Programmable Acquisition Time
- Conversion available during Sleep mode

+ Dual Analog Comparators

* Programmahble Low-Current Brown-out Reset
(BOR) Circuitry and Programmable Low-Voltage
Detect (LVD)

Peripheral Features:

High SinkiSource Current: 25 ma
Two 8-bit Timers with Prescaler
Timer1/RTC module:
- 16-hit timerfcounter with prescaler
- Can he incremented during Sleep via
external 32 kHz watch crystal
Master Synchronous Seral Port (MSSP) with
3-wire SPI™ and 12C™ (Master and Slave) modes
Addressable Universal Synchronous
Asynchronous Receiver Transmitter (ALSART)
Three Capture, Compare, PWM modules:
- Capture is 16-bit, max. resolution is 12.5 ns
- Compare is 16-hit, max. resolution is 200 ns
- PWM max. resolution is 10 bits
Parallel Slave Part (PSP) — 40/44-pin devices only

-

-

-

-

Special Microcontroller Features:

+ Fail-3afe Clock Monitor for protecting critical
applications against crystal failure

Two-Speed Star-up mode for immediate code
execution

Power-on Reset (POR), Power-up Timer (PWRT)
and Oscillator Start-up Timer (O3T)
Programmable Code Protection

Processor Read Access to Program Memory
Power-Saving Sleep mode

In-Circuit Serial Programming™ (ICSP™) via

two pins

MPLAB® In-Circuit Debug (ICD) via two pins
MCLR pin function replaceable with input only pin

-

-

-

-

-

w
Program Data g ﬁ MSSP
) Memory ; F] 10-bit c CCP Timers
Device | 4 Single.Word t%i‘l’:'] VOIS |aDem| & |Pww|gpm| PC™ [AUSART] gig it
Instructions) £ E (Master)
(3]
PIC16F737 4096 e | 25 | 16 1 2 3 Yes es Yes 21
PIC16F747 4096 B8 | 3G | AT 14 2 3 Yes Yes Yes 21
PIC16FTET 8192 e | 25 | 16 1 2 3 Yes fes Yes 21
PIC1GFFTT 8192 38 | 36 | 17 14 2 3 Yes Yes Yes 21

@ 2004 Microchip Technology Inc.

DS30498C-page 1

59

PIC16F7X7

Pin Diagrams (Continued)

PDIP (40-pin)
_ T
WOLRWPRRES —= (1 “=’ 40 []=—= RETIPGD
RADAND -—e 2 38 [1 =—= REGBIPGC
RATANT =—= 3 38 [=—= RES/AN1ZICCP3
RAZIANZVREr-ICVREF w e [4 37 [=—= RE4/ANTI
RAVANINVREF+ == [|5 36 [] — RE3CCP2AND
RA4TOCKICIOUT a—e [& 35 [] =—e RE2IANE
RASIANS/LYDINGS) 7 I~ 34[] «—e RE1ANID
I~ 33 [0 = REDINTIANT2
[32 [0 =—Voo
= s 0=—ve
& 30 [0-=—= ROTPEFT
2 v 20[]=—= ROGPSPE
OSCUCLKIRAT «—= {13 = [== ROSPSPS
OSCCLKOIRAS e—= [] 14
RCOM1OSOMICK! w— [15
RCAMIOSICCPZ™ = 16
RCACCP1 w—s 17
RCASCKISCL =— [18 23 [=— RC4/SDUSDA
RODPEPD =-—= [] 10 22 [] =—= RD2PSP3
RO1PEFT «—= [20 21 [] == RDZPSF2
. 5
TQFP (44-pin) . . %
3 (]
=1 b
Bolohre3al
HQROWON Q0=
EEOLLGLA0E
BESEEEED0GL
Crrrerxz
_;;.QQQQQEE%RRR:EBS e
3 22T =—e RCOTI0SOITICK
3 31T == OSCUCLKO/RAG
3 30T =—= OSCUCLKURAT
5 PIC16FT747 20T - Waz
@ 28B.
Voo 7 PIC16FTT7 27
RBOANTIAN1Z =T 2 WH
RE1/ANID =—= IO 2 25 J-=—= REDRD/ANS
REZ/ANS =—=ID] 10 4TI =—= RASANALVDINGSIC2OUT
REHCCPZMAND =—=CTH 11| o o @ o o e oo i+ RASTOCKICIOUT
Sk
QLEROOMNS T W
==zopgEzILy
FaEEEEaR3
as oo E0 e
= 14 =
g 5 ks
[L E
o = ag
) 3
o
Mote 1: Pin location of CCP2 is determined by the CCPMA bit in Configuration Word Register 1.

@ 2004 Microchip Technology Inc.

DS30498C-page 3

61

PIC16F7X7

1.0 DEVICE OVERVIEW

This document contains device specific information
about the following devices:

+ PIC16FT37 * PIC1BF7GT
+ PIC16FT47 « PICAGF77T

FIC16FT37/TET devices are available only in 28-pin
packages, while PIC16F747/77T devices are available
in 40-pin and 44-pin packages. All devices in the
FIC16FTXY family share comman architecture with the
following differences:

The PIC16F737 and PIC1SFTET have one-half of
the total on-chip memory of the PICTE6FT47 and
PICAGFTTT.

The 28-pin devices have 3 /O ports, while the
40/44-pin devices have 5.

The 23-pin devices have 16 interrupts, while the
40/44-pin devices have 17.

The 28-pin devices have 11 A/D input channels,
while the 40/44-pin devices have 14.

The Farallel Slave Port is implemented only on
the 40/44-pin devices.

Low-Power modes: RC_RUN allows the core and
peripherals to be clocked from the INTRC, while
SEC_RUN allows the core and peripherals to be
clocked from the low-power Timer1. Refer to
Section 4.7 “Power-Managed Modes™ for
further details.

Internal RC oscillator with eight seleciable
frequencies, including 31.25 kHz, 125 kHz,

250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz and

8 MHz. The INTRC can be configured as a primary
or secondary clock source. Refer to Section 4.5
“Internal Oscillator Block™ for further details.

The Timer1 module current consumption has
been greatly reduced from 20 A {previous PIC18
devices) to 1.8 pA typical (32 kHz at 2V), which is
ideal for real-time clock applications. Refer to
Section 7.0 “Timer1 Module” for further details.
Extended Watchdog Timer (WDT) that can have a
programmable period from 1 ms to 268s. The WDT
has its own 16-bit prescaler. Refer to Section 15.17
“Watchdog Timer (WDT)" for further details.
Two-Speed Start-up: When the oscillator is
configured for LP, XT or HS, this feature will clock
the device from the INTRC while the oscillator is
warming up. This, in turn, will enable almost
immediate code execution. Refer to

Section 15.17.3 “Two-Speed Clock Start-up
Mode™ for further details.

Fail-Safe Clock Monitor: This featurs will allow the
device to continue operation if the primary or
secondary clock source fails by switching over to
the INTRC.

The available features are summarized in Table 1-1.
Block diagrams of the PICI8F737/767 and
FIC16FT4T/777 devices are provided in Figure 1-1 and
Figure 1-2, respectively. The pinouts for these device
families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the “PICmicro®
Mid-Range MCU Family Reference Manual”
(0333023} which may be obtained from your local
Microchip Sales Representative or downloaded from
the Microchip web site. The Reference Manual should
be considerad a complemeantary document to this data
sheet and is highly recommended reading for a hetter
undersianding of the device architecture and operation
of the peripheral modules.

TABLE 1-1: PIC16F7X7 DEVICE FEATURES
Key Features PIC16F737 PIC16F747 PIC16FTET PIC1BFTTT

Operating Frequency D — 20 MHz D — 20 MHz DC —20 MHz DC — 20 MHz

Resets (and Delays) POR, BOR POR, BOR POR, BOR POR, BOR
(PWRT, O5T) (PWRT, Q5T) (PWRT, O5T) (PWRT, O5T)

Flash Program Memory {14-bit words) 4K 4K 8K 8K

Data Memory (bytes) 68 363 358 388

Interrupts 18 17 18 17

W0 Ports Poriz A B, C Peris 4, B,C,0,E Poriz A, B, C Portz 4, B, C, D, E

Timers 3 3 3 3

Capture/Compars/PWH Modules 3 3 3 3

Master Serial Communications MSSE, AUSART MSSP AUSART MSSP, AUSART MSSPE, AUSART

Farallel Communications — PSP — PSP

10-bit Analog-to-Digital Module 11 Input Channels 14 Input Channels 11 Input Channels 14 Input Channels

Instruction St 35 Instructions 35 Instructions 35 Instructions 35 Instructions

Packaging 28-pin PDIP 40-pin PDIP 28-pin PDIP 40-pin PDIP
28-pin SOIC 44-pin QFMN 28-pin SOIC 44-pin QFM
28-pin SS0P 44-pin TQFP 28-pin S50P 44-pin TQFP
28-pin QFN 28-pin QFN

2 2004 Microchip Technology Inc.

D530498C-page 5

APPENDIX C

62

MAX232 Data Sheet

MAX232, MAX232]

DUAL ElA-232 DRIVERS/RECEIVERS

ELLSMTL — FEERLUAAY 1325 - REVISED MARCH 2004
B

Meets or Exceeds TIA/EIA-232-F and ITU
Recommendation V.28

Operates From a Single 5V Power Supply
With 1.0-uF Charge-Pump Capacitors
Operates Up To 120 kbit's

Twao Drivers and Two Receivers

+30-V Input Levels

Low Supply Current . . . 8 mA Typical

ESD Protection Exceeds JESD 22

= 2000-¥ Human-Body Model (A114-A)

Upgrade With Improved ESD (15-kW HBM)

and 0.1-uF Charge-Pump Capacitors is

Available With the MAX202

Applications

- TIAJEIA-232-F, Battery-Powered Systems,
Terminals, Modems, and Computers

MEX232 ... D, W N, OR NS PACKAGE

MaxX23Zl. .. D, DWW, OR N PACKAGE

(TOP VIEW)
ci+1 =~ 15[l Yoo
Ve [z 15[] GND
-]z 4[] TIoUT
C2+[]4 13[] RN
cz-l= 12[] R1OUT
Ve[| 1[] T1IM
T20UT[]7 o T2
RN] & a[] RzOUT

descriptionfordering information

The MAX232 is a dual driverireceiver that includes a capacitive voltage generator o supply TIAEIA-232-F
voltage levels from a single 5-\ supply. Each receiver converts TIAEIA-232-F inputs to 5V TTLICMOS levels.
These receivers have a typical threshold of 1.3 W, a typical hysteresis of 0.5 W, and can accspt £30-V inputs.
Each driver conwverts TTLCMOS input levels into TIAEIA-232-F levels. The driver, receiver. and
voltage-generator funclions are available as cells in the Texas Instruments LinASIC™ librany.

ORDERING INFORMATION

B recroct el I
D0IF (M) Tube of 25 MAX2ZZN MAANZIZN
I Tube of 41 MAX2Z2D
sare o) Real of 2500 MAX232DR MaXzI2
relTre - Tube of 41 MAN2Z2DW
SO w200 MAN2ZZDWER MANZIZ
S0P (M) Resl of 2000 MAN2ZINSR MANZ32
=2D0IF (M) Tube of 25 MAX2Z2IN MANZIZIN
i) Tube of 41 MAX232I0 T
-40°C o BS'C W Resl of 2500 MAN2Z2IDR -
sowc oy |EEer4l MANIZ2IDW -
Resl of 2000 MANZZZIDWR

T Fackage drawings. s1andand paceng quantbies, inermal data. symballzaton, and FCE design

guidelines are avalable al www.lLoomisc/package.

Flazse be aware that an Important notice conceming avallablitty, standard warranty, and usa In critical appllcations of
Texas Instnuments semiconduciorn products and disclaimers therels appears at the end of this data sheel.

LInASIC k5 3 rademark of Texas Inslruments.

FACOUCTON DAY information In cament m of pubikeation dids.
P rexhacta coniona i o larem of

ntareird mamasiy. dom. iy inchade
Eaaing of ol puraemtam.

h TeExAs

INSTRUMENTS

Copyright & 2004 Tewas Instruments incorporaled

FOST OFFICE BOK B55503 % DALLAS, TEXAS Féiies

MAX232, MAX232|
DUAL ElA-232 DRIVERS/RECEIVERS

SLLED4TL — FESRUARY 1983 - REWISED MARCH 2004

63

Function Tables

EACH DRIVER
INPUT | QUTPUT
TIN TOUT
L H
H L
H = high lewal, L = kow

Vel

EACH RECEIVER
INPUT | QUTPUT

RIN ROUT
L H
H L
H = high lewel, L = low
Ve

logic diagram (positive logic)

Tim 2 DC ¥ rour
Tam — Do T raout
RI1DUT — O@ B i
R2ZOUT — 0@ LI
“'?Tms
INSTRUMENTS

2 POST OFFICE BOX 855300 ® DALLAS TEXNRS T

MAX232, MAX232|
DUAL EIA-232 DRIVERS/RECEIVERS

SLLS047L = FEBRUARY 1038 - REVISED MARCH 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)t

Input supply voltage range, Voo (see Note 1)
-VCC 03Vte1sV
e D3V 15V
03Vt Voo + 03V

Positive output supply voltage range, Vg+
Negative output supply voltage range, VS—
Input voltage range, V: Driver _
Receiver ...
Output voltage range, Vio: T10UT, T20UT
R10UT, R20UT

-03VtoBY

L2330V

- Vg--03VioVg, +03V

-03Vto Voo +0.3V

Short-circuit duration: T10UT, T20UT Unlimited
Package thermal impedance, 8, (see Nofes 2 and 33 D package i T3°CIW
DW package 57°C/W
Npackage 67"C/W
NSpackage.._.._.._......._.._.......64°CM’
Operating virtual junction temperature, Ty e ... 150°C
Storage temperaturerange, Tstg - —65°Ct0150°C

T Stresses beyond those listed under “absoluts maximum ratings” may cause permanent damage 1o the device. These are siress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
mplied. Exposurs to absclute-maximum-rated condifions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to network GHND.

2. Maximum power dizsipation is a function of T j(max), 8)a. and Ty, The maximum allowable power dissipation at any allowsable
ambient temperature is Fry = (T j(max) - Ta V8,4, Operating at the absolute maximum T,j of 150°C can affect reliability.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

MIN NOM MAX | UNIT

Yoo Supply voltage 45 5 55 W
YIH High-level input voltage {T1IN, T2IN) 2 W
YL Low-level input voltage (T1IM, T2IN) 0a W
R1IM, R2IN Feceiver input voltage +30 W
Ta Operating free-air temperaturs MAXZ32 0 L o«
MAX2321 —40 a5

electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Note 4 and Figure 4)

PARAMETER TEST CONDITIONS min TYed max| uwmir
Voo =58Y, All outputs open,
lcc Supply current Ta=25°C 8 0] maA

¥ All typical values are at Voo =5 W and Ty = 25°C.
NOTE 4: Test condifions are C1-C4=1pFatVoo =5V 105V

{"P TEXAS

INSTRUMENTS

CET OFFICE 5OX 555303 # DALLAS, TEXAS 75265 3

64

MAX232, MAX 232l
DUAL EIA-232 DRIVERS/RECEIVERS

SLLSD4TL - FEBRUARY 1089 - REVISED MARCH 2004

DRIVER SECTION

electrical characteristics over recommended ranges of supply veltage and operating free-air
temperature range (see Note 4)

PARAMETER TEST CONDITIONS MIN TYPT MAX | unIT
Vige High-level output voltage T10UT T20UT | R =3k to GND 5 T W
VoL Low-level cuiput vo taget TIOUT, T20UT | R =3 ki to GMD -7 -5 W
o Qutput resistance TIOUT, T2Z0UT | Vge=Vg_=10, Vo=V 300 Q
|DS§ Short-circuit output current TIOUT, T20UT |Vpp=55Y, Vo=0 +10 mA
s Short-circutt input curent T1IN, T2IN V=0 200 [T

TAll typical values are at Voo =5V, Ty =25°C.

T The algebraic convention, in which the |east-positive (most negative) value is designated minimum, is uzad in this data shest for logic voitage
levels only.

§ Not more than one output should be shorted at a time.

MOTE 4: Test conditions ars C1-C4 =1 pFat Voo =5V 05\

switching characteristics, Vcc =5V, Tp = 25°C (see Note 4)

PARAMETER TEST CONDITIONS MM TYP MAX | UNIT

N R =3kilto 7 kil i
SR Driver slew rate See Figure 2 30 Vins
SRit) Driver transition regicn slew rate See Figure 3 3 Vips
Data rate Cne TOUT switching 20 kbit's

NOTE 4: Test conditions are C1-C4 =1 pFat Voo =5V 05\

RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature range (see Note 4)

PARAMETER TEST CONDITIONS MIN - TYPT MAX| UNIT
Vigy High-level output voltage RIQUT, RZOUT |logg=-1m& 35 Y
VoL Low-level oufput vo tageT— RIOUT, R2OUT |loL=32ma 04 W
ViT= f:,f:if; ﬁ';;ggm”g nput R1IN, R2IN Voo =5V, Ta=25C 17 24| v
VIT- e E‘ﬂi;f‘g"'”g RN, R2 Veg =5V, Th=25°C 08 12
Vhys Input hysteresis voltage R1IN, R2IM Vop=3Y 0.2 0.5 1 V
Ir Receiver input resistance R1IN, R2IM Voo =5, T =25C 3 5 T [i¥]

T 4l typical values ars at Voo =5V, Ta =25°C.

T The algebraic convention, in which the |easi-positive (most negative) value is designated minimum, is used in this data sheet for logic voitage
levels only.

NOTE 4: Test conditions are C1-C4 =1 uFat Voo =3V 05\

switching characteristics, Vo =5V, Ty = 25°C (see Note 4 and Figure 1)

PARAMETER TYP | UNIT
tpLH{F{] Receiver propagation delay time, low- fo high-level cutput 500 ns
tpH LiR) Receiver propagation delay time, high- to low-level cutput 500 ns

MOTE 4: Test conditions are C1-C4 =1 pFat Voo =5V 205

‘i‘ TeExaAs
INSTRUMENTS

4 PCEST OFFICE 50X 555302 # DALLAS, TEXAS TE265

66

APPENDIX D
Main Menu GUI Programming

function varargout = main(varargin)

% MAIN M-file for main.fig

% MAIN, by itself, creates a new MAIN or raises the existing

% singleton*.

%

% H=MAIN returns the handle to a new MAIN or the handle to

% the existing singleton*.

%

% MAIN('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in MAIN.M with the given input arguments.
%

% MAIN('Property','Value',...) creates a new MAIN or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before main_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to main_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help main
% Last Modified by GUIDE v2.5 23-Oct-2007 00:44:22

% Begin initialization code - DO NOT EDIT

gui_Singleton =1,

gui_State = struct('gui_Name', mfilename, ...
‘gui_Singleton', gui_Singleton, ...
‘gui_OpeningFcn', @main_OpeningFcn, ...
‘gui_OutputFen', @main_OutputFcen, ...
'gui_LayoutFen',], ...
‘gui_Callback', [1);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before main is made visible.

function main_OpeningFcn(hObject, eventdata, handles, varargin)
movegui (‘center’)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to main (see VARARGIN)

% Choose default command line output for main

handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes main wait for user response (see UIRESUME)
% uiwait(handles.figurel);

movegui('center")

% --- Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbuttonl.

function varargout=pushbutton1_Callback(h,eventdata,handles,varagin)
figure(motorcontrol)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

user_response = modaldlg1(‘Title','Confirm Close");
switch lower(user_response)
case 'no'
% take no action
case 'yes'
% Prepare to close GUI application window
% .
%
%
close all

end

% --- Executes on button press in pushbutton3.

function varargout=pushbutton3_Callback(h,eventdata,handles,varagin)
figure(Info)

% hObject handle to pushbutton3 (see GCBO)

67

68

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton4.
function varargout=pushbutton4_Callback(h,eventdata,handles,varagin)
figure(credit)

% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.
function axes1_CreateFcn(hObject, eventdata, handles)

% hObject handle to axesl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axesl
[x,map]=imread('main’,'jpg");

image(x)

set(gca,'visible','off")

69

APPENDIX E

Motor Control Menu GUI Programming

function varargout = motorcontrol(varargin)

% MOTORCONTROL M-file for motorcontrol.fig

% MOTORCONTROL, by itself, creates a new MOTORCONTROL or raises the existing
% singleton*.

%

% H=MOTORCONTROL returns the handle to a new MOTORCONTROL or the handle to
% the existing singleton*.

%

% MOTORCONTROL('CALLBACK' hObject,eventData,handles,...) calls the local

% function named CALLBACK in MOTORCONTROL.M with the given input arguments.
%

% MOTORCONTROL('Property','Value',...) creates a new MOTORCONTROL or raises the
% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before motorcontrol_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to motorcontrol_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help motorcontrol
% Last Modified by GUIDE v2.5 28-Oct-2007 14:19:18

% Begin initialization code - DO NOT EDIT

gui_Singleton =1,

gui_State = struct('gui_Name', mfilename, ...
‘gui_Singleton', gui_Singleton, ...
‘gui_OpeningFcn', @motorcontrol_OpeningFcn, ...
‘gui_OutputFcn', @motorcontrol_OutputFcn, ...
'gui_LayoutFen',], ...
‘gui_Callback', [1);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before motorcontrol is made visible.

function motorcontrol_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

70

% varargin command line arguments to motorcontrol (see VARARGIN)

% Choose default command line output for motorcontrol
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes motorcontrol wait for user response (see UIRESUME)
% uiwait(handles.figurel);

movegui('center")

% --- Outputs from this function are returned to the command line.
function varargout = motorcontrol_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

[x.map]=imread(bgl’,jpg’);
image(x)
set(gca, 'visible','of ")

% --- Executes on button press in pushbuttonl.

function varargout=pushbutton1_Callback(h,eventdata,handles,varagin)
figure(pushbutton)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close(gchbf)

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close (gcbf)

% --- Executes on button press in pushbutton4.
function varargout=pushbutton4_Callback(h,eventdata,handles,varagin)
figure(pulse)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcbf)

% --- Executes on button press in pushbutton5.
function varargout=pushbutton5_Callback(h,eventdata,handles,varagin)

71

figure(steppermotor)

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcbf)

% --- Executes on button press in pushbutton6.

function varargout=pushbutton6_Callback(h,eventdata,handles,varagin)
figure(brushedbldcmotor)

% hObject handle to pushbutton6é (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gchbf)

% --- Executes on button press in pushbutton?.

function varargout=pushbutton7_Callback(h,eventdata,handles,varagin)
figure(Help)

% hObject handle to pushbutton7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in help.

function varargout=help_Callback(h,eventdata,handles,varagin)
figure(helpl)

% hObject handle to help (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton9.

function varargout=pushbutton9_Callback(h,eventdata,handles,varagin)
figure(stepperinterface)

% hObject handle to pushbutton9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close(gcbf)

% --- Executes on button press in pushbutton10.

function varargout=pushbutton10_Callback(h,eventdata,handles,varagin)
figure(main)

% hObject handle to pushbutton10 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

close (gcbf)

72

APPENDIX F
5V DC Motor Control GUI Programming

function varargout = pushbutton(varargin)

% PUSHBUTTON M-file for pushbutton.fig

% PUSHBUTTON, by itself, creates a new PUSHBUTTON or raises the existing
% singleton*.

%

% H=PUSHBUTTON returns the handle to a new PUSHBUTTON or the handle to
% the existing singleton*.

%

% PUSHBUTTON('CALLBACK!'hObject,eventData,handles,...) calls the local

% function named CALLBACK in PUSHBUTTON.M with the given input arguments.
%

% PUSHBUTTON(Property','Value',...) creates a new PUSHBUTTON or raises the
% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before pushbutton_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to pushbutton_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help pushbutton
% Last Modified by GUIDE v2.5 28-Oct-2007 14:25:49

% Begin initialization code - DO NOT EDIT

gui_Singleton =1,

gui_State = struct('gui_Name', mfilename, ...
‘gui_Singleton', gui_Singleton, ...
‘gui_OpeningFcn', @pushbutton_OpeningFcn, ...
‘gui_OutputFen', @pushbutton_OutputFcn, ...
'gui_LayoutFen',], ...
‘gui_Callback', [1);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before pushbutton is made visible.

function pushbutton_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to pushbutton (see VARARGIN)

SerPIC=serial'COM1") %define the port available
Check=SerPIC.status %to check port status data
handles.status=Check %store data
handles.op=SerPIC; % store data

guidata(hObject, handles); %save data

set(findobj(gca, Type','line','Color',[0 0 1]),'Color',[0 1 0],'LineWidth',2.5)
set(gca,'color',[0.027 0.702 0.894])

grid on;

axis([0 30 -10 10]);

xlabel('Time");

ylabel("Voltage");

title("Voltage vs Time Linear signal’);

% Choose default command line output for pushbutton
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes pushbutton wait for user response (see UIRESUME)
% uiwait(handles.figurel);

movegui('center")

% --- Outputs from this function are returned to the command line.
function varargout = pushbutton_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in open_close_port.

function open_close_port_Callback(hObject, eventdata, handles)

% hObject handle to open_close_port (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,"Value") returns toggle state of open_close_port

if (get(hObject,'Value')==get(hObject,'Max'));
SerPIC=handles.op % retrieve data
set(SerPIC,'BaudRate',9600, DataBits',8,'Parity','none','StopBits',1,'FlowControl','none");
fopen(SerPIC)
guidata(hObject,handles); %save data ;
else
SerPIC=handles.op
fclose(SerPIC)
guidata(hObject,handles)

end
guidata(hObject,handles);

% --- Executes on button press in close_button.

73

74

function close_button_Callback(hObject, eventdata, handles)

% hObject handle to close_button (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

user_response = modaldlg2('Title','Confirm Close");
switch lower(user_response)
case 'no'
% take no action
case 'yes'
% Prepare to close GUI application window
%
%
% .
delete(handles.figurel)
end

% --- Executes on button press in forward_PB.

function forward_PB_Callback(hObject, eventdata, handles)

% hObject handle to forward_PB (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op %retrieve data

m=1:0.1:1000;

n=-m;

c=m+n;

plot(c+5);

set(findobj(gca, Type','line','Color',[0 0 1]),'Color',[0 1 0],'LineWidth',2.5)
set(gca,'color',[0.027 0.702 0.894])
grid on;

axis([0 30 -10 10]);

xlabel('Time");

ylabel("Voltage");

title("Voltage vs Time Linear signal’);

fprintf(SerPIC,'%s','031");
fprintf(SerPIC,'%s','030");

% --- Executes during object creation, after setting all properties.
function axes1_CreateFcn(hObject, eventdata, handles)

% hObject handle to axesl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axesl

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op %retrieve data

m=1:0.1:1000;

n=-m;

c=m+n;

plot(c-5);

set(findobj(gca, Type','line’','Color',[0 0 1]),'Color',[0 1 0],'LineWidth',2.5)

75

set(gca,'color',[0.027 0.702 0.894])
grid on;

axis([0 30 -10 10]);

xlabel('Time");

ylabel('Voltage";

title("Voltage vs Time Linear signal’);

fprintf(SerPIC,'%s','031");
fprintf(SerPIC,'%s','032");

% --- Executes on button press in stop_PB.

function stop_PB_Callback(hObject, eventdata, handles)

% hObject handle to stop_PB (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op %retrieve data

m=1:0.1:1000;

n=-m;

c=m+n;

plot(c);

set(findobj(gca, Type','line','Color',[0 0 1]),'Color',[0 1 0],'LineWidth',2.5)
set(gca,'color',[0.027 0.702 0.894])
grid on;

axis([0 30 -10 10]);

xlabel('Time");

ylabel("Voltage");

title("VVoltage vs Time Linear signal’);

fprintf(SerPIC,'%s','031");

% --- Executes on selection change in popupmenul.

function popupmenul_Callback(hObject, eventdata, handles)

% hObject handle to popupmenul (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String") returns popupmenul contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenul

val = get(hObject,'Value");
str = get(hObject, 'String");
switch str{val};
case 'linear'
handles.current_data = handles.peaks;
case 'pulse’
handles.current_data = handles.membrane;

end
guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.
function popupmenul_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenul (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

76

% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

% --- Executes on button press in pushbutton6.

function pushbutton6_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SerPIC=handles.op

Check=handles.status

u=SerPIC.status

set(handles.text2,'String',u)

77

APPENDIX G
Stepper Motor Control GUI Programming

function varargout = stepperinterface(varargin)

% STEPPERINTERFACE M-file for stepperinterface.fig

% STEPPERINTERFACE, by itself, creates a new STEPPERINTERFACE or raises the existing
% singleton*.

%

% H=STEPPERINTERFACE returns the handle to a new STEPPERINTERFACE or the handle
to

% the existing singleton*.

%

% STEPPERINTERFACE('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in STEPPERINTERFACE.M with the given input arguments.
%

% STEPPERINTERFACE('Property','Value',...) creates a new STEPPERINTERFACE or raises the
% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before stepperinterface_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to stepperinterface_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help stepperinterface
% Last Modified by GUIDE v2.5 28-Oct-2007 15:01:23

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @stepperinterface_OpeningFcn, ...
'gui_OutputFcn', @stepperinterface_OutputFcn, ...
'gui_LayoutFen', 1, ...
'gui_Callback’, [1);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before stepperinterface is made visible.

function stepperinterface_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

78

% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to stepperinterface (see VARARGIN)

SerPIC=serial'COM1") %define the port available
Check=SerPIC.status %to check port status data
handles.status=Check %store data
handles.op=SerPIC; % store data

guidata(hObject, handles); %save data

% Choose default command line output for stepperinterface
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes stepperinterface wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.

function varargout = stepperinterface_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in radiobuttonl.

function radiobutton1_Callback(hObject, eventdata, handles)

% hObject handle to radiobuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobuttonl
if (get(hObject,'Value")==get(hObject,'Max));
SerPIC=handles.op % retrieve data
set(SerPIC,'BaudRate’,9600, DataBits',8,'Parity’,'none’,'StopBits',1,'FlowControl','none");
fopen(SerPIC)
guidata(hObject,handles); %save data ;
else
SerPIC=handles.op
fclose(SerPIC)
guidata(hObject,handles)

end
guidata(hObject,handles);

% --- Executes on selection change in popupmenul.

function popupmenul_Callback(hObject, eventdata, handles)

% hObject handle to popupmenul (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String") returns popupmenul contents as cell array
% contents{get(hObject,'VValue")} returns selected item from popupmenul

79

% --- Executes during object creation, after setting all properties.
function popupmenul_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenul (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on selection change in popupmenu2.

function popupmenu2_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String") returns popupmenu2 contents as cell array
% contents{get(hObject,'Value")} returns selected item from popupmenu2

% --- Executes during object creation, after setting all properties.
function popupmenu2_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on selection change in popupmenus3.

function popupmenu3_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String") returns popupmenu3 contents as cell array
% contents{get(hObject,'Value")} returns selected item from popupmenu3

% --- Executes during object creation, after setting all properties.
function popupmenu3_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc

set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in close.

function close_Callback(hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

user_response = modaldlg2('Title','Confirm Close");
switch lower(user_response)
case 'no'
% take no action
case 'yes'
% Prepare to close GUI application window
% .
%
% .
delete(handles.figurel)
end

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op %retrieve data
fprintf(SerPIC,'%s','007");

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','005");

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','003");

% --- Executes on button press in pushbutton6.

function pushbutton6_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','001");

% --- Executes on button press in pushbutton?.

80

function pushbutton7_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','008");

% --- Executes on button press in pushbutton8.

function pushbutton8_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','006");

% --- Executes on button press in pushbutton9.

function pushbutton9_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','004");

% --- Executes on button press in pushbutton10.

function pushbutton10_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton10 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','002");

% --- Executes on button press in pushbutton11.

function pushbutton11_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonll (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','013");

% --- Executes on button press in pushbutton12.

function pushbutton12_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton12 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','012");

% --- Executes on button press in pushbutton13.

function pushbutton13_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton13 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op

81

fprintf(SerPIC,'%s','011");

% --- Executes on button press in pushbutton14.

function pushbutton14_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton14 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','010";

% --- Executes on button press in pushbuttonl15.

function pushbutton15_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','020");

% --- Executes on button press in pushbutton16.

function pushbutton16_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton16 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','021");

% --- Executes on button press in pushbuttonl7.

function pushbutton17_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','022");

% --- Executes on button press in pushbuttonl18.

function pushbutton18_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton18 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

SerPIC=handles.op
fprintf(SerPIC,'%s','023");

% --- Executes on button press in pushbutton19.

function pushbutton19_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton19 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SerPIC=handles.op

Check=handles.status

y=SerPIC.status

set(handles.text8,'String',y)

82

APPENDIX H
Credit Menu GUI Programming

function varargout = Credit(varargin)

% CREDIT M-file for Credit.fig

% CREDIT, by itself, creates a new CREDIT or raises the existing

% singleton*.

%

% H=CREDIT returns the handle to a new CREDIT or the handle to

% the existing singleton*.

%

% CREDIT('CALLBACK!',hObject,eventData,handles,...) calls the local

% function named CALLBACK in CREDIT.M with the given input arguments.
%

% CREDIT('Property','Value',...) creates a new CREDIT or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before Credit_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Credit_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help Credit
% Last Modified by GUIDE v2.5 21-Oct-2007 14:38:11

% Begin initialization code - DO NOT EDIT

gui_Singleton =1,

gui_State = struct('gui_Name', mfilename, ...
‘gui_Singleton', gui_Singleton, ...
‘gui_OpeningFcn', @Credit_OpeningFcn, ...
‘gui_OutputFen', @Credit_OutputFcn, ...
'gui_LayoutFen',], ...
‘gui_Callback', [1);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Credit is made visible.

function Credit_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Credit (see VARARGIN)
movegui('center")

% Choose default command line output for Credit

handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Credit wait for user response (see UIRESUME)
% uiwait(handles.figurel);

whitebg('k’)

% --- Outputs from this function are returned to the command line.
function varargout = Credit_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

[a,map]=imread('nuar','jpg");
image(a)
set(gca, 'visible','of ")

% --- Executes during object creation, after setting all properties.
function axes5_CreateFcn(hObject, eventdata, handles)

% hObject handle to axes5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes5

[x,map]=imread('mrsharfi','jpg");
image(x)
set(gca,'visible','off")

% --- Executes on button press in pushbuttonl.

function pushbuttonl_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close

function editl_Callback(hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of editl as text
% str2double(get(hObject,'String")) returns contents of editl as a double

% --- Executes during object creation, after setting all properties.
function editl_CreateFcn(hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

84

85

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function edit2_Callback(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of edit2 as text
% str2double(get(hObject,'String")) returns contents of edit2 as a double

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

