EFFECT OF SAWDUST SPECIES AND PARTICLE SIZE ON GLUCOSE PRODUCTION

NG WEI YEE

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Chemical Engineering (Biotechnology)

Faculty of Chemical and Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISORS’ DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>STUDENT’S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xviii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1 INDRODUCTION

1.1 Background of Proposed Study 1
1.2 Problem Statement 2
1.3 Research Objective 2
1.4 Scope of Proposed Study 3
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction of Glucose 5
 2.1.1 Important of Glucose 6
 2.1.2 Application of Glucose 7

2.2 Glucose Sources 11
 2.2.1 Wood Sawdust 14
 2.2.1.1 Softwood Species 15
 2.2.1.1.1 Picea Abies 15
 2.2.1.1.2 Oil Palm Trunk 16
 2.2.1.1.3 Prosopis Juliflora 17
 2.2.1.1.4 Summary of the Softwood Species 17
 2.2.1.2 Hardwood Species 19
 2.2.1.2.1 Olive Tree 19
 2.2.1.2.2 Oak Wood 20
 2.2.1.2.3 Poplar Wood 20
 2.2.1.2.4 Summary of Hardwood Species 21

2.3 Wood Composition 23
 2.3.1 Lignin 23
2.3.2 Hemicellulose

2.3.3 Cellulose

2.4 Pretreatment Process

2.4.1 Alkali Pretreatment

2.4.2 Acid Pretreatment

2.4.3 Peracetic Acid Pretreatment

2.4.4 Summary of Pretreatment Method

2.5 Glucose Production

2.5.1 Physical Hydrolysis

2.5.2 Chemical Hydrolysis

2.5.3 Biology Hydrolysis

 2.5.3.1 Microorganism

 2.5.3.2 Enzymatic Hydrolysis

2.5.4 Summary of Glucose Production

2.5.5 Effect of Particle Size on Glucose Production

2.6 Analysis

2.6.1 Analysis of Glucose

2.6.2 Fiber Characterization

 2.6.2.1 Fourier Transform Infrared (FTIR)

 2.6.2.2 Scanning Electron Microscopy (SEM)
CHAPTER 3 METHODOLOGY

3.1 Introduction 44
3.2 Phase 1: Preparing The Raw Materials 47
3.3 Phase 2: Pretreatment Process 48
 3.3.1 Physical Treatment 48
 3.3.2 Prelignification Treatment 51
 3.3.3 Pretreatment (First Stage) 56
 3.3.4 Pretreatment (Second Stage) 58
3.4 Phase 3: Glucose Production 60
3.5 Phase 4: Analysis 71
 3.5.1 Glucose Analysis 71
 3.5.2 Fourier Transform Infrared Spectroscopy (FTIR) 72
 3.5.3 Scanning Electron Microscope (SEM) 73

CHAPTER 4 RESULT AND DISCUSSION

4.1 Introduction 74
4.2 Effect on the species and particle size of sawdust on cellulose recovery 75
4.3 Effect of time exposure on glucose production sawdust hydrolysis 82
4.4 Effect of species and particle size of sawdust on glucose production 88
CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion 91

5.2 Recommendation 92

REFERENCES

94

APPENDICES

Appendix A 99
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Four types of lignocellulosic biomass sources</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Chemical composition of hardwood and softwood</td>
<td>15</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Softwood species on glucose production</td>
<td>18</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Composition of olive wood</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Composition of oak wood</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Hardwood species in glucose production</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Pretreatment method on glucose production</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Summary of glucose production by hydrolysis method</td>
<td>37</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Particle size of sawdust</td>
<td>40</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Analysis method of glucose production</td>
<td>42</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Wave number of functional group</td>
<td>77</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Thermal degradation temperature</td>
<td>93</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure 2.1</th>
<th>Structure of glucose</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.2</td>
<td>Formation of sucrose</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Formation of lactose</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Formation of maltose</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Structure of starch</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Comparisons of hardwood and softwood</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Oil palm trunk</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Structure of wood</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Lignin chemical structures</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Chemical structures of hemicelluloses</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Chemical structure of cellulose with the -1,4-glycosidic bond</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Cellulose with the hydrogen bond</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flow chart of methodology on glucose production from sawdust</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Three species of sawdust (Meranti, Keruing and Kempas)</td>
<td>47</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Sieve shaker</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Samples were keep in vacuum bag</td>
<td>50</td>
</tr>
</tbody>
</table>
Figure 3.5 Physical treatment of raw material
Figure 3.6 Weigh 50 g of sample with AND GX-6000 weigher
Figure 3.7 Predelignification in Memmert oil bath
Figure 3.8 Washing the sawdust with hot water
Figure 3.9 Checking pH with Hanna pH meter
Figure 3.10 Samples in the Memmert oven
Figure 3.11 Predelignification process of sawdust
Figure 3.12 PAA was keeping in Memmert Water Bath with 30°C
Figure 3.13 Preparation of peracetic acid (CH$_3$COOOH)
Figure 3.14 First pretreatment of sawdust
Figure 3.15 Samples in 17.5% of NaOH
Figure 3.16 Determine the weight of sample
Figure 3.17 Pretreatment processes (second stage)
Figure 3.18 Cellulose (C6105) from *Trichoderma Reesei* and Cellobiase
 (C2730) from *Aspergillus Niger*
Figure 3.19 Preparing samples and apparatus for autoclave
Figure 3.20 Preparing buffer for autoclave
Figure 3.21 Preparation of buffer
Figure 3.22 Preparing for enzyme transfer to conical flask
Figure 3.23 Working at laminar hood when transfer the enzymes
Figure 3.24 Samples in the IKA KS 4000i Control Incubator Shaker
Figure 3.25 Samples were collected 66
Figure 3.26 Denature the enzyme in Memmert Water Bath (90°C) 66
Figure 3.27 Eppendorf Centrifuge was used to separate the solid and supernatant 67
Figure 3.28 Samples before centrifugation 68
Figure 3.29 Samples after centrifugation 68
Figure 3.30 Samples were kept in vials 69
Figure 3.31 Enzymatic hydrolysis process 70
Figure 3.32 YSI 7100 Biochemical Analyzer 71
Figure 3.33 Fourier Transform Infrared Spectroscopy (FTIR) 72
Figure 3.34 EVO 50 Scanning Electron Microscope (SEM) 73
Figure 4.1 Cellulose recovery of different species of sawdust with different particle size 76
Figure 4.2 FTIR Spectra of raw material (red line) and sample after pretreatment (blue line) for Keruing species with 315 µm 77
Figure 4.3 FTIR Spectra of cellulose standard (blue line) and 165 µm of Kempas (red line) 78
Figure 4.4 FTIR Spectra of cellulose standard (red line) and 315 µm of Kempas (blue line) 79
Figure 4.5 a) SEM Micrograph of before pretreatment Kempas species of sawdust at 630µm. b) SEM Micrograph of after pretreatment Kempas species of sawdust at 630µm. c) SEM Micrograph of
before pretreatment *Kempas* species of sawdust at 165\(\mu\)m d) SEM Micrograph of after pretreatment *Kempas* species of sawdust at 165\(\mu\)m

Figure 4.6 a) SEM Micrograph of before pretreatment *Keruing* species of sawdust at 630\(\mu\)m. b) SEM Micrograph of after pretreatment *Keruing* species of sawdust at 630\(\mu\)m. c) SEM Micrograph of before pretreatment *Keruing* species of sawdust at 165\(\mu\)m. d) SEM Micrograph of after pretreatment *Keruing* species of sawdust at 165\(\mu\)m

Figure 4.7 a) SEM Micrograph of before pretreatment *Meranti species* of sawdust at 630\(\mu\)m. b) SEM Micrograph of after pretreatment *Meranti* species of sawdust at 630\(\mu\)m. c) SEM Micrograph of before pretreatment *Meranti* species of sawdust at 165\(\mu\)m. d) SEM Micrograph of after pretreatment *Meranti* species of sawdust at 165\(\mu\)m

Figure 4.8 Glucose production of *Kempas* sawdust

Figure 4.9 Glucose production of *Keruing* sawdust

Figure 4.10 Glucose production of *Meranti* sawdust

Figure 4.11 a) SEM Micrograph of before enzymatic hydrolysis *Keruing* species of sawdust at 200\(\mu\)m. b) SEM Micrograph of during enzymatic hydrolysis *Keruing* species of sawdust at 200\(\mu\)m in 10 hours. c) SEM Micrograph of after enzymatic *Keruing* species of sawdust at 200\(\mu\)m in 11 hours. d) SEM Micrograph of after enzymatic *Keruing* species of sawdust at 200\(\mu\)m in 12 hours

Figure 4.12 Glucose concentration with the sawdust species and different particle size at 12 hours enzymatic hydrolysis reaction
Figure 4.13 FTIR Spectra of cellulose and *Meranti* species with different particle size
LIST OF SYMBOLS

cm$^{-1}$ Per Centimeter

g Grams

g/L Grams per liters

kg Kilogram

M Molarity (moles/ liters)

mL Milliliters

mm Millimeters

mol/dm3 Moles/ decimeter Cubed

rpm Rotation per minute

v/w Volume per weight

w/w Weight per weight

α Alpha

β Beta

μL Microliters

μm Micrometer

% Percentage

°C Degree Celcius
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>DNS</td>
<td>Dinitrosalicylic Acid</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
<tr>
<td>H</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>L</td>
<td>Liquid</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic acid</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance Spectroscopy</td>
</tr>
<tr>
<td>O</td>
<td>Oxygen</td>
</tr>
<tr>
<td>PAA</td>
<td>Peracetic Acid</td>
</tr>
<tr>
<td>S</td>
<td>Solid</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermal Gravimetric Analysis</td>
</tr>
</tbody>
</table>
EFFECT OF SAWDUST SPECIES AND PARTICLE SIZE ON GLUCOSE PRODUCTION

ABSTRACT

Disposing of solid waste had become the great challenges in today’s world. Thus, there is an urgency to transform the solid waste into an added value product. Sawdust is one of the solid wastes which can be hydrolyzed into glucose. This research focuses on the effect of sawdust species and particle size during glucose production. Three species of sawdust have been chosen in this research which was Meranti, Keruing and Kempas. Each species of sawdust were prepared in four different particle sizes which were 160 μm, 200 μm, 315 μm and 630 μm. After several steps of pretreatment to recovery the cellulose from the sawdust, enzymatic hydrolysis method was used to produce glucose from cellulose. The highest cellulose recovery was obtained from the Keruing species with the particle size of 630 μm. Furthermore, the highest glucose production after the enzymatic hydrolysis was Keruing species with the particle size of 200 μm. From this research, it is recommended that Nuclear Magnetic Resonance Spectroscopy (NMR) and Thermal Gravimetric Analysis (TGA) can be used to determine the detail characteristics of cellulose and glucose that has been produced from sawdust.
CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF PROPOSED STUDY

According to national statistics, Malaysia generates about 2.18 million tonnes of wood waste per year. This wood waste can pollute the environment especially in Malaysia. Sawdust is a by product or wood waste of wood processing, hence using the sawdust can help to decrease the problem of disposal solid waste which has negative impact to the environment. Sawdust is one of lignocellulosic biomass which can be used as renewable resources for production of glucose and can be further converted to ethanol or other products. For production of glucose from the lignocellulosic biomass, there are several processing methods that are currently been used. The enzymatic hydrolysis is
one of the methods to convert the cellulose to glucose. Some pretreatment process should be applied before the enzymatic hydrolysis.

1.2 PROBLEM STATEMENT

Disposal of solid waste has become the great challenges in today’s world. Sawdust is a by product or solid waste of wood processing. Malaysia is one of the producers of wooden product in the world. Many species of hardwood can be found in Malaysia’s tropical rain forest. Thus, variety species of sawdust from hardwood are produced when processing the wood. Besides, there is a lack of study about hardwood sawdust species and its particle size on glucose production.

1.3 RESEARCH OBJECTIVE

1.3.1 To investigate the effect of sawdust species which can lead to cellulose recovery.

1.3.2 To find out the effect of sawdust particle size to cellulose recovery.

1.3.3 To determine the effect of sawdust species and particle size on glucose production.
1.4 SCOPE OF PROPOSED STUDY

1.4.1 Sawdust was collected from Seng Beng Sawmill Sdn. Bhd. at Gambang. Once the sawdust was taken from industry, the sawdust needed to be dried under the sunlight about five hours to eliminate water content in sawdust. Pre-delignification process was run for sawdust to remove all the oily content, grease and dirt content. Then, first and second stages of pre-treatment process were applied to the sawdust to remove the lignin content and hemicelluloses.

1.4.2 Three species of sawdust species (*Meranti, Keruing and Kempas*) with the particle size (160 μm, 200 μm, 315 μm and 630 μm) were investigated in this study. Sieve shaker was used to get varying particle size of sawdust on glucose production.

1.4.3 The research was limited within a scope which consists of examination of glucose production from sawdust by enzymatic hydrolysis. Two types of commercial enzymes were used; Cellulase (C6105) and Cellobiase (C2730) which were purchased from Sigma Aldrich (M) Sdn Bhd.

1.4.4 After the enzymatic hydrolysis, the glucose was produced from cellulose. In order to analysis the glucose in the solution, the biochemical analyzer was used to detect the glucose which present in the solution. Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) also used for analysis in this study.
1.5 SIGNIFICANCE OF PROPOSED STUDY

The significance of this research was to decrease the problem of disposal solid waste which has negative impact to the environment by converting sawdust to glucose. Beside, the sawdust species can be explored in this research. The effect on species of sawdust and particle size to produce highest cellulose and highest yield of glucose can be achieved in this study. Enzymatic hydrolysis which was used in this study not only friendly to environment, this type of hydrolysis also has better conversion from cellulose to glucose. The glucose which generated from the hydrolysis of wood sawdust can perform as sweeteners and suitable use in food industry.
2.1 INTRODUCTION OF GLUCOSE

Glucose is one of the carbohydrates and it is a simple sugar which is called monosaccharide. It forms water soluble, odourless, colourless and sweet crystal. Moreover, it can be found in the plant and can be formed in the human body by hydrolysis of starch, cane sugar, maltose and lactose (Saxena, 2006). Molecular formula of the glucose is C$_6$H$_{12}$O$_6$ and its chemical structure is shown in Figure 2.1.
2.1.1 Importance of Glucose

Glucose is the most abundant monosaccharide in the world because it is energy sources for all living cell. In plant and microorganisms, glucose and other sugars act as nutrient and be a ‘signaling molecular’, exerting transcriptional control over many nutrient transporter genes. Furthermore, glucose can also be alter mRNA and protein when it as an extracellular sugar (Mobasher et al., 2008).

Glucose is also an important substrate for all mammalian cells and is an energy source for cellular metabolism. Inside the mammalian body, glucose can provide carbon skeletons for the biosynthesis of other macromolecules like lipids, proteins, nucleic acids and complex storage polysaccharides which are glycogen. Besides, glucose is the building blocks of glycoprotein like proteoglycan which is the structural components of
the extracellular matrix mineralization that fulfils adhesive and informational function (Mobasher et al., 2008).

Glucoses are stored inside of animal and fungi in the form of glycogen. In human, those glycogens are store in the liver of human body. While, glucoses are form a storage polymer name as starch in the plant (Wertz et al., 2010). Glucose is used as an energy source in most of the organisms including human being. Besides, the glucose can form disaccharides when two monosaccharide linked together by glycosidic bond. The examples of disaccharides are sucrose, lactose and maltose.

2.1.2 Application of Glucose

The sucrose can be formed by glucose and another monosaccharide which is fructose (Figure 2.2). It also can call as “table sugar”. The molecular formula of sucrose is $C_{12}H_{22}O_{11}$. It is an important ingredient for many foods like cakes, candy, ice cream, cookies and biscuits.
Another disaccharide is lactose which is composed of glucose and galactose (Figure 2.3). This disaccharide normally can be found in the mammal milk. In the manufacture of pharmaceutical, lactose is used as filler binder for pharmaceutical capsules and tables. This is because lactose is low hygroscopocity, bland taste, and cost effective (Guo, 2008).