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Extended Kalman filter (EKF) is often employed in determining the position of mobile robot and landmarks in simultaneous
localization and mapping (SLAM). Nonetheless, there are some disadvantages of using EKF, namely, the requirement of Gaussian
distribution for the state and noises, as well as the fact that it requires the smallest possible initial state covariance. This has
led researchers to find alternative ways to mitigate the aforementioned shortcomings. Therefore, this study is conducted to
propose an alternative technique by implementing 𝐻∞ filter in SLAM instead of EKF. In implementing 𝐻∞ filter in SLAM, the
parameters of the filter especially 𝛾 need to be properly defined to prevent finite escape time problem. Hence, this study proposes
a sufficient condition for the estimation purposes. Two distinct cases of initial state covariance are analysed considering an indoor
environment to ensure the best solution for SLAM problem exists along with considerations of process and measurement noises
statistical behaviour. If the prescribed conditions are not satisfied, then the estimation would exhibit unbounded uncertainties and
consequently results in erroneous inference about the robot and landmarks estimation. The simulation results have shown the
reliability and consistency as suggested by the theoretical analysis and our previous findings.

1. Introduction

The existence of uncertainties in various forms has caused
numerous applications to function not as intended. Until
today, their existence is almost inevitable; nonetheless, some
devices have been proposed to mitigate such a problem.
Although a number of the devices were proven to have
succeeded in filtering the noise, the solution still demands
further improvements. Owing to the existence of this prob-
lem, a robotics application known as simultaneous localiza-
tion and mapping (SLAM) has experienced difficulties in
increasing the efficiency of its estimation. SLAM provides a
condition where a mobile robot is assigned to observe an
unknown environment and incrementally constructs a map
showing the environment that it has recognized. The mobile
robot then attempts to localize itself on the constructed map
recursively until its task is achieved. SLAM has been applied

in a wide range of applications such as mining, underwater,
and space exploration [1–5] through various techniques, for
example, 3D visualization [5, 6], multiple robot navigation
[7–9], vision-based strategies [10, 11], learning strategies
through artificial intelligence [9, 12, 13], and intermittent
observation issues [14–16]. Figure 1 depicts a simple notion
of SLAM.

A considerable approach that currently seems to be able
to tolerate uncertainties in SLAM relies on probabilistic tech-
nique. This technique which is based on Bayesian approach
is more preferred as compared to the behaviour-based SLAM
and mathematical-based SLAM owing to their complexity as
well as high computational cost [4]. The probability-based
approach takes into account these limitations reasonably well
as it does not require extensive mathematical computation
nor the demand of high reliability sensors for the position
estimation. The extended Kalman filter (EKF) is an example
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Figure 1: Simultaneous localization and mapping: mobile robot makes relative measurements with some uncertainties.

of one of the many probabilistic techniques available. EKF’s
application in SLAM gained popularity since the early 2000s
and still receives high attention among researchers [17–
22]. Early development of EKF-based SLAM was proposed
by Gamini Dissanayake et al. [17, 19] notably due to its
ease of application as well as lower computational cost as
compared to other probabilistic approaches. Unfortunately,
SLAMdemands further considerations for the environmental
conditions. An assumption of Gaussian noise has restricted
EKF performance as the main player thus allowing space
for a more robust approach such as the particle filter (PF)
[23, 24]. Nonetheless, PF has its drawbacks owing to its
complexity as well as higher computational cost.Therefore, in
this circumstance,𝐻∞ filter approach for SLAM is proposed
to mitigate the aforementioned issues as this particular
technique is more robust as compared to the EKF as far as
the non-Gaussian noise is concerned and it has a much lower
computational cost as compared to the PF. A brief description
of the filter is discussed in [25].

In this paper,𝐻∞ filter-based SLAM performance is fur-
ther analysed to aid previous work conducted by [2, 26–28].
One of the earliest applications of this techniquewas reported
by [2]. It has been proven that the𝐻∞ filter is an alternative
solution for SLAM problem in an underwater application.
The filter performance has been compared to PF and EKF
to identify the performance between each technique. Even
though PF has shown better results on the estimation, 𝐻∞
filter is suggested to be the best solution especially when
computational cost and non-Gaussian noise environments
are taken into consideration. Further investigations were
made on the filter convergence properties as reported by
[26, 27, 29].

Despite what 𝐻∞ filter could offer to SLAM, unlike
EKF, 𝐻∞ filter solution can unboundedly increase and
exhibit finite escape time problem as reported by [26, 30].

Therefore, in order to apply 𝐻∞ filter efficiently to SLAM,
the designer must carefully design the filter parameters
to achieve the desired and expected performance. Hence,
further inspection regarding the filter characteristics has
been proposed. Bolzern and Maroni [31] discovered that
𝐻∞ filter must also satisfy 𝑃

0
= 𝑅
−1 to achieve better

estimation. A study for both filtering and prediction stages
has been proposed and it was found that, under feasibility
and sufficient conditions, the filter is able to achieve a stable
result. Furthermore, [27] proposed the covariance inflation
[32, 33] and 𝛾-switching strategy as an additional technique
to prevent the occurrence of finite escape time. Experimental
results supported their analysis and demonstrated that the
methods may alternatively avoid finite escape time.

Motivated by the preceding works, further analyses of
the 𝐻∞ filter-based SLAM are proposed to gain more
insight into the sufficient conditions for estimation purposes.
Based on the preliminary results obtained through theoretical
analysis and simulations, it suggests that if some conditions
are satisfied, the𝐻∞ filter provides a better estimation while
at the same time refraining the existence of finite escape
timein the estimation. The results obtained are also in good
agreement with the previous results. Nevertheless, it is note-
worthy tomention that there is also some trade-off between 𝛾
and the design parameters especially between the initial state
covariance, process, and measurement noises distributions.
Besides, as there aremany types of environment available, two
conditions of different initial state covariance are examined
to understand its effect on SLAM with consideration for the
process and measurement noises distributions. The analyses
are shown to provide the filter characteristics in different
situations of environmental conditions.

This paper is organized as follows. Section 2 describes the
problem formulation about𝐻∞ filter-based SLAM, followed
by Section 3 which examines the convergency of 𝐻∞ filter
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Figure 2: Process and measurement model of SLAM.

for SLAM under some conditions. Next, some simulation
results which consist of two cases of environmental condi-
tions are demonstrated to evaluate our proposal in Section 4.
Finally, Section 5 concludes this paper.

2. Problem Statement

The𝐻∞ filter-based SLAM is introduced and themodel used
throughout the study is explained in this section. The state is
formulated as a joint state vector of the robot position and the
location of the landmarks observed in the environment. The
state vector𝑋

𝑘
∈ R3+2𝑚 at time 𝑘 is represented as

𝑋
𝑘
= [

𝑋
𝑟

𝑋
𝑚

] , (1)

where 𝑋
𝑟
= [𝜃𝑘 𝑥𝑘 𝑦𝑘]

𝑇 is the position of the mobile robot
that is represented by robot heading angle 𝜃

𝑘
and coordinates

of the centre of the mobile robot with respect to the global
coordinate frame (𝑥

𝑘
, 𝑦
𝑘
). While 𝑋

𝑚
∈ R2𝑚, 𝑚 = 1, 2, . . . , 𝑁

is the location of each respective landmark of 𝑥
𝑖
, 𝑦
𝑖
(𝑖 =

1, 2, . . . , 𝑙) that exist in the environment. The landmarks are
modelled as point landmarks.

2.1. Mobile Robot SLAMModel. Basically, there are two gen-
eral steps in providing the system behaviour during mobile
robot observations, that is, process andmeasurementmodels.
Both models are vital to provide necessary information
about the surroundings. Moreover, these twomodels actually
ensemble important knowledge about the robot motions and
relative information between robot and landmarks which
are iteratively updated. A nonlinear discrete-time dynamical
system is considered to describe the problem explicitly
through process and measurement model as illustrated in
Figure 2.

The process model of mobile robot in SLAM from time 𝑘
to time 𝑘 + 1 is described as

𝑋
𝑘+1

= 𝐹𝑋
𝑘
+ 𝐵𝑢
𝑘
+ 𝐺𝑤
𝑘
, (2)

≡ 𝑓 (𝑋
𝑘
, 𝜔
𝑘
, ]
𝑘
, 𝛿𝜔 , 𝛿]) , (3)

where 𝑋
𝑘
is the state of the mobile robot and landmarks as

defined in (1), 𝑢
𝑘
= [𝜔𝑘 ]

𝑘]
𝑇

∈ R𝑝 designates the control
input, and 𝑤

𝑘
is the process noise. 𝐹 ∈ R(3+2𝑚)×(3+2𝑚), 𝐵 ∈

R(3+2𝑚)×(𝑝), and 𝐺 ∈ R(3+2𝑚)×(3+2𝑚) are the state transition
matrix, control matrix, and noise covariance matrix, respec-
tively. Since SLAM of a mobile robot is a nonlinear system,
process model is defined in a nonlinear form as shown in
(3). A model of two-wheel mobile robot (unicycle) is used in
this study. Hence, the process model to define the kinematic
movement of the mobile robot at time 𝑘 + 1 is shown as

𝜃
𝑘+1

= 𝜃
𝑘
+ 𝑓
𝜃
( 𝜔
𝑘
, ]
𝑘
, 𝛿𝜔 , 𝛿] ) , (4)

𝑥
𝑘+1

= 𝑥
𝑘
+ (]
𝑘
+ 𝛿]) 𝑇 cos (𝜃

𝑘
) , (5)

𝑦
𝑘+1

= 𝑦
𝑘
+ (]
𝑘
+ 𝛿]) 𝑇 sin (𝜃

𝑘
) , (6)

𝑋
𝑚,𝑘+1

= 𝑋
𝑚,𝑘
, (7)

where 𝜔
𝑘
is mobile robot angular acceleration and ]

𝑘
is its

velocity with associated noises, 𝛿𝜔 and 𝛿]. 𝑇 is the sampling
rate or the time interval of one movement step. The process
model of the landmarks 𝑋

𝑚,𝑘+1
= [𝑥
𝑖
𝑦
𝑖
]
𝑇 for 𝑖 = 1, 2, . . . , 𝑙

is unchanged with zero noise as landmarks are assumed to
be stationary, (7). Besides, the data association for SLAM is
assumed perfectly given in this study.

During observation, mobile robot makes measurements
using its exteroceptive sensors and the measurement model
is shown as follows:

𝑧
𝑖
= [

𝑟
𝑖

𝜑
𝑖

] = 𝐻
𝑖
(𝑋
𝑘
) + 𝜐
𝑟𝑖𝜑𝑖
, (8)

where𝐻
𝑖
is themeasurementmatrix and 𝜐

𝑟𝑖𝜑𝑖
is the noise with

covariance matrix 𝑅
𝑘
. 𝐻
𝑖
(𝑋
𝑘
) defines that the measurement

done by the mobile robot at time 𝑘 is linear. However, for a
nonlinear system Jacobian transformation of 𝐻

𝑖
is required

as shown in (16) later. At time 𝑘 + 1, the observation of
𝑖th landmark is a range 𝑟

𝑖
and bearing 𝜑

𝑖
which indicates

relative distance and angle frommobile robot to any observed
landmarks. It is assumed that the sensors on the robot are
equipped with a range and bearing sensors that perform the
observations of the landmarks in the environment and also
encoders at the wheels for the measurement of vehicle speed.
Range and bearing are defined as

𝑟
𝑖
= √(𝑦

𝑖
− 𝑦
𝑘+1
)
2
+ (𝑥
𝑖
− 𝑥
𝑘+1
)
2
+ 𝜐
𝑟𝑖
,

𝜑
𝑖
= arctan(

𝑦
𝑖
− 𝑦
𝑘+1

𝑥
𝑖
− 𝑥
𝑘+1

) − 𝜃
𝑘+1

+ 𝜐
𝜑𝑖
,

(9)

where (𝑥
𝑘+1
, 𝑦
𝑘+1
, 𝜃
𝑘+1
) is current robot position, (𝑥

𝑖
, 𝑦
𝑖
) is the

position of observed landmark, and 𝜐
𝑟𝑖
and 𝜐
𝜑𝑖
are the noises

of both distance and angle measurements.
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2.2. 𝐻∞ Filter-Based SLAM. The 𝐻∞ filter algorithm
shows approximately the same structure to the well-known
extended Kalman filter (EKF). The presence of 𝛾 in the state
error covariance owns the essence of 𝐻∞ filter and acts as
themain difference to EKF algorithm.𝐻∞ filter theoretically
denotes that, for a given 𝛾 > 0, the filter attempts to find a
solution for an estimated state 𝑋

𝑘
that satisfies the following

criteria:

𝛾 > sup
𝑋0,𝜐,𝑤

∑
𝑁

𝑘=0


𝑋
𝑘
− 𝑋
𝑘



{

𝑋
0
− 𝑋
0



2

𝑃
−1

0

+ ∑
𝑁

𝑘=0

𝜐𝑘


2

𝑅
−1

𝑘

+ ∑
𝑁

𝑘=0

𝑤𝑘


2

𝑄
−1

𝑘

}

1/2
,

(10)

where 𝑋
0
, 𝑋
𝑘
∈ R3+2𝑚 is the robot (∈ R3) and landmarks

(∈ R2𝑚, 𝑚 = 1, 2, . . . , 𝑁) states. 𝑤
𝑘
and 𝜐

𝑘
are the process

and measurement noises with covariance of 𝑄
𝑘
≥ 0 and

𝑅
𝑘
> 0, respectively, and 𝑃

0
> 0 is the initial state covariance.

The above equation alternatively means that the estimation
error to the noise ratio is less than a certain level of 𝛾.
This method also assumes that the noise distributions are
statistically bounded.

Similar to EKF, the state is predicted based on the system’s
previous information and then is estimated based on the
measurements data obtained from the sensors. In 𝐻∞ filter
algorithm, the prediction step which starts from an initial
state is given by

𝑋
−

𝑘+1
= 𝑓
𝑘
(𝑋
𝑘
, 𝜔
𝑘
, ]
𝑘
, 0 , 0) , (11)

where 𝑋
𝑘
∈ R(3+2𝑚) × (3+2𝑚) is the estimated augmented

mobile robot and landmarks state with its associated covari-
ance 𝑃

−

𝑘+1
. The associated state error covariance of the

estimation error is given by

𝑃
−

𝑘+1
= ∇𝑓
𝑟
𝑃
𝑘
[𝐼
𝑛
− 𝛾
−2
𝑃
𝑘
+ ∇𝐻

𝑇

𝑖
𝑅
−1

𝑘
∇𝐻
𝑖
𝑃
𝑘
]
−1

∇𝑓
𝑇

𝑟

+ ∇𝑔
𝜔]Σ𝑘∇𝑔

𝑇

𝜔],

(12)

where 𝑃
𝑘
is the state error covariance of previous estimation

error and Σ
𝑘
is the covariance of the control noise 𝛿𝜔

and 𝛿]. The covariance matrix of the state 𝑃
𝑘
is defined

in the following subsection. ∇𝑓
𝑟
and ∇𝑔

𝜔] are the Jacobian
transformations with respect to the robot position and the
process noise, respectively. Those Jacobian transformations
are evaluated from the mobile robot motion in (4)–(7) at the
current state estimate 𝑋

𝑘
. For 𝑇 = 1 in a case of stationary

landmarks, the following are obtained:

∇𝑓
𝑟
=

[
[
[

[

1 0 0 0

−] sin 𝜃 1 0 0

] cos 𝜃 0 1 0

0 0 0 𝐼
𝑛

]
]
]

]

,

∇𝑔
𝜔] =

[
[
[

[

𝑓
𝜔]𝜃 0 0 0

0 𝑓
𝜔]𝑥 0 0

0 0 𝑓
𝜔]𝑦 0

0 0 0 0

]
]
]

]

,

(13)

where 𝐼
𝑛
is an identity matrix with an appropriate dimension.

𝑓
𝜔]𝜃 , 𝑓𝜔]𝑥 , and 𝑓

𝜔]𝑦 define the process noise of the robot
motion about its angle and 𝑥, 𝑦 positions, respectively.

The mobile robot continues the process with the obser-
vation and measurement using its sensors and this step
consequently results in ameasurementmodel as shown in (8).
Hence, the mobile robot updates its current location through

𝑋
+

𝑘+1
= ∇𝑓
𝑟
𝑋
𝑘
+ 𝐾
𝑘
(𝑧
𝑖,𝑘
− ∇𝐻
𝑖
𝑋
𝑘
) , (14)

where the updated state covariance 𝑃+
𝑘+1

is given by

𝑃
+

𝑘+1
= ∇𝑓
𝑟
𝑃
𝑘
𝜓
−1

𝑘
∇𝑓
𝑇

𝑟
+ ∇𝑔
𝜔]Σ𝑘∇𝑔

𝑇

𝜔], (15)

where 𝜓 = 𝐼
𝑛
+ (∇𝐻

𝑇

𝑖
𝑅
−1

𝑘
∇𝐻
𝑖
− 𝛾
−2
𝐼
𝑛
)𝑃
𝑘
and 𝐾

𝑘
=

𝑃
𝑘
∇𝐻
𝑇

𝑖
(∇𝐻
𝑖
𝑃
𝑘
∇𝐻
𝑇

𝑖
+ 𝑅
𝑘
)
−1. Since SLAM is a nonlinear sys-

tem, the Jacobian transformation of measurement between
mobile robot position and any 𝑖th landmark results in the
following function ∇𝐻

𝑖
:

∇𝐻
𝑖
=

[
[
[

[

0 −
𝑑𝑥

𝑟
−
𝑑𝑦

𝑟

𝑑𝑥

𝑟

𝑑𝑦

𝑟

−1
𝑑𝑦

𝑟2
−
𝑑𝑥

𝑟2
−
𝑑𝑦

𝑟2

𝑑𝑥

𝑟2

]
]
]

]

, (16)

where

𝑑𝑥 = 𝑥
𝑖
− 𝑥
𝑘
,

𝑑𝑦 = 𝑦
𝑖
− 𝑦
𝑘
,

𝑟 = √𝑑𝑥2 + 𝑑𝑦2.

(17)

2.3. State Error Covariance Matrix. The covariance matrix of
a state estimation in SLAM is a combinationmatrix of mobile
robot and landmark position covariance matrices and cor-
relation between mobile robot and landmarks. Correlations
between mobile robot position and landmarks estimation
arise when the measurements are incorporated and thus
the state error covariance becomes dense. The state error
covariance 𝑃

𝑘
is defined generally as

𝑃
𝑘
= [

𝑃VV 𝑃V𝑚
𝑃
𝑇

V𝑚 𝑃
𝑚𝑚

] , (18)

where 𝑃VV is the covariance matrix of the robot position, 𝑃
𝑚𝑚

is the covariance matrix of the landmark position, and 𝑃V𝑚 is
cross-covariance matrix of the robot and landmark position
or cross-correlation between them.

The dimension of state error covariance in SLAM is
(3 + 2𝑚) × (3 + 2𝑚). The size of covariance matrix will
grow as the robot continuously observed new landmarks
in the environment. State error covariance for SLAM is
fully represented in (19). The state error covariance indicates
the error associated with the robot and landmark state
estimations. From the state error covariance, the increment or
decrement of uncertainties and errors of the estimation could
be observed, which represent the precision and consistency of
the estimation.Therefore, the study on the behaviour of state
error covariance is one of the important issues in designing
the technique of mobile robot SLAM:
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑃
𝜃𝜃

𝑃
𝜃𝑥

𝑃
𝜃𝑦

𝑃
𝜃𝑚1,𝑥

𝑃
𝜃𝑚1,𝑦

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑃
𝜃𝑚𝑛,𝑥

𝑃
𝜃𝑚𝑛,𝑦

𝑃
𝑥𝜃

𝑃
𝑥𝑥

𝑃
𝑥𝑦

𝑃
𝑥𝑚1,𝑥

𝑃
𝑥𝑚1,𝑦

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑃
𝑥𝑚𝑛,𝑥

𝑃
𝑥𝑚𝑛,𝑦

𝑃
𝑦𝜃

𝑃
𝑦𝑥

𝑃
𝑦𝑦

𝑃
𝑦𝑚1,𝑥

𝑃
𝑦𝑚1,𝑦

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑃
𝑦𝑚𝑛,𝑥

𝑃
𝑦𝑚𝑛,𝑦

𝑃
𝑚1,𝑥𝜃

𝑃
𝑚1,𝑥𝑥

𝑃
𝑚1,𝑥𝑦

𝑃
𝑚1,𝑥𝑚1,𝑥

𝑃
𝑚1,𝑥𝑚1,𝑦

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑃
𝑚1,𝑥𝑚𝑛,𝑥

𝑃
𝑚1,𝑥𝑚𝑛,𝑦

𝑃
𝑚1,𝑦𝜃

𝑃
𝑚1,𝑦𝑥

𝑃
𝑚1,𝑦𝑦

𝑃
𝑚1,𝑦𝑚1,𝑥

𝑃
𝑚1,𝑦𝑚1,𝑦

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑃
𝑚1,𝑦𝑚𝑛,𝑥

𝑃
𝑚1,𝑦𝑚𝑛,𝑦

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
.
.
.

.

.

.

𝑃
𝑚𝑛,𝑥𝜃

𝑃
𝑚𝑛,𝑥𝑥

𝑃
𝑚𝑛,𝑥𝑦

𝑃
𝑚𝑛,𝑥𝑚1,𝑥

𝑃
𝑚𝑛,𝑥𝑚1,𝑦

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑃
𝑚𝑛,𝑥𝑚𝑛,𝑥

𝑃
𝑚𝑛,𝑥𝑚𝑛,𝑦

𝑃
𝑚𝑛,𝑦𝜃

𝑃
𝑚𝑛,𝑦𝑥

𝑃
𝑚𝑛,𝑦𝑦

𝑃
𝑚𝑛,𝑦𝑚1,𝑥

𝑃
𝑚𝑛,𝑦𝑚1,𝑦

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑃
𝑚𝑛,𝑦𝑚𝑛,𝑥

𝑃
𝑚𝑛,𝑦𝑚𝑛,𝑦

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (19)

3. Conditions for Convergence
in 𝐻∞ Filter-Based SLAM

𝐻∞ filter algorithm has a significant effect on its perfor-
mance. Unlike the EKF, 𝛾 appears in the prediction and
update process; therefore, it requires additional attention
from the designer to design their system appropriately. The
presence of 𝛾 acts as an attenuator to reduce the system
uncertainties during mobile robot observation and can be
adjustable by applying 𝛾-switching technique [30]. However,
in this study, 𝛾 is fixed as the purpose of the study is to
find the sufficient conditions for a constant 𝛾. If 𝛾 contin-
uously changes, the result would approximate Kalman filter
behaviour.Therefore, the results obtainedmay exhibit almost
the same performance as the Kalman filter which is deemed
unsuitable for this study.

Based on 𝐻∞ filter algorithm, the estimated state error
covariance equation (15) can be simplified as

𝑃
𝑘+1

= 𝑃
𝑘
+ 𝑄
𝑘
. (20)

Equation (20) shows that, in every update, the existence
of process noise 𝑄

𝑘
has a significant effect on the state

error covariance. The equation is also one of the factors
that provide sufficient information in 𝐻∞ filter. Thus, 𝐻∞
filter is sensitive to the initial state covariance, process, and
measurement noises distributions as reported in the literature
[25]. Taking into account these variables, the analysis con-
tributes adequately to explaining the filter performance and
consistency. As the𝐻∞ filter-based SLAM is still considered
as a new technique discovered for SLAM, no analytical results
of convergence are available. Therefore, a theoretical study
about𝐻∞ filter convergence is essential.

Motivated by the aforementioned research gap, this study
attempts to clarify the effect of initial condition of state
covariance with the influence of process and measurement
noise distributions on the𝐻∞ filter behaviour in SLAM.Two
case studies have been defined for the study.

(1) Robot initial state error covariance is smaller than
the landmarks initial state error covariance such that
𝑃
0VV ≪ 𝑃

0𝑚𝑚
.

(2) Robot initial state error covariance is big and the same
as the landmarks initial state error covariance such
that 𝑃

0VV = 𝑃0𝑚𝑚.

The first case defines that the robot has more confidence
about its location than the landmark. This case relies on the
assumption that robot has an efficient proprioceptive sensors
for sensory purposes. Next, the second case defines that
both robot and landmarks initial state error covariances are
unknown. Generally, this case is more alike to the problem
in real SLAM application as usually no prior information is
available for reference. Provided by these two conditions, a
theoretical study and analysis are suggested to comprehend
their influences on SLAM problem. Parallel to the proposed
cases, this study also investigates the consequences of process
and measurement noises to the estimation.

As remarked in the literature, the performance of 𝐻∞
filter is sensitive and depends on the design parameters
such as the process and measurement noises and also the
initial state error covariance. The study continues to describe
explicitly that the selection of design parameters should
satisfy some conditions to guarantee 𝐻∞ filter surpassing
EKF performance (see [27]). Furthermore, there are certain
trade-offswhich are necessary between the design parameters
to achieve the best solution in𝐻∞ filter-based SLAM.

Definition 1. The Jacobian matrix when a mobile robot
observes only one new landmark in its surrounding at point
A and makes 𝑛 observations is given by [19]

∇𝐻
𝐴
=

[
[
[
[

[

0 −
𝑑𝑥
𝐴

𝑟
𝐴

−
𝑑𝑦
𝐴

𝑟
𝐴

𝑑𝑥
𝐴

𝑟
𝐴

𝑑𝑦
𝐴

𝑟
𝐴

−1
𝑑𝑦
𝐴

𝑟
2

𝐴

−
𝑑𝑥
𝐴

𝑟
2

𝐴

−
𝑑𝑦
𝐴

𝑟
2

𝐴

𝑑𝑥
𝐴

𝑟
2

𝐴

]
]
]
]

]

= [−𝑒 −𝐴 𝐴] ,

(21)

where

𝑒 = [
0

1
] , 𝐴 =

[
[
[
[

[

𝑑𝑥
𝐴

𝑟
𝐴

𝑑𝑦
𝐴

𝑟
𝐴

−
𝑑𝑦
𝐴

𝑟
2

𝐴

𝑑𝑥
𝐴

𝑟
2

𝐴

]
]
]
]

]

(22)
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evaluated at the true landmark (𝑥
𝑚
, 𝑦
𝑚
) and the true robot

position (𝑥
𝐴
, 𝑦
𝐴
) and its elements are defined by

𝑑𝑥
𝐴
= 𝑥
𝑚
− 𝑥
𝐴
,

𝑑𝑦
𝐴
= 𝑦
𝑚
− 𝑦
𝐴
,

𝑟
𝐴
= √𝑑𝑥

2

𝐴
+ 𝑑𝑦
2

𝐴
.

(23)

The aforementioned definition will be excessively used in this
study.

Definition 2. The state vector of mobile robot and landmarks
location (1) 𝑋

𝑘
follows a Gaussian distribution in which it is

represented through a mean and covariance of its elements:

𝑋
𝑘
∼ 𝑁 (𝑥, 𝑃) . (24)

The covariance indicates the level of certainty of the mean
estimation; the larger the covariance, the larger the uncer-
tainty of the state estimation. Fisher information matrix
(FIM) Ω specifies the weight of information contained in a
Gaussian distribution. In the case of mobile robot SLAM,
FIM indicates the information obtained by the mobile robot
from each observation. FIM is the inverse of the state error
covariance. The information obtained is inversely propor-
tional to the uncertainty:

Ω
𝑘
= 𝑃
−1

𝑘
. (25)

Fisher information matrix at time 𝑘 + 1 is the summation
of information matrix at time 𝑘 and the new information
obtained from the observation, described as follows [19]:

Ω
𝑘+1

= Ω
𝑘
+ ∇𝐻

𝑇

𝑖
𝑅
𝑘
∇𝐻
𝑖
. (26)

The Fisher information matrix is used to determine the
updated state error covariance for each update in this study.
If the mobile robot starts moving from its initial position to
point A and makes an observation at that point, then with
respect to Definitions 1 and 2, the FIM yields the following
equation:

Ω
𝑘+1

= [
𝑃
0VV 0

0 𝑃
0𝑚𝑚

]

−1

+ [
−𝐻
𝑇

𝐴

𝐴
𝑇 ]𝑅
−1

𝐴
[−𝐻𝐴 𝐴] − 𝛾

−2
𝐼
𝑛

=[

[

𝑃
−1

0VV
+ 𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐻
𝐴
− 𝛾
−2
𝐼
𝑛

−𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐴

−𝐴
𝑇
𝑅
−1

𝐴
𝐻
𝐴

𝑃
−1

0𝑚𝑚

+ 𝐴
𝑇
𝑅
−1

𝐴
𝐴 − 𝛾
−2
𝐼
𝑛

]

]

,

(27)

with 𝐻
𝐴
= [𝑒 𝐴] and thus from (21) ∇𝐻

𝐴
= [−𝐻𝐴 𝐴].

𝑃
0VV and 𝑃0𝑚𝑚 are the initial state error covariance for robot

and landmarks, respectively. The landmarks are assumed
to be stationary, and hence there are no noises affecting
the prediction process for landmarks state. Equation (27) is
claimed as the feasible condition [31]. This condition is very
important as it defines the amount of information available at
that specific time.

Before presenting the main results, the feasibility condi-
tions for𝐻∞ filter-based SLAM are proposed.

Theorem 3. With the consideration of (4)–(7) and (12), the
solution of the filter exists if it satisfies the feasibility conditions
of 𝛾 for each case as stated below:

(1) if 𝑃
0
≫ 𝑅, then 𝛾2 > 𝑅;

(2) if 𝑃
0
< 𝑅, then 𝛾2 > 𝑃

0
.

Proof. The feasibility conditions are analysed separately for
each case. To reveal these criteria clearly, consider a one-
dimensional SLAM (1D SLAM) problem, that is, a robot with
a single coordinate system observing landmarks. Given that
for all conditions 𝑃

0
> 0 and 𝛾 > 0,

(1) if 𝑃
0
≫ 𝑅
𝐴
, then 𝛾2 > 𝑅

𝐴
.

To ensure convergency, the covariance matrix should possess
positive semidefinite (PSD) matrix properties of its elements
[28]. SinceΩ = 𝑃

−1 and 𝑃
0
≫ 𝑅, the first element of (27) has

the following criteria:

𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐻
𝐴
− 𝛾
−2
> 𝑃
−1

0
. (28)

Note that the left and right hand sides of (28) still exhibit
a positive semidefinite matrix. Examining the case for 1D
SLAM, the following equation is achieved:

𝑅
−1

𝐴
− 𝛾
−2
> 𝑃
−1

0
. (29)

Using this new proposed condition and considering that the
updated information must be at least a PSD matrix,

𝑅
−1

𝐴
− 𝛾
−2
> 0,

𝑅
−1

𝐴
> 𝛾
−2
,

𝛾
2
> 𝑅
𝐴
.

(30)

(2) If 𝑃
0
< 𝑅
𝐴
, then 𝛾2 > 𝑃

0
.

Similar to the analysis of case (1), the first element of FIM
is examined to find the consequences of 𝑃

0
< 𝑅
𝐴
. Under

the same assumption of PSD characteristics as in (1), the
following results are obtained:

𝑃
−1

0
+ 𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐻
𝐴
− 𝛾
−2
> 𝑃
−1

0
− 𝛾
−2
> 0. (31)

Hence, for 1D SLAM,

𝛾
−2
< 𝑃
−1

0
,

𝛾
2
> 𝑃
0
.

(32)

Based on the proposedTheorem 3, additional conditions
are required prior to implementation stage to ensure that𝐻∞
filter estimation is converging. Besides, the results have aided
the previous findings significantly which are identified by
[31]. Remark that the initial state covariances formobile robot
and landmarks are considered similar inTheorem 3. Now we
have the appropriate conditions and therefore we are ready to
examine the sufficient conditions for𝐻∞ filter-based SLAM
convergence of each case as defined previously.
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3.1. Case 1: 𝑃
0VV ≪ 𝑃

0𝑚𝑚
. The preceding section explains that

FIM is used to interpret𝐻∞ filter behaviour in each update.
Since the main difference between 𝐻∞ filter and Kalman
filter is due to the existence of 𝛾 for which the characteristics
can be explicitly recognized by (27), the equation may aid in
analysing its significance and influence of design parameters
on𝐻∞ filter performance.

If 𝑃
0VV ≪ 𝑃

0𝑚𝑚
, then the landmarks have high uncertain-

ties. Thus, it is appropriate to assume that 𝑃−1
0𝑚𝑚

→ 0. By this
assumption, FIM can be expressed as follows:

Ω
𝑘+1

= [

[

𝑃
−1

0VV
+ 𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐻
𝐴
− 𝛾
−2
𝐼
𝑛

−𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐴

−𝐴
𝑇
𝑅
−1

𝐴
𝐻
𝐴

𝐴
𝑇
𝑅
−1

𝐴
𝐴 − 𝛾
−2
𝐼
𝑛

]

]

.

(33)

Notice that the diagonal elements are the essential elements
for the designer to obtain some sufficient conditions in
𝐻∞ filter. This is because each variable occupies mobile
robot and landmarks uncertainties. Hence, smaller values of
these variables are being demanded to achieve better state
estimation. Moreover, Ω must always preserve at least a
positive semidefinite matrix in every observation. These two
facts are necessary conditions to secure a reliable estimation
in 𝐻∞ filter-based SLAM. To illustrate this matter clearly,
the following proposition is presented. Let 𝑃

0VV(𝑥), 𝑃0VV(𝑦), and
𝑃
0VV(𝜃) define 𝑥, 𝑦, 𝜃 robot initial state covariances.

Proposition 4. For 𝛾 > 0, in a case of a robot that has more
confidence about its initial state than the landmarks state, 𝛾
selection is affected by the initial state covariance, process, and
measurement noises and its selection must satisfy the following
properties:

𝛾

>√
1

𝑃−1
0VV(𝜃)

+𝑅
−1

𝐴

,

𝛾

>√
𝑅
𝐴
(𝑑𝑥
2
+𝑑𝑦
2
)
2

(𝑃
0VV(𝑥) + Σ𝑥)

−1
𝑅
𝐴
(𝑑𝑥2 + 𝑑𝑦2)

2
+𝑑𝑥4 + 𝑑𝑥2𝑑𝑦2 + 𝑑𝑦2

,

𝛾

>√
𝑅
𝐴
(𝑑𝑥
2
+𝑑𝑦
2
)
2

(𝑃
0VV(𝑦) + Σ𝑦)

−1

𝑅
𝐴
(𝑑𝑥2 + 𝑑𝑦2)

2
+𝑑𝑦4 + 𝑑𝑦2𝑑𝑥2 + 𝑑𝑥2

,

(34)

where Σ
𝑥
and Σ

𝑦
are the associated process noise covariance for

robot 𝑥, 𝑦 coordinate.

Proof. First the diagonal elements are analysed. This con-
sequently led us to determine both robot and landmarks
information during robot observationswhich are represented
by 𝑃−1
0VV +𝐻

𝑇

𝐴
𝑅
−1

𝐴
𝐻
𝐴
− 𝛾
−2
𝐼
𝑛
and 𝐴𝑇𝑅−1

𝐴
𝐴− 𝛾
−2
𝐼
𝑛
. The former

equation can substantially explain the latter equation. This is
shown by the following calculations:

𝑃
−1

0VV
+ 𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐻
𝐴
− 𝛾
−2
𝐼
𝑛

= [
𝑃
−1

0VV(𝜃) 0

0 𝑃
−1

0VV(𝑥𝑦)
] + [

𝑒
𝑇

𝐴
𝑇]𝑅
−1

𝐴
[𝑒 𝐴] − 𝛾

−2
𝐼
𝑛

= [
𝑃
−1

0VV(𝜃) + 𝑒
𝑇
𝑅
−1

𝐴
𝑒 − 𝛾
−2
𝐼
𝑛

𝑒
𝑇
𝑅
−1

𝐴
𝐴

𝐴
𝑇
𝑅
−1

𝐴
𝑒 𝑃

−1

0VV(𝑥𝑦)
+ 𝐴
𝑇
𝑅
−1

𝐴
𝐴 − 𝛾
−2
𝐼
𝑛

] ,

(35)

where 𝑃
0VV(𝜃) and 𝑃

0VV(𝑥𝑦) are the initial robot state error
covariance about its angle and 𝑥, 𝑦 position, respectively.
Note that both diagonal elements must preserve PSD in
each observation. In SLAM, mobile robot heading angle
acts as the primary factors that determine consistency in
SLAM [19]. Hence, it should be analysed differently with
other elements of the state error covariance. As each diagonal
matrix elementmust at least possess a PSD, then, for the robot
heading angle covariance 𝑃

0VV(𝜃), the following characteristics
are compulsory:

𝑃
−1

0VV(𝜃)
+ 𝑅
−1

𝐴
− 𝛾
−2
> 0,

𝛾
2
>

1

𝑃−1
0VV(𝜃)

+ 𝑅
−1

𝐴

.

(36)

Now, the analysis proceeds for the robot and landmarks
states about its 𝑥, 𝑦 estimations, that is, the second diagonal
element. By utilizing Definition 1 and (27) being referred,

𝐴
𝑇
𝑅
−1

𝐴
𝐴

=

[
[
[
[

[

𝑑𝑥
𝐴

𝑟
𝐴

−
𝑑𝑦
𝐴

𝑟
2

𝐴

𝑑𝑦
𝐴

𝑟
𝐴

𝑑𝑥
𝐴

𝑟
2

𝐴

]
]
]
]

]

𝑅
−1

𝐴

[
[
[
[

[

𝑑𝑥
𝐴

𝑟
𝐴

𝑑𝑦
𝐴

𝑟
𝐴

−
𝑑𝑦
𝐴

𝑟
2

𝐴

𝑑𝑥
𝐴

𝑟
2

𝐴

]
]
]
]

]

=

[
[
[

[

(
𝑑𝑥
2

𝐴

𝑟
2

𝐴

+
𝑑𝑦
2

𝐴

𝑟
4

𝐴

)𝑅
−1

𝐴
(
𝑑𝑥
𝐴
𝑑𝑦
𝐴

𝑟
2

𝐴

−
𝑑𝑦
𝐴
𝑑𝑥
𝐴

𝑟
4

𝐴

)𝑅
−1

𝐴

(
𝑑𝑦
𝐴
𝑑𝑥
𝐴

𝑟
2

𝐴

−
𝑑𝑥
𝐴
𝑑𝑦
𝐴

𝑟
4

𝐴

)𝑅
−1

𝐴
(
𝑑𝑦
2

𝐴

𝑟
2

𝐴

+
𝑑𝑥
2

𝐴

𝑟
4

𝐴

)𝑅
−1

𝐴

]
]
]

]

.

(37)

Based on this case, it is configurable that the robot has
some degree of confidence about its initial location compared
to landmarks condition which consists of very large initial
state covariance. Hence, the inverse of the landmarks initial
state covariance is approximating zero. Substituting (37) into
the second diagonal term of (35) appropriately leads to the
following expression:

𝑃
−1

0VV(𝑥) + (
𝑑𝑥
2

𝐴

𝑟
2

𝐴

+
𝑑𝑦
2

𝐴

𝑟
4

𝐴

)𝑅
−1

𝐴
− 𝛾
−2
> 0,

𝑃
−1

0VV(𝑦) + (
𝑑𝑦
2

𝐴

𝑟
2

𝐴

+
𝑑𝑥
2

𝐴

𝑟
4

𝐴

)𝑅
−1

𝐴
− 𝛾
−2
> 0.

(38)
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By simple algebraic rearrangement to determine 𝛾 sufficient
conditions, the following is proposed to obtain better estima-
tion result:

𝛾
2
>

𝑅
𝐴
(𝑑𝑥
2

𝐴
+ 𝑑𝑦
2

𝐴
)
2

𝑃
−1

0VV(𝑥)𝑅𝐴(𝑑𝑥
2

𝐴
+ 𝑑𝑦
2

𝐴
)
2
+ 𝑑𝑥
4

𝐴
+ 𝑑𝑥
2

𝐴
𝑑𝑦
2

𝐴
+ 𝑑𝑦
2

𝐴

,

𝛾
2
>

𝑅
𝐴
(𝑑𝑥
2

𝐴
+ 𝑑𝑦
2

𝐴
)
2

𝑃
−1

0VV(𝑦)𝑅𝐴(𝑑𝑥
2

𝐴
+ 𝑑𝑦
2

𝐴
)
2
+ 𝑑𝑦
4

𝐴
+ 𝑑𝑦
2

𝐴
𝑑𝑥
2

𝐴
+ 𝑑𝑥
2

𝐴

.

(39)

This result significantly describes that it is difficult to
obtain an appropriate 𝛾 due to the nonlinear characteristics
of robot movement and noises. Nevertheless, the prediction
step also embraces the process noise (refer to (20)); it is
found that bigger process noise required bigger 𝛾. Next, the
PSD characteristic is examined in each FIM update. It was
found that FIM, which behaves as the information during
observations has provided a proper selection of 𝛾 to avoid
finite escape time phenomena.

Theorem 5. Note that 𝛾 > 0 and Theorem 3 is satisfied. If the
mobile robot initial state covariance is very small compared to
the initial state covariance of landmarks, then 𝛾 is chosen to
satisfy the following equations:

(1) 𝛾 > √𝑅,

(2) 𝛾 > √𝑃
0VV.

If else, the updated state error covariance exhibits finite escape
time.

Proof. From the properties of PSD, the determinant of the
matrix must be nonnegative. This behaviour is necessary
in probabilistic SLAM. As a matter of fact, this criterion
is used to obtain some typical features for 𝛾 selection. The
determinant of (33) gives

(𝑃
−1

0VV
+ 𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐻
𝐴
− 𝛾
−2
𝐼
𝑛
) (𝐴
𝑇
𝑅
−1

𝐴
𝐴 − 𝛾
−2
𝐼
𝑛
)

− (𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐴𝐴
𝑇
𝑅
−1

𝐴
𝐻
𝐴
) > 0.

(40)

However, the above nonlinear equation is difficult to
explain the effect of 𝛾 for every respective update.We propose
the analysis in linear 1D SLAM to visualize how 𝛾 influences
the estimation. In 1D SLAM, the determinant eventually
becomes as follows:

(𝑃
−1

0VV
+ 𝑅
−1

𝐴
− 𝛾
−2
) (𝑅
−1

𝐴
− 𝛾
−2
) − 𝑅
−2

𝐴
> 0,

𝑃
−1

0VV
𝑅
−1

𝐴
− 𝛾
−2
𝑃
−1

0VV
− 2𝛾
−2
𝑅
−1

𝐴
+ 𝛾
−4
> 0,

𝛾
−4
− (𝑃
−1

0VV
+ 2𝑅
−1

𝐴
) 𝛾
−2
+ 𝑃
−1

0VV
𝑅
−1

𝐴
> 0,

(41)

where 𝐻
𝐴
= [−1 1] and 𝐴 = 1. Furthermore, it is easily

recognized that as 𝑃
0VV, 𝑅𝐴 > 0, then the following are

achieved:

𝛾
−4
− (𝑃
−1

0VV
+ 2𝑅
−1

𝐴
) 𝛾
−2
+ 𝑃
−1

0VV
𝑅
−1

𝐴

< 𝛾
−4
− (𝑃
−1

0VV
+ 𝑅
−1

𝐴
) 𝛾
−2
+ 𝑃
−1

0VV
𝑅
−1

𝐴
,

(42)

𝛾
−4
− (𝑃
−1

0VV
+ 𝑅
−1

𝐴
) 𝛾
−2
+ 𝑃
−1

0VV
𝑅
−1

𝐴

= (𝛾
−2
− 𝑃
−1

0VV
) (𝛾
−2
− 𝑅
−1

𝐴
) ,

(𝛾
−2
− 𝑃
−1

0VV
) (𝛾
−2
− 𝑅
−1

𝐴
) > 0.

(43)

Hence, there exist two different cases with two respective
conditions to fulfil (43).

(1) 𝛾 > √𝑅
𝐴
and 𝛾 > √𝑃

0VV.
(2) 𝛾 < √𝑅

𝐴
and 𝛾 < √𝑃

0VV.

However, the above condition (2) is unlikely to happen.
This is related to (27) where this condition can yield a
negative definitematrix.Therefore, condition (1) is apparently
the only solution for this case. Moreover, from the above
analysis it explicitly identifies the relationship between 𝛾,
initial state covariance, and measurement noise. In addition,
the process noise covariance is also influencing 𝛾 selection as
it is included in the state error covariance prediction step.

As defined above, the results consistently show the same
behaviour asTheorem 3 in which 𝛾must be selected properly
considering the environment and system situations; when-
ever the initial state error covariance for mobile robot 𝑃

0VV is
much smaller than landmarks covariance 𝑃

0𝑚𝑚
, then 𝛾 must

be designed according to these two conditions. Note that
Theorem 5 describes a case where the initial state covariance
between mobile robot and landmarks is different, whereas
Theorem 3 only considers that both initial state covariances
have the same values. Furthermore, both feasible conditions
proposed byTheorem 3 must be satisfied for this case.

Moreover, in navigation of mobile robot, the heading
angle of mobile robot acts as an important factor to be con-
sidered in SLAM [19]. As been proposed by Theorem 3 and
Proposition 4, the designer must ensure that those feasibility
conditions and (36) are fulfilled to successfully implement
the filter approach in their application. 𝛾 is selected by
incrementally increasing its value with regards to the value
defined in Theorem 3 and Proposition 4 to obtain the best
solution.

3.2. Case 2: 𝑃
0VV = 𝑃0𝑚𝑚. This condition is the appropriate

situation of an actual SLAM problem. It is obvious that if a
robot is arbitrarily put in an unknown environment, then it
should not have information about its initial location even
though it is being equipped with high accuracy sensors. Such
a situation presumes a uniform distribution for both robot
and landmarks belief where both initial state covariances
yield very big uncertainties. The following theorem is pro-
posed to indicate 𝐻∞ filter-based SLAM behaviour for this
respective case.
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Theorem 6. Consider that 𝛾 > 0 and Theorem 3 is satisfied.
There is a 𝛾 that gives the best solution to SLAMwhich satisfies
the following, if and only if both robot and landmarks initial
state covariances are very big such that robot does not have any
prior information about its initial position:

𝛾 > √
𝑅

2
. (44)

Proof. Assume that both robot and landmarks initial state
covariances are too big. By referring to the previous case, the
determinant of the updated Fisher information matrix for a
robot observing landmarks at point A yields the following:

(𝑃
−1

0VV
+ 𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐻
𝐴
− 𝛾
−2
𝐼
𝑛
) (𝑃
−1

0𝑚𝑚

+ 𝐴
𝑇
𝑅
−1

𝐴
𝐴 − 𝛾
−2
𝐼
𝑛
)

− (𝐻
𝑇

𝐴
𝑅
−1

𝐴
𝐴𝐴
𝑇
𝑅
−1

𝐴
𝐻
𝐴
) > 0.

(45)

To simplify this analysis, we consider again 1D SLAM
problem. We know initially that in this case 𝑃

0VV = 𝑃
0𝑚𝑚

=

𝑃
0
and both initial state covariances are very big. By this

assumption and similar steps as (41)–(43), (45) leads us to the
following equation:

(𝑃
−1

0
+ 𝑅
−1

𝐴
− 𝛾
−2
)
2

− 𝑅
−2

𝐴
> 0,

𝛾
−4
− 2𝛾
−2
(𝑃
−1

0
+ 𝑅
−1

𝐴
) + 𝑃
−2

0
+ 2𝑃
−1

0
𝑅
−1

𝐴
> 0.

(46)

Consider the above equation and the fact that 𝑃
0
≫ 0 and

thus (𝑃−1
0

→ 0). Hence, through factorization, the following
equation is obtained:

𝛾
−4
− 2𝑅
−1

𝐴
𝛾
−2
> 0,

𝛾
−2
(𝛾
−2
− 2𝑅
−1

𝐴
) > 0.

(47)

Since in𝐻∞ filter algorithm 𝛾 > 0, thus from (47) it appears
that the left hand side variables should yield positive values
to ensure that the solution of the estimation is available.
Therefore, the following relation of 𝛾 andmeasurement noise
is obtained:

𝛾
−2
− 2𝑅
−1

𝐴
> 0,

𝛾 > √
𝑅
𝐴

2
.

(48)

It is worth mentioning that the process noise still slightly
affects the estimation if it is too big. If such conditions
occurred, then 𝛾must be tuned carefully to achieve a desired
estimation result. Referring back to the filter algorithm,𝐻∞
filter estimation should be the same as EKF if 𝛾 is set to be very
big. Related to this fact, we propose a condition of 𝛾 where
𝐻∞ filter has better performance than EKF. If finite escape
time is observable, then 𝛾 must be tuned by incrementally
increasing its value to obtain better result.This is the common
step in 𝐻∞ filtering thus finally approximating the same
estimation behaviour to EKF. The next section identifies and
evaluates our theoretical results.
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Figure 3: Feasibility condition 1: robot localization and map
building performance between𝐻∞ filter and EKF.

4. Simulation Results

The proposed theoretical results obtained above are exam-
ined through a series of simulations. A small environment
which has the parameters as described in Table 1 is con-
sidered. It is assumed that the robot exteroceptive sensors
can observe their surrounding in a specific range and the
process noises are small such that they can be neglected. The
robot is assigned to move in some directions while doing
its observations. Landmarks are also assumed to be point
landmarks, stationary, and situated randomly. Comparison
between 𝐻∞ filter- and EKF-based SLAM regarding map
construction analysis, state error covariance update, and
root-mean-square error (RMSE) evaluation is given for each
case that has been analysed in the preceding section.Note that
the process noises are kept consistently very small for both
cases.

Figures 3 and 4 illustrate the simulation results for
the proposed feasibility condition stated by Theorem 3. To
evaluate the reliability of the proposed feasibility conditions,
the parameters in Table 1 are selected such that they satisfy
the defined conditions. Figure 3 demonstrates the results of
estimation between 𝐻∞ filter (HF) and extended Kalman
filter (EKF) for feasibility condition 1where condition of𝑃

0
≫

𝑅 is being considered. As illustrated in the figure, HF shows
better performance than EKF about the mobile robot and
landmarks positions.

The analysis for feasible condition 2 is depicted in
Figure 4. Based on the given figure, if the parameters selected
correspond to the described condition, that is, 𝑃

0
< 𝑅, then

the 𝐻∞ estimation exhibits better performance than EKF.
According to these results, if both of the feasible conditions
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Table 1: Simulation parameters.

Sampling time [s] 𝑇 0.1
Process noise 𝑄

𝑘
1 × 10−7

Feasibility condition
Feasibility condition 1

Robot and landmark initial state
covariance

𝑃
0VV 10
𝑃
0𝑚𝑚

10

Measurement noises 𝑅
𝑘𝜃

0.002
𝑅
𝑘(distance) 0.002

Selection of Gamma 𝛾 0.85
Feasibility condition 2

Robot and landmark initial state
covariance

𝑃
0VV 2
𝑃
0𝑚𝑚

2

Measurement noises 𝑅
𝑘𝜃

5
𝑅
𝑘(distance) 5

Selection of Gamma 𝛾 2.35
Case analysis

Case 1
Robot and landmark initial state
covariance

𝑃
0VV 2
𝑃
0𝑚𝑚

20

Measurement noises 𝑅
𝑘𝜃

2
𝑅
𝑘(distance) 2

Selection of Gamma 𝛾 2
Case 2

Robot and landmark initial state
covariance

𝑃
0VV 5
𝑃
0𝑚𝑚

5

Measurement noises 𝑅
𝑘𝜃

2
𝑅
𝑘(distance) 2

Selection of Gamma 𝛾 2

are not satisfied, then the estimation diverges and exhibits
erroneous results. Besides, the estimation emphasised that
finite escape time easily occurred during mobile robot obser-
vation. These results can be found in [28].

Figures 5–7 illustrate the simulation results for case 1
whenever the mobile robot has more confidence about
its initial position in comparison to the landmarks state
covariance; that is, 𝑃

0VV ≪ 𝑃
0𝑚𝑚

. Based on these figures, it is
observed that the estimation of𝐻∞ filter outperforms EKF.
Figure 5 depicts the result of mapping for both filters, while
the state error covariances for the estimations are presented
in Figure 6. RMSE evaluations of the landmarks estimations
are presented in Figure 7. The mobile robot path estimation
as well as the estimation of landmarks position in Figure 5
consistently shows that𝐻∞ filter provides better estimation
than EKF. Figure 5 depicts clearly the erroneous estimation
of EKF through the path of the mobile robot. The findings
can be demonstrated clearly by Figure 6 in which the state
error covariance of EKF has higher value than𝐻∞ filter for
both mobile robot and landmarks position.This denotes that
the estimation through EKF possesses higher uncertainties
under the conditions described by case 1. Based on the RMSE
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Figure 4: Feasibility condition 2: robot localization and map
building performance between𝐻∞ filter and EKF.
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Figure 5: Case 1:map construction performance between𝐻∞filter
and EKF.

evaluation for the landmarks position in Figure 7,𝐻∞ filter
also suggests that it has smaller error than EKF. However,
these results can only be available if and only if the condition
of 𝛾 > √𝑅 has been satisfied.

Figures 8–10 illustrate the results of case 2 of initial
covariances of 𝑃

0VV = 𝑃0𝑚𝑚 = 5 for both robot and landmarks
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states. A similar performance is observed as described in
Figures 5–7. The robot could estimate its current path and
location with some level of certainty. The uncertainties
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Figure 8: Case 2: Map construction performance between 𝐻∞

filter and EKF.

of estimation proved that 𝐻∞ filter still surpasses EKF
performance as shown in Figure 9. Moreover, it can be
observed from Figure 10, that the RMSE evaluation of the
landmarks position has similar characteristics to that of the
case 1 (Figure 7). This shows that 𝐻∞ filter can provide a
better solution in SLAM problem, if and only if Theorem 6
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Figure 9: Case 2: state error covariance performance between𝐻∞ filter and EKF.
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Figure 10: Case 2: RMSE performance between𝐻∞ filter and EKF.

is satisfied in each observation. However, if the proposed
conditions are not fulfilled, then the estimation becomes
erroneous as explained in the literature [28], where EKF
performs better.

Even though it is imperative to ensure that the conditions
specified under Theorems 5 and 6 are satisfied, note that
initial state covariance and process noise have the possibilities
to influence the estimation. Bigger process noise contributes
to a bigger selection of 𝛾 as it may be observed from (10).
Similar pattern is also observed on the initial state covariance,
in which greater value of initial state covariance of heading
angle may lead to unexpected result [19]. Therefore, the
designer should be aware in selecting those parameters in
addition to fulfilling the conditions of Theorems 3, 5, and 6.

It could be observed that the 𝐻∞ filter estimations
are much superior to the EKF even when it comes to the
Gaussian noise environment with an appropriate selection
of 𝛾 and other parameters design. Moreover, our results
support the analysis discovered in [26] as the state error
covariance update converges almost to zero in the estimation.
In addition, it is also found that the EKF estimation becomes
more inconsistent as the initial state covariance becomes
bigger [19]. This is in contrast to the EKF, where even if the
initial state covariance has a much bigger value, the 𝐻∞
filter still preserves better estimation. To conclude,𝐻∞ filter-
based SLAM is one of the competitive solutions for SLAM
especially for bigger initial state covariance andnon-Gaussian
noise environment.

5. Conclusion

This study has demonstrated that the𝐻∞ filter may be con-
sidered as one of the best candidates to mitigate navigation
issues for SLAMespecially for an environmentwith unknown
noise characteristics. It could be concluded from the two
case studies that the measurement noise must be less than
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𝛾
2 for a system with small process noise. Extra attention

is required by the designers if both initial state covariance
and process noise are larger, which consequently demands a
bigger 𝛾 selection for the whole system to operate efficiently.
However, to sufficiently achieve an expected performance
in 𝐻∞ filter, the designer must ensure that the above
given conditions are satisfied in their system design, taking
into consideration the conditions of initial state covariance,
process, and measurement noises distributions.
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