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 Abstract- For an event driven system, the order of the event 

sequence should also be tested to detect failure in any possible 

sequences of the event. In many real time or reactive system, 

some faults do occur as a result interactions of some particular 

order of the inputs or events. In some other systems, sequence of 

inputs produce significant results to how such system process the 

inputs and produce the output. For these types of systems, fault 

might be triggered from a particular order of the input sequence, 

entered or given to the system. . In this paper we discuss and 

proposed a new strategy for generating test data for event-driven 

system using a bio inspired artificial intelligent, namely Bees 

Algorithm (BA). We discussed the implementation of BA and 

benchmark it with the existing approaches. 
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I.    INTRODUCTION 

 

 One of the important objectives of software testing is to 

find as many faults as possible in a system under test (SUT). 

As there are many classes of systems, in order to achieve the 

objective, different types and approaches of testing might 

need to be perform (e.g. regression testing, performance 

testing, compatibility testing and interaction/combinatorial 

testing). For an event-driven system, faults may be triggered 

from a combination of events triggered during a process. To 

detect such faults, combinatorial interaction testing (CIT) 

can be performed against the SUT. This is to ensure that 

combination of any events will not flag any errors. In the 

literature, many CIT strategy have been developed for the 

past 20 years (e.g. Jenny[1], IPOG[2], MC-IPOG[3], 

AETG[4] and TConfig[5], ACS[6], PICT[7], PSO[8], 

HSS[9], ParaOrder[10], Density[11], TVG[12] and 

ITTDG[13]). Although these strategies are able to detect 

faults due to combination or interaction between events, the 

sequence of events occur are not being considered. This 

would risk the SUT to faults due to sequence of events. In 

an event-driven system, event can occur in many sequences. 

In order to detect the fault due to different sequences, we 

need to test all possible sequences of each event for the 

SUT. However, testing all possible sequences, even for a 

small system is inefficient and yet affordable due to resource 

constraints (i.e. time, budget and human resource).  

 

Recently, Kuhn et.al[14] and Esra et.al[15] have proposed a 

new approaches to generate test data for testing event-driven 

system. Their work, focus on systems with distinct number 

of event and each event occurs only once, since event 

repetition is not always the case in an event-driven system. 

Kuhn has been using computational greedy approach while 

Esra is proposing a rule-based approach using Answer Set 

programming (ASP). Both approaches have its strength and 

limitations; hence we are looking into improving the 

limitations of the two approaches. The advantages and 

limitations of the two mentioned approaches are discussed 

in the next following section. In recent development, 

researchers have been adopting artificial intelligence (AI) to 

solve combinatorial optimization problems. In the emerging 

research area of software testing, researchers have been 

proposing the use of AI to generating efficient test data for 

interaction testing (e.g. GA[16], ACS[6], PSO[8] and 

HSS[9]). From the published results, in general, the AI-

based strategies produce smaller test suite size compared to 

the computational strategies especially when it comes to 

higher number of parameters (events). Motivated by this 

works, we propose a new approach using bio-inspired AI 

algorithm (namely Bees Algorithm, BA) to optimize the 

generation of test data for sequence of event-driven system 

as mentioned above.  

 

For the purpose of presentation, this paper is organized as 

follows. Section 2 discusses the preliminaries; Section 3 

highlights related works; Section 4 discusses the problem 

definition model; Section 5 design and implementation of 

BA strategy; Section 6 elaborates the results and 

benchmarking against existing strategies; Section 7 presents 

the case study and Section 8 provides the conclusion. 

 

 

II.   PRELIMINARIES 

  

 Sequence Covering Array (SCA) introduced by Kuhn[14] 

is comparable to Covering Array[17], a combinatorial object 

that has been improved from Latin Square[18]  and 
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Orthogonal Array[19]. Covering array is used in generating 

test cases for combinatorial testing. In each row of covering 

array, each combination of t-way parameter is covered at 

least once for fixed t strength. In order to include sequence 

in covering array algorithm, constraints need to be 

introduced to make sure each row contains a particular value 

only once, which might be highly inefficient[14]. Based on 

combinatorial method of covering array, Kuhn proposed 

sequence covering array (SCA). SCA functions like a 

covering array, but also consider the sequence of each t-way 

events to be covered in each row only once. SCA is 

designed specifically to address system with unrepeated 

event sequence.  SCA is written as SCA(N, S, t) where N is 

the size of the test suite,  t is the strength and S is the 

number of event sequence [14], [15]. Each row of N 

contains a permutation of s symbol of set S and at least one 

t-way sequence is covered in every N rows. SCA is optimal 

if the number of rows (N) is minimum. For example, take a 

system with 5 events (A,B,C,D and E). To test exhaustively 

all 5 sequence (i.e. t=5), we would have 5! = 120 test cases. 

Since exhaustive testing is inefficient and unaffordable, we 

could relax the strength to 3 (i.e. t=3). For t=3, there are 60 

possible 3-way sequence as in Figure 1. 

 

 

 

 

 

 

 

 
Figure 1. Exhaustive 3-way sequence 

 

For this example, based on [14],  the first random test case 

(e.g. A,B,C,D,E), would cover up to 10 uncovered sequence 

(i.e. ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE 

and CDE). Hence, we could perform some optimization 

using greedy heuristic, to find a test case that cover the 

most, so fewer test cases needed to cover all 3-way 

sequence. After optimization, from 60 3-way sequence, we 

only need 8 test cases to cover all 3-way sequence i.e. 

SCA(8, 5,3). It has been proven that finding optimal 

covering arrays by searching for a test case that covers the 

most is NP-complete [4][20][21][22]. Since SCA is also 

using combinatorial method, finding the next test case that 

cover the most uncovered set is also NP-Complete. One 

popular approach to solve this covering set problem is by 

using greedy approach. Although greedy algorithm cannot 

guarantee the most optimal result, a good greedy technique 

could produce a close approximation to the most optimal 

result [23]. 

 

III. RELATED WORKS 

 

In this section we discuss existing approaches in generating 

SCA, namely t-seq by Kuhn et.al[14] and ASP by Esra 

et,al[15]. Kuhn proposed a greedy algorithm to generate 

SCA called t-seq. In general, t-seq is a greedy algorithm. A 

number of candidate test cases are generated and each 

candidate test case is checked against the uncovered 

sequence. The test case which covers the most sequences 

will be selected. If a constraint is defined, the test candidate 

with unwanted sequence will not be selected. If constraint is 

not defined, a heuristic step is added where the selected test 

case will be reversed to get the same number of covered 

sequence. The reversal step is optional and can be turned off 

to allow all test candidate are generated randomly. The 

process iterates until all t-way sequences are covered. t-seq 

generates good results. Since t-seq is a computational greedy 

algorithm, the execution time is fast and the number of 

events is fairly scalable. Another approach of generating 

SCA has been proposed by Esra et.al using a declarative 

language, Answer Set Programming (ASP). In this 

approach, a finite set of rules known as answer sets are 

designed. The rules consist of symbols (events) definitions 

and conditions (i.e. how symbols should be arranged). Rules 

for checking if a particular sequence is covered also defined 

in the answer set. Once the ASP encoding is completed, the 

ASP solver will generate SCA based on the rules. Constraint 

rules can also be added to in the answer set rules.  

 

t-seq is a simple and straight forward algorithm to generate 

SCA. Since t-seq is a computational approach, its advantage 

is in term of fast execution time and scalability in term of 

number of events. Although t-seq produces good results in 

term of size of SCA, ASP produces more optimal SCA size. 

In term of constraint support, t-seq provides simple 

constraint support and manual intervention need to be 

performed in order to achieve the constraint. Since ASP is a 

rule based approach, it has the advantage to include more 

complex constraints in the rules. One drawback of ASP is 

scalability. The rules need to be changed for different 

number of events. Since ASP is not designed to be a generic 

SCA generator, the SCA generated by ASP are limited only 

up to 40 events. This is due to the huge number of 4 

sequences that need to be represented in the answer set. In 

term of sequence strength, as far as published results is 

concern, both t-seq and ASP are limited only up to strength 

4 (i.e. t=4).  

 

Motivated by the limitation of both t-seq and ASP, we are 

proposing a bio-inspired AI-based approach in generating 

SCA. As mentioned earlier, many published works have 

shown that AI-based algorithms have been used in solving 

optimization problems and produce good results compared 

to computational approached. Moving from here, we adopt a 

relatively new AI-based algorithm, namely Bees Algorithm 

(BA) for generating SCA. 

 

 

IV. PROBLEM DEFINITION MODEL 

  

 To appreciate the application of SCA, consider a house 

alarm system with 4 input sensors as in Table 2. When the 

alarm system is activated, the system will monitor these four 

sensors and produces an alarm messages when the system 

senses any unusual activities (e.g. in the presence of 

intruder). 

 

 

 

 

 

 

{ABC}{ABD}{ABE}{ACB}{ACD}{ACE}{ADB}{ADC}

{ADE}{AEB}{AEC}{AED}{BAC}{BAD}{BAE}{BCA} 

{BCD}{BCE}{BDA}{BDC}{BDE}{BEA}{BEC}{BED} 

{CAB}{CAD}{CAE}{CBA}{CBD}{CBE}{CDA}{CDB} 

{CDE}{CEA}{CEB}{CED}{DAB}{DAC}{DAE}{DBA} 

{DBC}{DBE}{DCA}{DCB}{DCE}{DEA}{DEB}{DEC} 

{EAB}{EAC}{EAD}{EBA}{EBC}{EBD}{ECA}{ECB}{
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TABLE 1 House Alarm System 

Sensor Function 

A Active when main door is opened 

B Active when any window is opened 

C Active when any window is broken 

D Detect any movement inside the house 

 

In this scenario, the alarm system receives inputs from the 

sensors in random sequences. Main door may be opened 

first and then followed by any window opened or vice versa. 

Ideally, the house alarm system must be tested in all 

possible sequences so that no false alarm will be triggered 

due to sequencing faults.  In a mass factory production of 

the alarm system, testing exhaustively is not feasible due to 

time-to-market, resources, and cost constraints. Even if the 

system has been tested during its manufacturing process, the 

system also needs to be tested after installation at the 

particular premise.  

 

To test the system after installation on site, the testing 

procedure requires manual and physical intervention to 

trigger the sensors. This would be time consuming; thus, 

efficient test data are needed to reduce testing time. Should 

we consider to test all possible sequences (4 input sequences 

give 4!=24 tests) it may not be practical. If one test requires 

5 minutes, we need 120 minutes or 2 hours to perform the 

testing at the installation site. This is obviously inefficient 

and increase cost related to installation. For this reason, 

there is a need for a sampling mechanism that can help to 

find the subsets of effective sequences for testing the 

scenario. Using SCA, testing 2-way sequence will give us 

SCA(2, 4,2), that is SCA of 4 events with strength of 2 and 

size of 2. Using a simple greedy approach testing 3-way 

sequence will give us 6 test cases. 

 

 

V. BA STRATEGY 

 

A. Overview of Bees Algorithm 

Bees Algorithm (BA) has been proposed by Pham [24] and 

is a relatively new nature inspired, population based 

algorithm. BA is inspired based on the food foraging 

behavior of honey bee colony. In a honey bee colony, a 

group of scout bees are sent out randomly to find flower 

patches. In nature, honey bee can travel more than 10 

kilometers in multiple directions from its hive. When return 

to the hive, the pollen or nectar quality will be evaluated. If 

the pollen or nectar quality is above threshold, the nectar or 

pollen will be deposited and the scout bee will perform a 

dance known as waggle dance. The dance serves as a 

communication medium to tell other bees the location of the 

flower patch (direction, distance, quality and quantity). 

From the dance, fitness of each patches can be evaluate 

relatively in term of quality and effort needed to harvest the 

food. After the dance, the scouts will employ other bees and 

go back to the flower patch to collect the nectar. More bees 

are employed to more promising patches (i.e. better quality, 

quantity and nearer to the hive) and less bees are employed 

to the less promising patches. The food level of each patch 

will be monitored continuously during the harvest. The 

information will be used in the next waggle dance. Inspired 

from the food foraging behavior of honey bees described 

above, Figure 2 shows the pseudo code of BA in its basic 

form. 

 

During initialization, there are several parameters that need 

to be set prior to execution (n, m, e, nep, nsp and ngh). From 

a hive, there will be n number of scout bee, which will 

randomly choose a flower patch around the hive. From n, m 

best patches will be selected and from m, e elite patches will 

be sent with nep bees while nsp bees sent to the rest of the 

patches (m-e). nsp and nep are referred as employed bees. 

Lastly, the size of neighborhood search, ngh, is to be 

determined. 

 

 

1.  Initialize population with random solutions  

2.  Evaluate fitness of the population. 

3.  While (stopping criterion not met) 

 //Forming new population. 

4.  Select sites for neighborhood search. 

5.  Recruit bees for selected sites (more bees for best e sites) 

and evaluate fitnesses. 

6.  Select the fittest bee from each patch. 

7.  Assign remaining bees to search randomly and evaluate 

their fitness’s. 

8.  End While. 

 

 

Figure. 1. Pseudo code of basic Bees Algorithm 

 

The algorithm starts with sending out scout bees randomly 

to the food source (i.e. search space). In step 2, each 

evaluation of patches visited by the scout bees are initialized 

for the first time. Step 4 chooses m number of bees. The 

patches visited by the m bees will be used for neighborhood 

search later. In step 5, a number of bees (nep) are employed 

for neighborhood search for the each elite patches (e). For 

the rest of the patches (m-e), a number of bees (nsp) are 

employed for neighborhood search for each of the non-elite 

patches. Here, more bees are sent to more promising patches 

to ensure more detailed search done in the neighborhood 

compared to less promising patches. Bees are sent to non-

elite patches to reduce the possibilities of local maxima 

among the elite patches. In step 6, bee with the highest 

fitness will be selected, which will reduce the search space 

size. Finally in step 7, the remaining bees are randomly 

assigned to new potential solution. Step 4-7 are repeated 

until stopping condition is met. Figure 3 summarizes all the 

parameters need to be initialized prior to execution. 

 

Although BA is considered as a new swarm-based 

algorithm, BA has been used to solve many optimization 

problems. BA shows promising results in term of 

effectiveness, problem scale and performance published as 

in [24–28]. Although many of the BA implementation 

mentioned is functional optimization, BA is claimed suitable 

to solve not only functional, but also combinatorial 

optimization problems [24]. These factors motivate us to 

adopt BA for t-way test data generation strategy. 

 

B. BA Strategy for generating SCA 
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Our BA strategy for generating test data is divided into 2 

main parts. The first part generates the sequence interaction 

set for the intended strength. The sequence interaction 

generation algorithm is designed to be generic, to support 

any strength, t, for N number of events, given t < N. This 

part consists of a simple function that generates permutation 

set of the intended events. If constraints are defined, 

sequences with invalid sequence will be marked as already 

covered. The second part runs the BA to generate candidate 

test cases. From the candidate test cases, the best test cases 

will be added to the final test suite. Should there be any 

constraints defined, the constraint will be considered during 

test case generation. 

 

VI. EXPERIMENTS AND RESULTS 

 

 We implement our BA Strategy using JAVA Netbeans 7.0 

IDE on Windows XP SP3 platform running on Intel Core2 

duo 3.00 GHz with 2GB RAM. We studied several 

published implementation of BA in several problems [25–

29] and set the parameters of our BA Strategy as in Table 2. 

We compare the SCA produces by our algorithm against t-

seq, ASP and BA. The results are as in Table 3. 

TABLE II. BA STRATEGY PARAMATERS 

Parameter Value Description 

n 20 Number of random test case 

generated 

m 5 Selected test case with best coverage 

for neighborhood search 

e 2 Elite test cases 

nep 15 Number of improvement attempt for 

each elite test case 

nsp 5 Number of improvement attempt for 

each non-elite site 

ngh 4 Repetition for nep and nsp 

improvement 

 

TABLE III SCA GEERATED FOR 3-WAY AND 4-WAY SEQUENCE 

No. of 

event 

3-way sequence  No. of 

event 

4-way sequence 

t-seq ASP BA  t-seq ASP BA 

5 8 7 8  5 29  26 

6 10 8 8  6 36  35 

7 12 8 10  7 46  41 

8 12 8 10  8 50  50 

9 14 9 12  9 58  57 

10 14 10 12  10 66  64 

11 14 10 13  11 70  69 

12 16 10 15  12 78  77 

13 16 10 14  13 86  81 

14 16 10 16  14 90  86 

15 18 10 16  15 96  91 

16 18 11 17  16 100 - 97 

17 20 11 18  17 108 - 99 

18 20 - 18  18 112 - 104 

19 22 - 18  19 114 - 107 

20 22 19 19  20 120 104 104 

21 22 - 20  21 126 - 116 

22 22 - 21  22 128 - 120 

30 26 23 23  30 156 149 145 

40 32 27 26  40 182 181 175 

50 34 31 30  50 214 - 190 

 

 

From the results, our BA strategy produces comparable 

results against t-seq and ASP. For small number of events, 

ASP produces the smallest SCA size, while BA performs 

better when the number of event reached 20 and above. 

 

 

VII. CASE STUDY: SCA TESTING WITH CONSTRAINT 

SUPPORT 

 

In order to demonstrate the applicability of BA strategy in 

generating SCA, we used the same real world problem 

described by Kuhn [14]. The SUT described as a laptop with 

5 different devices (indicated as P1 to P5) that need to be 

connected to it. The system need to be booted up, run an 

application and perform device scan function. The behavior 

of the system is influenced by the device connection 

sequence.  There are several constraints that need to be 

considered in testing the system. The system must be booted 

up first. Application must be run before device scan can be 

performed. Peripherals P1 to P5 can be connected in any 

sequence. We generated test cases with all the constraint are 

taken into consideration. We run our BA strategy to produce 

the test case for the mentioned scenario above. Since the 

system needs to be booted up before any other event occurs, 

the first event (system boot) is omitted and added to the test 

cases later. From the test suite generated using BA Strategy 

as in Table 4, it is shown that the strategy able to produce 

test suite size which is comparable to ASP (test suite size - 

8) and tseq (test suite size -18). The test suite size is slightly 

higher than the pre-computed test suite since all of the 

constraints have been addressed during the test suite 

generation. In the current version of our strategy, we do not 

support the events with customize attribute as discussed in 

[14] and [15]. This is due to our strategy is designed to be a 

generic and not customize to fixed one specific scenario. 

 

 

VIII. CONCLUSION AND FUTURE WORKS 

 

 In this paper we discussed the generation of test suite for 

event driven system. We reviewed existing approach and 

proposed a new approach called BA strategy based on Bees 

Algorithm. We conducted experiments and case study and 

compare with the existing approach. From the experiment 

and case study, although not the best, our BA Strategy 

performed well in some scenario compared to the other. We 

are looking forward to improve the strategy to further 

support more features such as variable strength and non-

uniform value of events. 
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Table 1. Final Test Suite for 8 Steps Procedure 

TC Step 
1 

Step 
2 

Step 
3 

Step 
4 

Step 
5 

Step 
6 

Step 
7 

Step 
8 

1 Boot App P1 P2 P5 P3 P4 Scan 

2 Boot P2 App Scan P4 P3 P1 P5 

3  Boot P4 P3 P5 P1 App Scan P2 

4 Boot P1 P5 P3 P4 P2 App Scan 

5 Boot P4 App P5 Scan P3 P2 P1 

6 Boot P5 P2 P1 App Scan P4 P3 

7 Boot P2 P3 App P5 P4 Scan P1 

8 Boot App Scan P1 P4 P2 P5 P3 

9 Boot P2 P1 App P3 Scan P5 P4 

10 Boot P3 P2 P5 P4 App P1 Scan 

11 Boot P4 App Scan P1 P5 P3 P2 

12 Boot App P3 Scan P2 P4 P5 P1 

13 Boot P5 App Scan P3 P1 P2 P4 
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