
1

Test Data Generation for Event Driven System

Using Bees Algorithm

Mohd Hazli Mohamed Zabil1 and Kamal Z. Zamli2

1
College of Information Technology

Universiti Tenaga Nasional, Putrajaya Campus,

Jalan IKRAM-UNITEN,

43000 Kajang, Selangor, Malaysia.

2
Faculty of Computer Systems and Software Engineering,

Universiti Malaysia Pahang

26300 Gambang, Pahang, Malaysia.

 Abstract- For an event driven system, the order of the event

sequence should also be tested to detect failure in any possible

sequences of the event. In many real time or reactive system,

some faults do occur as a result interactions of some particular

order of the inputs or events. In some other systems, sequence of

inputs produce significant results to how such system process the

inputs and produce the output. For these types of systems, fault

might be triggered from a particular order of the input sequence,

entered or given to the system. . In this paper we discuss and

proposed a new strategy for generating test data for event-driven

system using a bio inspired artificial intelligent, namely Bees

Algorithm (BA). We discussed the implementation of BA and

benchmark it with the existing approaches.

Keywords: Interaction testing; Sequence-based Interaction

testing; sequence covering array; Bees Algorithm

I. INTRODUCTION

 One of the important objectives of software testing is to

find as many faults as possible in a system under test (SUT).

As there are many classes of systems, in order to achieve the

objective, different types and approaches of testing might

need to be perform (e.g. regression testing, performance

testing, compatibility testing and interaction/combinatorial

testing). For an event-driven system, faults may be triggered

from a combination of events triggered during a process. To

detect such faults, combinatorial interaction testing (CIT)

can be performed against the SUT. This is to ensure that

combination of any events will not flag any errors. In the

literature, many CIT strategy have been developed for the

past 20 years (e.g. Jenny[1], IPOG[2], MC-IPOG[3],

AETG[4] and TConfig[5], ACS[6], PICT[7], PSO[8],

HSS[9], ParaOrder[10], Density[11], TVG[12] and

ITTDG[13]). Although these strategies are able to detect

faults due to combination or interaction between events, the

sequence of events occur are not being considered. This

would risk the SUT to faults due to sequence of events. In

an event-driven system, event can occur in many sequences.

In order to detect the fault due to different sequences, we

need to test all possible sequences of each event for the

SUT. However, testing all possible sequences, even for a

small system is inefficient and yet affordable due to resource

constraints (i.e. time, budget and human resource).

Recently, Kuhn et.al[14] and Esra et.al[15] have proposed a

new approaches to generate test data for testing event-driven

system. Their work, focus on systems with distinct number

of event and each event occurs only once, since event

repetition is not always the case in an event-driven system.

Kuhn has been using computational greedy approach while

Esra is proposing a rule-based approach using Answer Set

programming (ASP). Both approaches have its strength and

limitations; hence we are looking into improving the

limitations of the two approaches. The advantages and

limitations of the two mentioned approaches are discussed

in the next following section. In recent development,

researchers have been adopting artificial intelligence (AI) to

solve combinatorial optimization problems. In the emerging

research area of software testing, researchers have been

proposing the use of AI to generating efficient test data for

interaction testing (e.g. GA[16], ACS[6], PSO[8] and

HSS[9]). From the published results, in general, the AI-

based strategies produce smaller test suite size compared to

the computational strategies especially when it comes to

higher number of parameters (events). Motivated by this

works, we propose a new approach using bio-inspired AI

algorithm (namely Bees Algorithm, BA) to optimize the

generation of test data for sequence of event-driven system

as mentioned above.

For the purpose of presentation, this paper is organized as

follows. Section 2 discusses the preliminaries; Section 3

highlights related works; Section 4 discusses the problem

definition model; Section 5 design and implementation of

BA strategy; Section 6 elaborates the results and

benchmarking against existing strategies; Section 7 presents

the case study and Section 8 provides the conclusion.

II. PRELIMINARIES

 Sequence Covering Array (SCA) introduced by Kuhn[14]

is comparable to Covering Array[17], a combinatorial object

that has been improved from Latin Square[18] and

2

Orthogonal Array[19]. Covering array is used in generating

test cases for combinatorial testing. In each row of covering

array, each combination of t-way parameter is covered at

least once for fixed t strength. In order to include sequence

in covering array algorithm, constraints need to be

introduced to make sure each row contains a particular value

only once, which might be highly inefficient[14]. Based on

combinatorial method of covering array, Kuhn proposed

sequence covering array (SCA). SCA functions like a

covering array, but also consider the sequence of each t-way

events to be covered in each row only once. SCA is

designed specifically to address system with unrepeated

event sequence. SCA is written as SCA(N, S, t) where N is

the size of the test suite, t is the strength and S is the

number of event sequence [14], [15]. Each row of N

contains a permutation of s symbol of set S and at least one

t-way sequence is covered in every N rows. SCA is optimal

if the number of rows (N) is minimum. For example, take a

system with 5 events (A,B,C,D and E). To test exhaustively

all 5 sequence (i.e. t=5), we would have 5! = 120 test cases.

Since exhaustive testing is inefficient and unaffordable, we

could relax the strength to 3 (i.e. t=3). For t=3, there are 60

possible 3-way sequence as in Figure 1.

Figure 1. Exhaustive 3-way sequence

For this example, based on [14], the first random test case

(e.g. A,B,C,D,E), would cover up to 10 uncovered sequence

(i.e. ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE

and CDE). Hence, we could perform some optimization

using greedy heuristic, to find a test case that cover the

most, so fewer test cases needed to cover all 3-way

sequence. After optimization, from 60 3-way sequence, we

only need 8 test cases to cover all 3-way sequence i.e.

SCA(8, 5,3). It has been proven that finding optimal

covering arrays by searching for a test case that covers the

most is NP-complete [4][20][21][22]. Since SCA is also

using combinatorial method, finding the next test case that

cover the most uncovered set is also NP-Complete. One

popular approach to solve this covering set problem is by

using greedy approach. Although greedy algorithm cannot

guarantee the most optimal result, a good greedy technique

could produce a close approximation to the most optimal

result [23].

III. RELATED WORKS

In this section we discuss existing approaches in generating

SCA, namely t-seq by Kuhn et.al[14] and ASP by Esra

et,al[15]. Kuhn proposed a greedy algorithm to generate

SCA called t-seq. In general, t-seq is a greedy algorithm. A

number of candidate test cases are generated and each

candidate test case is checked against the uncovered

sequence. The test case which covers the most sequences

will be selected. If a constraint is defined, the test candidate

with unwanted sequence will not be selected. If constraint is

not defined, a heuristic step is added where the selected test

case will be reversed to get the same number of covered

sequence. The reversal step is optional and can be turned off

to allow all test candidate are generated randomly. The

process iterates until all t-way sequences are covered. t-seq

generates good results. Since t-seq is a computational greedy

algorithm, the execution time is fast and the number of

events is fairly scalable. Another approach of generating

SCA has been proposed by Esra et.al using a declarative

language, Answer Set Programming (ASP). In this

approach, a finite set of rules known as answer sets are

designed. The rules consist of symbols (events) definitions

and conditions (i.e. how symbols should be arranged). Rules

for checking if a particular sequence is covered also defined

in the answer set. Once the ASP encoding is completed, the

ASP solver will generate SCA based on the rules. Constraint

rules can also be added to in the answer set rules.

t-seq is a simple and straight forward algorithm to generate

SCA. Since t-seq is a computational approach, its advantage

is in term of fast execution time and scalability in term of

number of events. Although t-seq produces good results in

term of size of SCA, ASP produces more optimal SCA size.

In term of constraint support, t-seq provides simple

constraint support and manual intervention need to be

performed in order to achieve the constraint. Since ASP is a

rule based approach, it has the advantage to include more

complex constraints in the rules. One drawback of ASP is

scalability. The rules need to be changed for different

number of events. Since ASP is not designed to be a generic

SCA generator, the SCA generated by ASP are limited only

up to 40 events. This is due to the huge number of 4

sequences that need to be represented in the answer set. In

term of sequence strength, as far as published results is

concern, both t-seq and ASP are limited only up to strength

4 (i.e. t=4).

Motivated by the limitation of both t-seq and ASP, we are

proposing a bio-inspired AI-based approach in generating

SCA. As mentioned earlier, many published works have

shown that AI-based algorithms have been used in solving

optimization problems and produce good results compared

to computational approached. Moving from here, we adopt a

relatively new AI-based algorithm, namely Bees Algorithm

(BA) for generating SCA.

IV. PROBLEM DEFINITION MODEL

 To appreciate the application of SCA, consider a house

alarm system with 4 input sensors as in Table 2. When the

alarm system is activated, the system will monitor these four

sensors and produces an alarm messages when the system

senses any unusual activities (e.g. in the presence of

intruder).

{ABC}{ABD}{ABE}{ACB}{ACD}{ACE}{ADB}{ADC}

{ADE}{AEB}{AEC}{AED}{BAC}{BAD}{BAE}{BCA}

{BCD}{BCE}{BDA}{BDC}{BDE}{BEA}{BEC}{BED}

{CAB}{CAD}{CAE}{CBA}{CBD}{CBE}{CDA}{CDB}

{CDE}{CEA}{CEB}{CED}{DAB}{DAC}{DAE}{DBA}

{DBC}{DBE}{DCA}{DCB}{DCE}{DEA}{DEB}{DEC}

{EAB}{EAC}{EAD}{EBA}{EBC}{EBD}{ECA}{ECB}{

3

TABLE 1 House Alarm System

Sensor Function

A Active when main door is opened

B Active when any window is opened

C Active when any window is broken

D Detect any movement inside the house

In this scenario, the alarm system receives inputs from the

sensors in random sequences. Main door may be opened

first and then followed by any window opened or vice versa.

Ideally, the house alarm system must be tested in all

possible sequences so that no false alarm will be triggered

due to sequencing faults. In a mass factory production of

the alarm system, testing exhaustively is not feasible due to

time-to-market, resources, and cost constraints. Even if the

system has been tested during its manufacturing process, the

system also needs to be tested after installation at the

particular premise.

To test the system after installation on site, the testing

procedure requires manual and physical intervention to

trigger the sensors. This would be time consuming; thus,

efficient test data are needed to reduce testing time. Should

we consider to test all possible sequences (4 input sequences

give 4!=24 tests) it may not be practical. If one test requires

5 minutes, we need 120 minutes or 2 hours to perform the

testing at the installation site. This is obviously inefficient

and increase cost related to installation. For this reason,

there is a need for a sampling mechanism that can help to

find the subsets of effective sequences for testing the

scenario. Using SCA, testing 2-way sequence will give us

SCA(2, 4,2), that is SCA of 4 events with strength of 2 and

size of 2. Using a simple greedy approach testing 3-way

sequence will give us 6 test cases.

V. BA STRATEGY

A. Overview of Bees Algorithm

Bees Algorithm (BA) has been proposed by Pham [24] and

is a relatively new nature inspired, population based

algorithm. BA is inspired based on the food foraging

behavior of honey bee colony. In a honey bee colony, a

group of scout bees are sent out randomly to find flower

patches. In nature, honey bee can travel more than 10

kilometers in multiple directions from its hive. When return

to the hive, the pollen or nectar quality will be evaluated. If

the pollen or nectar quality is above threshold, the nectar or

pollen will be deposited and the scout bee will perform a

dance known as waggle dance. The dance serves as a

communication medium to tell other bees the location of the

flower patch (direction, distance, quality and quantity).

From the dance, fitness of each patches can be evaluate

relatively in term of quality and effort needed to harvest the

food. After the dance, the scouts will employ other bees and

go back to the flower patch to collect the nectar. More bees

are employed to more promising patches (i.e. better quality,

quantity and nearer to the hive) and less bees are employed

to the less promising patches. The food level of each patch

will be monitored continuously during the harvest. The

information will be used in the next waggle dance. Inspired

from the food foraging behavior of honey bees described

above, Figure 2 shows the pseudo code of BA in its basic

form.

During initialization, there are several parameters that need

to be set prior to execution (n, m, e, nep, nsp and ngh). From

a hive, there will be n number of scout bee, which will

randomly choose a flower patch around the hive. From n, m

best patches will be selected and from m, e elite patches will

be sent with nep bees while nsp bees sent to the rest of the

patches (m-e). nsp and nep are referred as employed bees.

Lastly, the size of neighborhood search, ngh, is to be

determined.

1. Initialize population with random solutions

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

 //Forming new population.

4. Select sites for neighborhood search.

5. Recruit bees for selected sites (more bees for best e sites)

and evaluate fitnesses.

6. Select the fittest bee from each patch.

7. Assign remaining bees to search randomly and evaluate

their fitness’s.

8. End While.

Figure. 1. Pseudo code of basic Bees Algorithm

The algorithm starts with sending out scout bees randomly

to the food source (i.e. search space). In step 2, each

evaluation of patches visited by the scout bees are initialized

for the first time. Step 4 chooses m number of bees. The

patches visited by the m bees will be used for neighborhood

search later. In step 5, a number of bees (nep) are employed

for neighborhood search for the each elite patches (e). For

the rest of the patches (m-e), a number of bees (nsp) are

employed for neighborhood search for each of the non-elite

patches. Here, more bees are sent to more promising patches

to ensure more detailed search done in the neighborhood

compared to less promising patches. Bees are sent to non-

elite patches to reduce the possibilities of local maxima

among the elite patches. In step 6, bee with the highest

fitness will be selected, which will reduce the search space

size. Finally in step 7, the remaining bees are randomly

assigned to new potential solution. Step 4-7 are repeated

until stopping condition is met. Figure 3 summarizes all the

parameters need to be initialized prior to execution.

Although BA is considered as a new swarm-based

algorithm, BA has been used to solve many optimization

problems. BA shows promising results in term of

effectiveness, problem scale and performance published as

in [24–28]. Although many of the BA implementation

mentioned is functional optimization, BA is claimed suitable

to solve not only functional, but also combinatorial

optimization problems [24]. These factors motivate us to

adopt BA for t-way test data generation strategy.

B. BA Strategy for generating SCA

4

Our BA strategy for generating test data is divided into 2

main parts. The first part generates the sequence interaction

set for the intended strength. The sequence interaction

generation algorithm is designed to be generic, to support

any strength, t, for N number of events, given t < N. This

part consists of a simple function that generates permutation

set of the intended events. If constraints are defined,

sequences with invalid sequence will be marked as already

covered. The second part runs the BA to generate candidate

test cases. From the candidate test cases, the best test cases

will be added to the final test suite. Should there be any

constraints defined, the constraint will be considered during

test case generation.

VI. EXPERIMENTS AND RESULTS

 We implement our BA Strategy using JAVA Netbeans 7.0

IDE on Windows XP SP3 platform running on Intel Core2

duo 3.00 GHz with 2GB RAM. We studied several

published implementation of BA in several problems [25–

29] and set the parameters of our BA Strategy as in Table 2.

We compare the SCA produces by our algorithm against t-

seq, ASP and BA. The results are as in Table 3.

TABLE II. BA STRATEGY PARAMATERS

Parameter Value Description

n 20 Number of random test case

generated

m 5 Selected test case with best coverage

for neighborhood search

e 2 Elite test cases

nep 15 Number of improvement attempt for

each elite test case

nsp 5 Number of improvement attempt for

each non-elite site

ngh 4 Repetition for nep and nsp

improvement

TABLE III SCA GEERATED FOR 3-WAY AND 4-WAY SEQUENCE

No. of

event

3-way sequence No. of

event

4-way sequence

t-seq ASP BA t-seq ASP BA

5 8 7 8 5 29 26

6 10 8 8 6 36 35

7 12 8 10 7 46 41

8 12 8 10 8 50 50

9 14 9 12 9 58 57

10 14 10 12 10 66 64

11 14 10 13 11 70 69

12 16 10 15 12 78 77

13 16 10 14 13 86 81

14 16 10 16 14 90 86

15 18 10 16 15 96 91

16 18 11 17 16 100 - 97

17 20 11 18 17 108 - 99

18 20 - 18 18 112 - 104

19 22 - 18 19 114 - 107

20 22 19 19 20 120 104 104

21 22 - 20 21 126 - 116

22 22 - 21 22 128 - 120

30 26 23 23 30 156 149 145

40 32 27 26 40 182 181 175

50 34 31 30 50 214 - 190

From the results, our BA strategy produces comparable

results against t-seq and ASP. For small number of events,

ASP produces the smallest SCA size, while BA performs

better when the number of event reached 20 and above.

VII. CASE STUDY: SCA TESTING WITH CONSTRAINT

SUPPORT

In order to demonstrate the applicability of BA strategy in

generating SCA, we used the same real world problem

described by Kuhn [14]. The SUT described as a laptop with

5 different devices (indicated as P1 to P5) that need to be

connected to it. The system need to be booted up, run an

application and perform device scan function. The behavior

of the system is influenced by the device connection

sequence. There are several constraints that need to be

considered in testing the system. The system must be booted

up first. Application must be run before device scan can be

performed. Peripherals P1 to P5 can be connected in any

sequence. We generated test cases with all the constraint are

taken into consideration. We run our BA strategy to produce

the test case for the mentioned scenario above. Since the

system needs to be booted up before any other event occurs,

the first event (system boot) is omitted and added to the test

cases later. From the test suite generated using BA Strategy

as in Table 4, it is shown that the strategy able to produce

test suite size which is comparable to ASP (test suite size -

8) and tseq (test suite size -18). The test suite size is slightly

higher than the pre-computed test suite since all of the

constraints have been addressed during the test suite

generation. In the current version of our strategy, we do not

support the events with customize attribute as discussed in

[14] and [15]. This is due to our strategy is designed to be a

generic and not customize to fixed one specific scenario.

VIII. CONCLUSION AND FUTURE WORKS

 In this paper we discussed the generation of test suite for

event driven system. We reviewed existing approach and

proposed a new approach called BA strategy based on Bees

Algorithm. We conducted experiments and case study and

compare with the existing approach. From the experiment

and case study, although not the best, our BA Strategy

performed well in some scenario compared to the other. We

are looking forward to improve the strategy to further

support more features such as variable strength and non-

uniform value of events.

5

Table 1. Final Test Suite for 8 Steps Procedure

TC Step
1

Step
2

Step
3

Step
4

Step
5

Step
6

Step
7

Step
8

1 Boot App P1 P2 P5 P3 P4 Scan

2 Boot P2 App Scan P4 P3 P1 P5

3 Boot P4 P3 P5 P1 App Scan P2

4 Boot P1 P5 P3 P4 P2 App Scan

5 Boot P4 App P5 Scan P3 P2 P1

6 Boot P5 P2 P1 App Scan P4 P3

7 Boot P2 P3 App P5 P4 Scan P1

8 Boot App Scan P1 P4 P2 P5 P3

9 Boot P2 P1 App P3 Scan P5 P4

10 Boot P3 P2 P5 P4 App P1 Scan

11 Boot P4 App Scan P1 P5 P3 P2

12 Boot App P3 Scan P2 P4 P5 P1

13 Boot P5 App Scan P3 P1 P2 P4

ACKNOWLEDGMENTS

This research is partially funded by myGrants: A New

Design of An Artifact-Attribute Social Research Networking
Eco-System for Malaysian Greater Research Network, UMP
RDU Short Term Grant: Development of a Pairwise
Interaction Testing Strategy with Check-Pointing Recovery
Support, and ERGS Grant: A Computational Strategy for
Sequence Based T-Way Testing.

REFERENCES

[1] Bob Jenkin, Jenny [Online]. Available:

http://burtleburtle.net/bob/math/jenny.html. [Accessed: 21-

Jun-2013].

[2] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,

“IPOG: A General Strategy for T-Way Software Testing,” in

Engineering of Computer-Based Systems, 2007. ECBS ’07.

14th Annual IEEE International Conference and Workshops

on the, 2007, pp. 549 –556.

[3] Y. M. I and Z. K. Z, MC-MIPOG: A Parallel t-Way Test

Generation Strategy for Multicore Systems, vol. 32. Taejon,

COREE, REPUBLIQUE DE: Electronics and

Telecommunications Research Institute, 2010.

[4] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton,

“The AETG system: an approach to testing based on

combinatorial design,” Software Engineering, IEEE

Transactions on, vol. 23, no. 7, pp. 437 –444, Jul. 1997.

[5] A. W. Williams, “Determination of Test Configurations for

Pair-Wise Interaction Coverage,” in Proceedings of the IFIP

TC6/WG6.1 13th International Conference on Testing

Communicating Systems: Tools and Techniques, Deventer,

The Netherlands, The Netherlands, 2000, pp. 59–74.

[6] X. Chen, Q. Gu, A. Li, and D. Chen, “Variable Strength

Interaction Testing with an Ant Colony System Approach,”

in Software Engineering Conference, 2009. APSEC ’09.

Asia-Pacific, 2009, pp. 160 –167.

[7] J. Czerwonka, “Pairwise Testing In real World,” in

Proceedings of 24th Pacific Northwest Software Quality

Conference, 2006.

[8] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, “Constructing a T-

Way Interaction Test Suite Using the Particle Swarm

Optimization Approach,” International Journal of Innovative

Computing, Information and Control (IJICIC), vol. 8, no. 1,

pp. 1–10, Nov. 2011.

[9] A. R. A. Alsewari and K. Z. Zamli, “Design and

implementation of a harmony-search-based variable-strength

t-way testing strategy with constraints support,” Inf. Softw.

Technol., vol. 54, no. 6, pp. 553–568, Jun. 2012.

[10] W. Ziyuan, N. Changhai, and X. Baowen, “Generating

combinatorial test suite for interaction relationship,” in

Fourth international workshop on Software quality

assurance: in conjunction with the 6th ESEC/FSE joint

meeting, New York, NY, USA, 2007, pp. 55–61.

[11] Z. Wang, B. Xu, and C. Nie, “Greedy Heuristic Algorithms

to Generate Variable Strength Combinatorial Test Suite,” in

Quality Software, 2008. QSIC ’08. The Eighth International

Conference on, 2008, pp. 155 –160.

[12] J. Arshem, “Test Vector Generator.” [Online]. Available:

http://tvg.sourceforge.net/.

[13] Rozmie R. Othman and Kamal Z. Zamli, “ITTDG: Integrated

T-way test data generation strategy for interaction testing,”

Scientific Research and Essays, vol. 6, no. 17, pp. 3638–

3648, Aug. 2011.

[14] D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and

Y. Lei, “Combinatorial Methods for Event Sequence

Testing,” in Software Testing, Verification and Validation

(ICST), 2012 IEEE Fifth International Conference on, 2012,

pp. 601 –609.

[15] Erdem Esra, Katsumi Inoue, Johannes Oetsch, Jorg Puhrer,

Hans Tompits, and Cemal Yilmaz, “Answer-set

programming as a new approach to event-sequence testing,”

presented at the The Third International Conference on

Advances in System Testing and Validation Lifecycle

(VALID 2011), Barcelona, Spain, pp. 26–34.

[16] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using Artificial Life

Techniques to Generate Test Cases for Combinatorial

Testing,” in Proceedings of the 28th Annual International

Computer Software and Applications Conference - Volume

01, Washington, DC, USA, 2004, pp. 72–77.

[17] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton, “The

Automatic Efficient Test Generator (AETG) system,” in

Software Reliability Engineering, 1994. Proceedings., 5th

International Symposium on, 1994, pp. 303 –309.

[18] R. Mandl, “Orthogonal Latin Squares: An Application of

Experiment Design to Compiler Testing,” Commun. ACM,

vol. 28, no. 10, pp. 1054–1058, 1985.

[19] R. Brownlie, J. Prowse, and M.S. Phadke, “Robust Testing of

AT&T PMX/StarMAIL using OATS,” AT&T Technical

Journal, vol. 71, no. 3, pp. 41–47, 1992.

[20] C. J. Colbourn and M. B. Cohen, “A Deterministic Density

Algorithm for Pairwise Interaction Coverage,” in Proc. of the

IASTED Intl. Conference on Software Engineering, 2004, pp.

242–252.

[21] Alan Webber Williams, “Coverage Measurement And

Generation of Configurations,” Universiti of Ottawa, Ottawa

ON Canada, 2002.

[22] G. Seroussi and N. H. Bshouty, “Vector sets for exhaustive

testing of logic circuits,” Information Theory, IEEE

Transactions on, vol. 34, no. 3, pp. 513 –522, May 1988.

[23] C. Cheng, A. Dumitrescu, and P. Schroeder, “Generating

Small Combinatorial Test Suites to Cover Input-Output

Relationships,” in Proceedings of the Third International

Conference on Quality Software, Washington, DC, USA,

2003, p. 76–.

[24] D.T. Pham, A. Ghanbarzadeh, E.Koc, S.Otri, S.Rahim, and

M.Zaidi, “The Bees Algorithm - A Novel Tool for Complex

Optimization Problems,” in Proceedings of IPROMS 2006

Conference, 2006.

6

[25] S. Anantasate and P. Bhasaputra, “A multi-objective bees

algorithm for multi-objective optimal power flow problem,”

in Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology (ECTI-

CON), 2011 8th International Conference on, 2011, pp. 852 –

856.

[26] D. T. Pham, M. Castellani, and A. A. Fahmy, “Learning the

inverse kinematics of a robot manipulator using the Bees

Algorithm,” in Industrial Informatics, 2008. INDIN 2008. 6th

IEEE International Conference on, 2008, pp. 493 –498.

[27] D. T. Pham, S. Otri, A. Ghanbarzadeh, and E. Koc,

“Application of the Bees Algorithm to the Training of

Learning Vector Quantisation Networks for Control Chart

Pattern Recognition,” in Information and Communication

Technologies, 2006. ICTTA ’06. 2nd, 2006, vol. 1, pp. 1624

–1629.

[28] D. T. Pham and M. Kalyoncu, “Optimisation of a fuzzy logic

controller for a flexible single-link robot arm using the Bees

Algorithm,” in Industrial Informatics, 2009. INDIN 2009. 7th

IEEE International Conference on, 2009, pp. 475 –480.

