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ABSTRACT 

 

 Multivariate Statistical Process Control (MSPC) technique has been widely used 

for fault detection and diagnosis. Currently, contribution plots are used as basic tools for 

fault diagnosis in MSPC approaches. This plot does not exactly diagnose the fault, it just 

provides greater insight into possible causes and thereby narrow down the search. Hence, 

the cause of the faults cannot be found in a straightforward manner. Therefore, this study is 

conducted to introduce a new approach for detecting and diagnosing fault via correlation 

technique. The correlation coefficient is determined using multivariate analysis techniques, 

namely Principal Component Analysis (PCA). In order to overcome these problems, the 

objective of this research is to develop new approaches, which can improve the 

performance of the present conventional MSPC methods. The new approaches have been 

developed, the Outline Analysis Approach for examining the distribution of Principal 

Component Analysis (PCA) scores, the Correlation Coefficient Approach for detecting 

changes in the correlation structure within the variables. This research proposed PCA 

Outline Analysis Control Chart for fault detection. The result from the conventional method 

and ne approach were compared based on their accuracy and sensitivity. Based on the 

results of the study, the new approaches generally performed better compared to the 

conventional approaches, particularly the PCA Outline Analysis Control Chart.   
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ABSTRAK 

 

 Kawalan Proses Statistik multivariat (MSPC) teknik telah digunakan secara meluas 

untuk mengesan kerosakan dan diagnosis. Pada masa ini, plot sumbangan digunakan 

sebagai alat asas untuk diagnosis kerosakan dalam pendekatan MSPC. Plot ini tidak tepat 

mendiagnosis kerosakan, ia hanya memberikan gambaran yang lebih besar ke dalam sebab-

sebab yang mungkin dan dengan itu mengecilkan carian. Oleh itu, punca kesalahan yang 

tidak boleh ditemui dalam cara yang jelas dan mudah. Oleh itu, kajian ini dijalankan untuk 

memperkenalkan satu pendekatan baru untuk mengesan dan mendiagnosis kerosakan 

melalui teknik korelasi. Pekali korelasi ditentukan menggunakan teknik analisis multivariat, 

iaitu Analisis Komponen Utama (PCA). Bagi mengatasi masalah ini, objektif kajian ini 

adalah untuk membangunkan pendekatan baru, yang boleh meningkatkan prestasi kaedah 

konvensional yang hadir MSPC. Pendekatan baru telah dibangunkan, Analisis Pendekatan 

Ringkasan untuk memeriksa taburan Analisis komponen prinsipal (PCA) skor, Pendekatan 

Korelasi Pekali untuk mengesan perubahan dalam struktur korelasi dalam pembolehubah. 

Kajian ini mencadangkan PCA Panjang Analisis Carta Kawalan untuk mengesan 

kerosakan. Hasil dari kaedah konvensional dan pendekatan ne berbanding berdasarkan 

ketepatan dan sensitiviti mereka. Berdasarkan hasil kajian itu, pendekatan baru yang 

dilakukan secara umumnya lebih baik berbanding dengan pendekatan konvensional, 

terutamanya Carta Kawalan Analisis Rangka PCA. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of Study 

 

1.1.1 Statistical process control (SPC) 

 

Statistical process control (SPC) involves using statistical techniques to measure and 

analyze the variation in processes.  Most often used for manufacturing processes, the 

intent of SPC is to monitor product quality and maintain processes to fixed targets.  

Statistical quality control refers to using statistical techniques for measuring and 

improving the quality of processes and includes SPC in addition to other techniques, 

such as sampling plans, experimental design, variation reduction, process capability 

analysis, and process improvement plans. Therefore, the true meaning of SPC could 

also be represented conceptually by a diagram as shown in Figure 1.1, whereby those 

basic domains in Table 1.1 have been integrated to serve as an integrated function, 

known as process monitoring.   

 



   2 

 

 

 

 

 

 

 

Table 1.1 Definitions of the Domains used in SPC 

Domains Definition 

Statistical 
Drawing conclusions using scientific or mathematical approach of 

analyzing data. 

Process 

The whole combination of people, equipment, materials, methods and 

environment working together to produce output; any work area that has 

identifiable, measurable output. 

Control Making something behave in a predictable consistent manner. 

 

As the main focus is to monitor the process performance over time, functionally, it 

could also be used to detect those possible large process variations, or namely faults, in 

the quality products or outputs which can then leads to the prevention of fault sources 

from the inputs. In short, SPC is a useful technique especially to detect, diagnose and 

eventually performing process stabilization for any given process, in terms of providing 

an early warning for plant operators as well as gaining the deeper understanding on the 

process behaviour that tend to be achieved in the process. Due to this, from the 

SPC

Statistics
(Descriptive 

Statistics)

Process
(Quality 

variables)
Control
(Control 
charts)

Process performance monitoring & inference 

Figure 1.1: Concept of SPC 
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commercial and quality assurance point of view, therefore, the aims of using SPC are 

mainly to (Wetherill and Brown, 1991): 

i. improve quality (as a whole) by means of reduced manufacturing costs and 

increased customer satisfaction, and also, 

ii.  to increase productivity (process and products) by maximizing output value 

relative to inputs.  

A primary tool used for SPC is the control chart, a graphical representation of 

certain descriptive statistics for specific quantitative measurements of the manufacturing 

process.  These descriptive statistics are displayed in the control chart in comparison to 

their "in-control" sampling distributions.  The comparison detects any unusual variation 

in the manufacturing process, which could indicate a problem with the process.  Several 

different descriptive statistics can be used in control charts and there are several 

different types of control charts that can test for different causes, such as how quickly 

major vs. minor shifts in process means are detected.  Control charts are also used with 

product measurements to analyze process capability and for continuous process 

improvement efforts. Over time, other process-monitoring tools have been developed, 

including: 

· Cumulative Sum (CUSUM) charts: the ordinate of each plotted point represents 

the algebraic sum of the previous ordinate and the most recent deviations from 

the target. 

· Exponentially Weighted Moving Average (EWMA) charts: each chart point 

represents the weighted average of current and all previous subgroup values, 

giving more weight to recent process history and decreasing weights for older 

data. 

 

1.1.2 Multivariate Statistical Process Control (MSPC) 

 Multivariate Statistical Process Control (MSPC) (Kresta et al., 1991; MacGregor, 

1994; Kourti and MacGregor, 1995; MacGregor and Kourti, 1995; Kasonovich et al., 

1996; Wise and Gallagher, 1996; Wold et al., 1999 and Lennox, 2001) is known 
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generally as an upgraded technique, from which, it was emerged as a result of 

reformation in conventional Statistical Process Control (SPC) method. The significant 

enhancement made to MSPC is that it takes into consideration of multivariate behaviour 

among all variable relations simultaneously as opposed to the conventional schemes in 

SPC. In order to appreciate the distinctions between MSPC and SPC fundamentally, the 

first section will elaborate more on this issue according to their individual basic 

domains respectively. Next, the essentials of MSPC implementations are then to be 

discussed. In addition, an overview of the advanced projects conducted for MSPC are 

also presented subsequently. 

Therefore, in order to apply MSPC successfully, those domains of SPC should be 

considered as well as understood especially from the angle of multivariate standpoint. 

Basically, SPC concerns with one basic question and that is ‘given a sequence of data 

sets, did all come from the same population?’ (Wheeler and Chambers, 

1990).Therefore, as to answer this question thoroughly with respect  to MSPC method, 

there are also other several related questions need to be answered fundamentally 

according to those three major fields of SPC, which are: 

i. Descriptive statistics:   

a. Where the values are centred based on multivariate manner?  

b. How to measure the spread out of those multivariate values? 

ii. Quality Variables 

a. How can the outcomes of the certain procedures be described when the 

system internally affect to each others? 

b. What are the techniques used to represent the values described by the 

multivariate descriptive statistics?  

iii. Control charts 

a. How can the properties of the sample be used to infer the stability of 

the given population? 

b. What are the shapes of distribution of the values described by the 

multivariate descriptive statistics if the system has been randomized?  

c. What are the criteria to distinguish between two different populations 

under a single sample observation? 
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Hence, the following discussions are focusing on to answer those questions 

according to the MSPC groundwork. Before continue to those sections, as the 

mathematical basis of any multivariate analysis is on data matrices (Green and 

Carroll,1976; Chatfield and Collins,1980; Marvin,1982; Cox and Cox,1994; Borg and 

Groenen,1997) the followings show some of the references in presenting those 

mathematical symbols, that they might be relevance in this report:   

i. For any given matrices, technically, they are denoted by boldface capital 

symbols. 

ii. Boldface lowercase letters represent form for vectors. 

iii. Every element of either matrices or vectors and other mathematical terms 

including scalar values will be written in the form of italic lowercase.   

Thus, it obviously shows that SPC is not really a suitable monitoring method for 

any kind of multivariate process. As a result, the objectives of having MSPC is therefore 

should be understood based on the following arguments: 

i. MSPC is the only method, of which, the data is treated simultaneously into a 

single monitoring by way of reducing the dimensionality of the data 

observed without losing any of important information.  

ii. The technique is capable of capturing on the directionality of process 

variation information especially on how all the variables are behaving 

relative to one another. (MacGregor and Kourti, 1995).  

iii. By using the multivariate method, the presence of noise levels could be 

reduced through averaging (MacGregor and Kourti, 1995).  

iv. This approach can reduce the burden of constructing a large amount of 

single-variable control charts and enable detecting events that are 

impossible or difficult to detect from single-variable control charts (Phatak, 

1999). 

On top of those objectives, the original goals of SPC are also been considered as 

well as carried together, such a way that the ultimate aim is to increase productivity of 

high quality products for multivariate process, which is illustrated in Figure 1.2.   



   6 

 

 

 

 

 

 

 

 

 

1.2 Problem Statement 

In order to ensure the successfulness of any operation, it is important to detect 

process upsets, equipment malfunctions or other special events as early as possible and 

then to diagnose and remove the factors that cause those events. However, Zhao et al., 

(2004) mentioned that a process which is having multiple operating modes tends trigger 

continuous warning signal even when the process itself is operating under another 

steady-state. SPC is rather complicated, in the sense that there are many individual 

control charts need to be monitored because the collection number of variables observed 

is also exist in a large quantity. MSPC is the only method, of which, the data is treated 

simultaneously into a single monitoring by way of reducing the dimensionality of the 

data observed without losing any of important information. 

 

 

MSPC

Statistics
(Descriptive 

Statistics)

Process
(Quality 

variables)
Control
(Control 
charts)

Multivariate Analysis 

Multivariate process performance monitoring 
& inference 

Figure 1.2: Concept of MSPC 
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1.3 Objective of Study 

The main purpose of this research is to study the impact of applying various 

modes of normal operating condition (NOC) in terms of the number of samples and 

variable variations on the process monitoring performance for continuous-based 

process. Therefore, the main objectives of this research are: 

i. To develop the conventional  MSPM method based on a single NOC  

ii. To implement the conventional MSPM method based on different modes of 

NOC.  

iii. To analyze the monitoring performance between system (i) and (ii). 

 

1.4 Research Question 

i. What is the main impact of reducing the number of samples as well as 

variations on the monitoring performance? 

ii. What are the criteria should be used in selecting the NOC model? 

 

1.5   Scope of study 

Scope of propose study are on the development of PCA-based fault detection system 

based on various modes of NOC models for continuous-based process. There are three 

main scope will be investigated using MATLAB. 

i. The conventional MSPM method will be develop based on single NOC 

mode. The linear PCA algorithm is used for reducing the multivariate data 

dimensions. 

 

ii. The MSPM will be run traditionally by implementing different mode, which 

in this research is on two modes. According to Zhao et al. (2004),in spite of 

the success of applying PCA based MSPM tools to process data for detecting 

abnormal situations, when these tools are applied to a process with multiple 
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operating modes, many missing and false alarms appear even when the 

process itself under  other steady-state nominal operating conditions. 

iii. As all data have been obtained, it will be analyze further with two 

multivariate control charts namely Hotelling’s T2 and Squared Prediction 

Errors (SPE) statistic for the fault detection operation. 

 

1.6   Rational and Significance 

In this research, effort mainly concentrates on breaking through the current limitation 

and the further application of MSPC on a multivariate continuous chemical process. The 

main contributions of this research are: 

1. Application of MSPC tools on the fault detection and diagnosis. 

2. An Eigenvalue-eigenvector PCA approach had been used for developing Principals 

Components model. 

· Modified Process Fault Detection and Diagnosis, mechanisms are also 

developed based on the Outline Analysis. 

 

1.7   Contributions 

 

i. A new set of criteria is proposed for selecting the optimized NOC data for 

monitoring.  

ii. As a result of (i), the monitoring performance can be enhanced in terms of 

missing and false alarm.  

 

1.8   Organization of This Report 

The new monitoring algorithm has been proposed in this study by developing PCA-

based fault detection system based on various modes of NOC models for continuous-

based process. Hence, this report is divided into five main chapters. The first chapter 

discusses the background of the works which includes the problem statement, 

objectives, scopes and contributions. Chapter II which is literature review describes the 
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fundamental of MSPC and justification of applying PCA in MSPM frameworks. 

Chapter III explains the research methodology of this study. Chapter IV presents 

some of the preliminary results. Conclusions and further research works are given in 

Chapter V. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1    Introduction 

 According to Venkatasubramaniam, Rengaswamy, Kavuri and Yin (2003) 

MSPM tools are data driven technique that generally reduce the dimension of process 

data and extract key features and trends that are of interest to plant personnel. MSPM 

tools used to reduces dimensions of process data, like PCA and subsequent refinements, 

which have show great success. In chapter 2, we will discuss on the fundamental or 

theory of process monitoring on MSPM using PCA tools, process monitoring issues and 

extension and justification of applying PCA in MSPM frameworks. Lastly, a summary 

is given at the end of this chapter. 

 

2.2   Fundamental of PCA (Principal Component Analysis) 

 Principal Component Analysis (PCA) is one of the most common multivariate 

analyses applied in the MSPC area (Jackson, 1991, MacGregor and Kourti, 1995; Zhang 

et al., 1997, Gnanadesikan, 1997). In particular, PCA can be described by means of 

either using mathematical representation or graphical representation. Firstly, from the 

mathematical point of view, PCA is a multivariate projection technique, which can 

transform a set of original variables  to a set of new variables 

. Generally, these newly formed variables are called Principal 

Components, PC for short (Jackson, 1991), whereby they build the individual linear 

combinations of the original variables which is simplified as follows: 

 
(2.1) 
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Initially, the original matrix, X has m variables with each variable has n number 

of measurements. The data are arranged in the form of n x m, where the measurements 

of a variable are organized in the form of a column vector, which is shown as follows: 

 

Next, V is known as the eigenvector matrix, whereby it gives the weighting 

function in forming the linear combinations of the original variables. The eigenvector 

matrix, V, contains eigenvectors or also known as loading vectors v1, v2, …, vm. Each 

eigenvector vm is a column vector which contains the arrangement of elements vT
m = 

[v1,m’ v2,m … vm,m]T , as denoted in the following matrix:      

 

Lastly, P is the principal components scores matrix, in which it contains n scores 

for each of the principal components, as given subsequently as: 

 

 

 

Thus, as far as multivariate calculations are concerned, P, will play the role of 

quality variables rather than individual variables of X, in the MSPC method. The 

(2.2) 

(2.5) 

(2.3) 

(2.4) 
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original data, X, are also could be predictable backed from the calculated PC element, 

by which, the procedures are: 

 

If all the PCs are used to represent the original variables, the original raw data 

matrix is reproduced back as shown in equation (2.24). However, in this situation, the 

purpose for using Principal Components Analysis as data dimension reduction 

technique will be lost. In order to maintain the uniqueness of this technique, only 

several PCs will be used to represent most of the original data variation. Therefore, if 

‘a’ of Principal Components are decided to be retained with a < m, then equation (2.24) 

can be adjusted and written as follows: 

 

The retained principal components [p1, p2, …, pa], which form the P V  term, 

are associated with systematic variation in data while the residual principal components 

[pa+1, pa+2, …, pm], which form the residual matrix E are considered of containing 

measurement errors (Seborg et al., 1996). Therefore, PCA is a multivariate analysis 

technique that could use less number of newly formed variables to represent the original 

data variations without losing significant information, in which, information here is 

referred to data variation.  

For the graphical representation of PCA, the linear combinations of the original 

variables in forming the new variables are actually representing selection of a new 

coordinate system with [P
1
, P

2
, …., P

m
] as the new axes obtained by rotating the original 

(2.9) 

(2.6) 

(2.7) 

(2.8) 

(2.11) 

(2.10) 
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system with x
1
, x

2
, …, x

n 
as the coordinate axes. The new axes represent the direction with 

maximum variability and provide a simpler and more parsimonious description of the 

variance-covariance matrix or correlation matrix (Johnson and Wichern, 1992). Figure 2.1 

and 2.2 are prepared to give graphical representations of PCA 

 

 

 

 

 

 

Figure 2.1: System for Two Variables Distribution 

Figure 2.2: Graphical Representation of PCA 
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2.3 Fundamentals / Theory of Process Monitoring on MSPM Using PCA  Tools 

Reformation and upgrading of conventional Statistical Process Control (SPC) 

method has produce MSPC. MSPC tools such as principal component analysis (PCA) 

were used to reduce the explaining dimension of the process data. Maestri et al. say this 

method has show great success and particularly suited to data set comprising correlated 

and collinear variables. Ge and Song (2008) define process data as different group 

based, for instance, on variation in the operating capacity, seasonal variations or 

changes in the feedstock characteristics and also on modifications in the operation 

strategies. From a geometric point of view, whenever such as a change occurs, the 

process data tend to group into a new cluster in a different location in the high 

dimensional space containing the process normal operating region. However when the 

data is considered belong to a unique normal operating region, the volume of this region 

becomes incorrectly large. Zhao et al, (2006) say this region will lead to an increasing 

number of missing and false alarm. According to Zhao et al, (2004) when PCA based 

MSPC tools applied to a process with multiple operating modes, many missing and false 

alarm can appear even when the process itself is operating under other steady-state 

nominal operating conditions. Particularly this technique is for reducing the number of 

dimensions used from the original data as well as projected them into a number of 

uncorrelated variables, by means of forming the appropriate linear combinations of the 

original variables. Hence, MSPC is the only method where the data is treated 

simultaneously by way of reducing the dimensionality of the data observed without 

losing any of important information. In addition, this method can reduce the burden of 

constructing a large amount of single-variable control charts and enable detecting events 

that are impossible or difficult to detect from the single-variable control charts (Phatak, 

1999). 

According to Venkatasubramaniam et al, (2003) multivariate statistical 

techniques are powerful tool that capable to compressing data and reducing its 

dimensionality. Hence the essential information is retained and easy to analyze than the 

original huge data set. Moreover, it is able to handle noise and correlation to extract true 

information effectively. Initially, PCA method is proposed by Pearson (1901) later, it 

been develop by Hotelling (1947). This is a standard multivariate technique which has 
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been including in many textbooks (Jackson, 1991; Anderson, 1984) and research paper 

(Wold, Esbensen and Geladi, 1987; Wold, 1978). Venkatasubramaniam et al, (2003) say 

PCA is based on orthogonal decomposition of the covariance matrix of the process 

variables along directions that explain the maximum variation of the data. Yu and 

Zhang say this method involved a mathematical procedure that transforms a number of 

correlated variables into a smaller number of uncorrelated variables, which are called 

principal component. 

 

2.4  Extension Of Principal Component Analysis  

There are many extension of Principle Component Analysis (PCA) which is some of 

these is Kernel of PCA, Multiway-PCA, Multi-Scale PCA, Moving PCA, Multi-Block 

PCA and many more.  

 

2..4.1 Multiway-PCA 

Conventional PCA is best for analyzing a two-dimensional matrix of data 

collected from a steady state process, containing linear relationships between the 

variables. Since these conditions are often not satisfied in practice, several extensions of 

PCA have been developed. Nomikos and MacGregor (1994) proposed Multi-Way PCA, 

which allows the analysis of a multi-dimensional matrix. Multi way method organized 

the data into time ordered block which each represent a single sample or process run. 

Three dimensional array data (I, batch samples x J, process variables x K, time) is 

decomposed to two dimensional array (I x JK) data for easier analysis (Wise and 

Gallagher, 1996). Projection of these three dimensions data into two dimensions makes 

this method suitable and widely applied for batch processes. Nomikos and MacGregor 

(1994) used simulated data obtained from a semibatch reactor to monitor the process.   

Multi-Way PCA was applied to industrial batch polymerization reactor using 

Hotelling’s T2 chart for fault detection and contribution plots for fault diagnosis 
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(MacGregor and Kourti, 1995; Nomikos, 1996; Kourti et al., 1996). Multi-Way PCA 

was also applied using process data collected from an industrial fed-batch fermentation 

process (Lennox et al., 2001). Lopes and Monezes (1998) applied this method for an 

industrial antibiotic production processes to detect faulty batches. Martin et al. (1999) 

used batch polymerization reactor to illustrate the implementation of Multi-Way PCA. 

Instead of using T2 statistic, M2statistics was used to determine the confidence bound for 

data not normally distributed. Martin and Morris (1996) proposed M2 statistics that an 

empirical density based approach which the bounds calculated is based on density 

estimation.  

Under the Multi-Way PCA monitoring framework, Q statistic is used as the fault 

detection tool to detect abnormal batch variation whereas contribution plots are used as 

the fault diagnosis tool to isolate the faulty process variables that are responsible for the 

out-of-control situation. The disadvantage of contribution plot is that, they cannot 

isolate the causes automatically without the presence of confidence limit. The plant 

personnel need to decide whether the out-of-control situation is due to single or multiple 

faulty process variables. 

 

2.4.2 Multi-Block PCA 

Extensions of basic PCA to handle very large processes via Multi-Block PCA 

were made by MacGregor et al. (1994). This method permits easier modeling and 

interpretation of a large matrix by decomposing it into smaller matrices or blocks. The 

Multi-Block PCA enables plant wide monitoring. The monitoring framework for fault 

detection and diagnosis can be viewed in Figure 2.1. 
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The process variables are divided into several blocks with respective to specific 

unit operation. Block Hotellings’ T2 control chart and Q statistic control chart are used 

to detect out-of-control situation while contribution plots are used to isolate faulty 

process variables that cause the out-of-control situation. This approach relies on 

contribution plots for fault diagnosis; the shortcomings of this method still exist and 

could not offer complete fault isolation. 

 

2.4.3 Moving PCA 

 The concept of Moving Principal Components Analysis is based on the idea 

that a change of correlation in between process variables can be detected by monitoring 

the directions of principal components (Kano et al., 2000a; Kano et al., 2001b). In order 

to evaluate the change of direction of each principal component, an index based of the 

inner product between two principal components is defined.  The index proposed in 

MPCA contained information on the current PCs directions with reference PCs 

directions to detect any non-conformance situation to the reference models. Previous 

known fault data sets are used to construct PCA models corresponded to various kinds 

of fault situation to diagnose the fault cause. The drawbacks of this method are as 

follow:  

Figure 2.3: Multi-block PCA monitoring framework 
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i. There are a lot of PCA models, which representing various past fault situations 

are needed.  

ii. Sufficient data have to be collected in order to construct PC models for each 

fault situation. 

 

2.4.4 Dissimilarity, DISSIM 

Kano et al. (2000d) proposed monitoring method based on process data 

distribution known as DISSIM. DISSIM method is based on the idea that a change of 

operating condition can be detected by monitoring a distribution of time-series data, 

which reflects the corresponding operating condition. The degree of dissimilarity 

between data sets is determined in DISSIM method (Kano et al., 2000a; Kano et al., 

2000b; Kano et al., 2001a). Dissimilarity index was defined to evaluate the difference 

between two data quantitatively. Dissimilarity index control chart is used for fault 

detection. This index contains the information of the current data distribution with 

reference data distribution.  

For fault diagnosis, each historical known fault data set is used to construct the 

known fault PCA models, which represents specific known fault data distribution. 

Besides, a similarity index is introduced to compare the current fault data distribution to 

each previous known fault PCA models. The proposed method is limited to PCs, which 

have similar variances because the index cannot function well if the PCs are changed. 

Other drawbacks of this method are sufficient data is required to construct every known 

fault PCA models and non-ability to isolate new fault. For fault diagnosis purpose, a 

contribution of each process variable to the dissimilarity index is introduced for 

identifying the variables that contribute significantly to an out-of-control value of the 

index (Kano et al., 2000c). However, there is difficult to identify exact fault causes for 

the process, which has many feedback control loops and the process variables are 

complicatedly related to each other. 

 

2.4.5 Multi-Scale PCA   

 Bakshi (1998) developed Multi-Scale Principal Components Analysis, MSPCA 

by combining PCA and wavelet analysis. PCA has the ability to extract the relationship 
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between the process variables and de-correlate cross correlation while wavelet analysis 

has the ability to extract events at different scales, compress deterministic features in a 

small number of relatively large coefficients, and approximately decorrelate a variety of 

stochastic processes (Bakshi, 1999).  MS-PCA methodology determines separate PCA 

models at each scale to identify the scales where significant events occur. MS-PCA 

method has been applied for fault detection in industrial Fluidized Catalytic Cracker 

Unit, FCCU. Results showed that MS-PCA detects the faulty condition faster than 

conventional PCA using Hotelling’s T2statistic and Q statistic but the weakness of this 

method is that he didn’t propose fault diagnosis method.   

Kano et al. (2000a) applied MS-PCA to monitor problems of a simple two 

dimension matrix array data obtained from Tennessee Eastman Challenge process. 

Other researchers, Misra et al. (2002) proposed the combination of PCA and wavelet 

analysis. In essence, the MS-PCA approach is the same as proposed by Bakshi (1998). 

However, some differences have been introduced in their study such as multi-scale fault 

identification technique to identify the type of fault and sensor validation approach to 

serve as an early warning in case a fault of large magnitude is present. An industrial gas 

phase tubular reactor system used in this work for process fault diagnosis and sensor 

fault detection. The outcomes showed that the proposed method was able to detect and 

identify faults and abnormal events earlier than the conventional PCA approach. The 

disadvantage of this method is that, it requires basic understanding of the physical and 

chemical principles governing the process operation to help in clustering the highly 

correlated variables together before constructing the PCA model. Multi-scale fault 

identification does not provide the limits for contribution plot.   

 

2.4.6  Kernel of PCA 

Some extension of PCA is nonlinear principle components (NLPCA) or also 

Kernel PCA (KPCA). According to Vidal, Ma, and Sastry, (2005) KPCA is method of 

identifying a nonlinear manifold from sample points. NLPCA is a standard solution 

based on embedding the first data into a higher space, then applying PCA. As a result it 
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will give large dimension space, so the eigen value is being decomposition or also 

known as kernel matrix. 

 

Figure 2.4: Linear PCA and Kernel PCA 

From Figure 2.4 above, it show the basic idea of kernel PCA. By using a 

nonlinear function k instead of the standard d dot product, we implicitly perform PCA in 

a possibly high dimensional space F which is nonlinearly related to input space. The 

dotted lines are contour lines of constant feature value. Suppose that the number of 

observations m exceeds the input dimensionality n. In linear PCA, most samples are 

nonzero eigen values (Welling, nd). While for Kernel PCA variable will be nonzero 

eigen values. Thus, this is not necessarily a dimensionality reduction (Scholkopf, Smola 

and Muller, 2001). Furthermore, it may not be possible to find an exact preimage in 

input space of a reconstructed pattern based on a few of the eigenvectors. One of the 

disadvantages of KPCA is that, in practice, it is difficult to determine which kernel 
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function to use because the choice of the kernel naturally depends on the nonlinear 

structure of the manifold to be identified (Vidal, Ma, and Sastry, 2005). In fact, learning 

kernels is an active topic of research in machine learning. 

 

2.5 Extension of Multivariate Statistical Process Monitoring 

Besides PCA, there also have several more extension of MSPM such as Projection to 

Latent Structures (PLS), Independent Component Analysis (ICA), Subspace 

Identification and many more. 

 

2.5.1 Projection to Latent Structures (PLS) 

Projection to latent structures or partial least squares (PLS) is a multivariable statistical 

regression method based on projecting or viewing the information in a high dimensional 

data space down onto a low dimensional one defined by some latent variables (Zhao et 

al., 2006). Abdi (2010) say PLS is a recent technique that combines features and 

generalizes PCA and multiple linear regressions. Zhao et al. (2000) support Abdi 

statement as PLS is one of the most powerful linear regression techniques to deal with 

noisy and highly correlated data. . Its goal is to predict a set of dependent variables from 

a set of independent variables or predictors. This prediction is achieved by extracting 

from the predictors a set of orthogonal factors called latent variables which have the 

best predictive power (Abdi, 2010). 

PLS already has been successfully applied in diverse fields including process 

monitoring and quality control and identification of process dynamics & control with a 

limited number of observations available (Lee et al, 2006). When dealing with nonlinear 

systems, this approach assumes that the underlying nonlinear relationship between 

predictor data and response data can be approximated by quadratic PLS (QPLS) or 

neural network based PLS (NNPLS) while retaining the outer mapping framework of 

linear PLS algorithm and matrices were auto-scaled before they were processed by PLS 

algorithm (Wold, 2005). PLS model consists of outer relations which data are expressed 
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in terms of their respective scores and inner relations that link the data to the data in the 

latent subspace. PLS finds the latent variables from the measured data by capturing the 

largest variance in the data and achieves the maximum correlation between the predictor 

variables and response variables. 

A tutorial description along with some examples on the PLS model was 

provided by Geladi and Kowalaski (1986). PLS reduces the dimensionality of the 

measured data, finds the latent variables from the measured data by capturing the largest 

variance in the data and achieves the maximum correlation between the predictor X 

variables and response Y variables. In PLS based process dynamics, the inner 

relationship between variance and scores. The process dynamics in latent subspace 

could not be well identified by linear or quadratic relationships. For multivariable 

processes, the Partial least squares (PLS) controllers offer the opportunity to be 

designed as a series of SISO controllers (Qin and McAvoy (1992, 1993). Because of the 

diagonal structure of the dynamic part of the PLS model, input-output pairings are 

automatic. Series of SISO controllers designed on the basis of the dynamic models 

identified into latent subspaces and embedded in the PLS framework are used to control 

the process. Till date there is no reference on NNPLS controllers in the open literature 

though PLS & NNPLS based process identification, PLS controllers are well 

documented. The quality of the prediction obtained from a PLS regression model is 

evaluated with cross-validation techniques such as the bootstrap and jackknife. There 

are two main variants of PLS regression which is the most common one separates the 

roles of dependent and independent variables and the second one is used mostly to 

analyze brain imaging data that gives the same roles to dependent and independent 

variables. 

 

2.5.2 Independent Component Analysis (ICA) 

Hyvarinen (n.d) identified independent component analysis (ICA) is a statistical and 

computational technique for revealing hidden factors that underlie sets of random 

variables, measurements, or signals. It is a generative models for the observed 

multivariate data, which is typically given as a large database of samples. In the model, 
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the data variables are assumed to be linear mixtures of some unknown latent variables, 

and the mixing system is also unknown (Lee et al., 2004). The latent variables are 

assumed non Gaussian and mutually independent and they are called the independent 

components of the observed data (Lee et al., 2003). ICA seeks to extract these 

independent components as well as the mixing matrix of coefficients. 

 Although ICA can be looked upon a useful extension of PCA, its objective 

differs from that of PCA. Bakshi (1998) say PCA is a dimensionality reduction 

technique that reduces the data dimension by projecting the correlated variables onto a 

smaller set of new variables that are uncorrelated and retain most of the original 

variance. However, its objective is only to correlate variables, not to make them 

independent. PCA can only impose independence up to second order statistics 

information which is mean and variance (Kano et al., 2004). While constraining the 

direction vectors to be orthogonal, whereas ICA has no orthogonality constraint and 

involves higher-order statistics, for an example it not only correlates the data for second 

order statistics but also reduces higher order statistical dependencies (Yoo et al., 2004). 

Hence, ICs reveal more useful information from observed data than principal 

components (PCs). 

The data analyzed by ICA could originate from many different kinds of 

application fields, including digital images, document databases, economic indicators 

and psychometric measurements (Kano et al., 2004). In many cases, the measurements 

are given as a set of parallel signals or time series; the term blind source separation is 

used to characterize this problem. Typical examples are mixtures of simultaneous 

speech signals that have been picked up by several microphones, brain waves recorded 

by multiple sensors, interfering radio signals arriving at a mobile phone, or parallel time 

series obtained from some industrial process (Lee at al., 2004). A number of 

applications of ICA have been reported in speech processing, biomedical signal 

processing, machine vibrationanalysis, nuclear magnetic resonance spectroscopy, 

infrared optical source separation, radio-communications, and so on (Girolami, 1999). 

Kano et al. (2004) say the key idea or motivation of using ICA is that the monitoring 

performance can be improved by focusing on essential variables that drive a process. 
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2.5.3 Subspace Identification 

 Subspace methods or also known as 4SID or Subspace State Space System 

Identifcation are used to find linear state space model from experimental data as a 

relatively new alternative to widely used regression methods such as ARX, ARMAX 

and many more (Trnka and Havlena, 2005). Subspace identification algorithms are 

widely known and appreciated for their quick and reliable estimation of linear models 

based on available input/output measurements (Goethals et al. 2004). Much of the 

reliability of subspace identification algorithms is attributed to the fact that a model is 

obtained, solely by using numerically reliable matrix and vector manipulations such as 

projections and singular value decompositions. This is different from the classical 

predictor error methods, which usually involve with the minimization of a non-convex 

cost-function. There will be no guarantee that the obtained local minimum yields a good 

model. Treasure et al. (2003) say subspace identification can determine a set of state 

variables for describing process dynamics, produce a reduced set of variables to monitor 

process performance and offer contribution charts to diagnose anomalous behavior. This 

is demonstrated by an application study to a realistic simulation of a chemical process 

(Treasure et al., 2003). This point of view on subspace methods will show suitable 

fields for their application, where we can take advantage of their good properties like 

numerical robustness implemented by QR and SVD factorization, implicit rank 

reduction, non-iterative algorithm and few user parameters (Trenka et al., n.d.). 

Goethals et al. (2004) say although subspace identification algorithms are fast 

and robust, a major drawback is that their use is mostly restricted to the class of linear 

systems. Some attempts to extend the use of subspace identification algorithms to 

nonlinear systems have been made in the past for general nonlinear systems, or more 

restricted model structures such as bilinear models, Wiener models, and Hammerstein 

models. Overschee and Moor (1996) say that Subspace identification algorithms are 

based on concepts from system theory, (numerical) linear algebra and statistics. The 

subspace identification approach does not suffer from any of these inconveniences. The 

only parameter to be user-specified is the order of the model, which can be determined 

by inspection of certain singular values. 
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Ljung et al. (1993) say when implemented correctly, subspace identification 

algorithms are fast, despite the fact that they are using QR and singular value 

decompositions. As a matter of fact, they are faster than the “classical” identification 

methods, such as Prediction Error Methods, because they are not. Hence there are also 

no convergence problems. Moreover, numerical robustness is guaranteed precisely 

because of these well-understood algorithms from numerical linear algebra. As a 

consequence, the user will never be confronted with hard-to-deal-with-problems such as 

lack of convergence, slow convergence or numerical instability ( Chiuso et al., 2004). 

 

2.6 Summary 

In conclusion, this chapter review and discuss on fundamental of MSPM using PCA 

tools, and some of extension of PCA and MSPM. Moreover Chapter three will 

illustrates the basic of methodology and techniques applied to achieve the objectives. 
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CHAPTER 3 

METHODOLOGY  

3.1 Introduction 

Generally MSPC procedure could be categorized into two phases. For phases 1, it 

involves the off-line monitoring operation, while for phases 2 it involves on-line 

monitoring operation. However, for this study before undergo this two phase, the 

normal operating condition sample data is structured based on the assumption that has 

been made.  The Figure 3.1 below show the procedures involves in MSPC to detect, 

identified, diagnosis and recover the fault detection. 

The complete procedures of fault detection and identification comprise of two 

main phases namely as off-line modelling and monitoring (phase I) and on-line 

monitoring (phase II). 

The main steps of MSPM system: 

i. Fault detection: to designate the departure of observed samples from an 

acceptable range using a set of parameters.  

ii. Fault identification: identifying the observed process variables that are most 

relevant to the fault which is typically identified by using the contribution plot 

technique. 

iii. Fault diagnosis: specifically determines the type of fault which has been 

significantly (and should be also validated) contribute to the signal. 

iv. Process recovery: remove the cause(s) that contribute to the detected fault. 
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3.2 Phase I: Off-line Modelling and Monitoring 

· Firstly, a set of normal operation condition (NOC) data, Xn×m (n: samples, m: 

variables), are identified off-line based on the historical process data archive. 

 

 

  

· NOC simply implies that the process is operated at the desired setting 

condition and produces satisfactory products that meet the qualitative as well 

as quantitative specified standard (Martin et al., 1996).  
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Figure 3.1: Two main phases namely as off-line modelling and monitoring  

(phase I) and on-line monitoring (phase II) 
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· Then, the data are then standardized to zero mean and unit variance with 

respective to each of the variables because PCA results depend on data 

scales. 

 

 

 

· In the second step, the development of PCA model for the NOC data 

requires the establishment of a set of variance-covariance matrix, Cmxm . 

 

 

 

 

 

· C is then transformed into a set of basic structures of eigen-based formula. 

 

 

· Finally, the PCA model of can be simply developed by: 
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· The following equation presents a measure of data variations captured by the 

first a principal components (Jolliffe, 2002).  

 

   

 

· The third step basically involves calculation of the Hotelling’s T2 and SPE 

monitoring statistics. 

 

 

 

 

 

 

 

 

 

· The final task in phase I (4th step) deals with developing the control limits 

for both of the statistics.         
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3.3 Phase II: On-line Monitoring 

 For the second phases, all the first phases of fault detection procedure will be 

developed for on-line application. However for the last step which is step 8 there are 

two main operations which have to be conducted separately which is fault detection and 

fault identification. Fault detection is a result of an occurrence of a special event that is 

not in conformance to the common cause nature. This fault detection will be declared if 

monitoring statistics exceeding its respective control limit for a pre-defined successive 

number of samples. While, for the fault identification is based on contribution plot. 

Typically, the circumstance of the on-line MSPC application always involves 

monitoring the real-time states of process condition. In other words, the dynamic 

behavior of the operation conditions should be analyzed in a real time manner to reflect 

the process status immediately. Even though, the procedures are still considering, more 

or less, the major steps taken during the off-line application development previously. 

There are two main operations which have to be conducted separately - fault detection 

and fault identification.  

Fault detection: 

· A fault situation is regarded as a result of an occurrence of a special event that is not 

in conformance to the common cause nature .  

· Technically, a fault situation will be declared if either of the monitoring statistics 

exceeding its respective control limit for a pre-defined successive number of 

samples.   

 

3.4       Summary 

 In conclusion, there are four main steps of MSPC system which is fault 

detection, fault identification, fault diagnosis and process recovery. This method will 

designated the departure of observed samples from an acceptable range using a set of 

parameters. Moreover, it will identify the observed process variables that most relevant 

to the fault by using the contribution plot technique. This will specifically determine the 

type of fault which has been significantly contributed to the signal. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1   Introduction 

 Initially some work has been done, that specially emphasize on the integration of 

process monitoring algorithms based on the conventional PCA. Hence, several works 

are represented in this chapter. Firstly, a description on the case study is briefly 

explained for the particular analysis. Next, is discussion on the result of NOC data and 

the tested fault data. The tested data are discussed for abrupt and incipient. Finally, is 

the summary of the chapter. 

 

4.2    Case Study of CSTR System 

 This case study is looking on a continuous stirred tank reactor (CSTR) system, 

which the schematic diagram of a simulation is shown in Figure 4.1 below (Zhang, 

2006). 

 

 Figure 4.1: CSTR system 
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 In this system, it applied an irreversible heterogeneous catalytic exothermic 

reaction between reactant A and product B in the reactor vessel. This system purpose to 

maintain the product concentration by installing three separated control loops in the 

process, which it consist of tank temperature, tank level and recycling flow variables. 

The fed of cold water flow rate to the heat exchanger is manipulating via a cascade 

control, in order to control temperature in the reactor. Moreover, the flow rate of the 

product is controlled to maintain reactor level. Finally, the recycle flow rate is indirectly 

manipulating the controller to maintain product composition in the reactor. A recent 

study shows that a set of multiple neural networks algorithms has been developed to 

enhance the reliability of fault diagnosis operation for this system (Zhang, 2006).In this 

process, there are ten on-line measured process variables and three controller outputs. 

As a result, thirteen on-line information sources are considered as listed in Table 4.1. 

 

Table 4.1: List of variables in the CSTR system for monitoring 

Process  Instruments 

No. Variables Variable Names No. Variables Variable Names 

1 V1 Tank temperature 11 V11 Controller 1 

2 V2 Tank level 12 V12 Controller 3 

3 V3 Feed temperature 13 V13 Controller 2 

4 V4 Inlet flow rate  

5 V5 Recycle flow rate   

6 V6 Outlet flow rate  

7 V7 Cooling water flow 
rate  

8 V8 Product concentration 
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9 V9 Feed concentration 

10 V10 Heat exchanger 
entrance pressure 

 

On top of those objectives, the original goals of SPC are also been considered as well as 

carried together, such a way that the productivity of multivariate process monitoring is 

improved.  

Fault detection and diagnosis become more important in chemical industry 

because it presented a better way of fault handling: Monitoring and management. For 

this purpose, a good Fault Detection and Diagnosis mechanism must fulfill the 

characteristics such as early prediction, sensitive and accurate. As a major Fault 

Detection and Diagnosis tools, MSPC play a significant rule in multivariate data 

processing. MSPC had been used to generate the relationship among the interacted 

variable and reduce the complexity of the data matrix. This part is more focus on the 

application and developing of PCA. Several PCA extensions are developed and applied 

in chemical engineering area. The result reported form other researchers shown that, the 

performance of the MSPC is improving. 

 

4.3    Normal Operating Condition Data Collection 

This simulation has identified and collects a set of normal operating condition. This set 

of NOC data containing 100 measurements of 13 variables. By using PCA algorithm, 

the standardized NOC data is analysed. This analysis is performing to identify the 

required number of PCs as to reduce the dimension of the multivariate data.  
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Figure 4.2: Accumulated data variance explained by different PCs 

From figure 4.2 above, show the accumulated data variance explained by 

different PCs. Its shows that at least six PCs are needed to represent over 90% of the 

total NOC data variance and four PCs are required to explain over 80% of the total 

variance. Therefore, for this particular case study, six PCs are retained in the PCA 

model for the calculation of NOC scores.  The Hoteling’s T2 statistic and SPE statistic 

was then to be calculated and plotted together with the 95% and 99% confidence limits. 
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Figure 4.3: (a) T2 statistic for NOC data and (b) SPE statistic for NOC data 
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Figure 4.3 illustrate graph of NOC data for T2 statistic and SPE statistic. It can 

be seen that the T2 statistic for the NOC data is below the confident limits however foe 

SPE there are one sample outside the limit boundaries. The data is still normal as the 

fault is considered when 3 samples in series are out from the boundaries. Thus, T2 

statistic and SPE statistics illustrate normal operating condition. 

 This NOC data has been test by reduce the sample using 50 measurements with 

13 variables. By using PCA algorithm, the standardized NOC data test is analysed. This 

analysis objective is to identify the required number of PCs as to reduce the dimension 

of the multivariate data. Same with NOC data, the Hoteling’s T2 statistic and SPE 

statistic was calculated and plotted together with the 95% and 99% confidence limits. 

 

 

Figure 4.4: (a) T2 statistic for NOC data and (b) SPE statistic for NOC data 

Figure 4.4 show statistic for NOC data test which is T2 statistics and SPE 
statistics. This figure show that for both statistics the process are normal as all the 
statistics NOC data test is below the confident limit. 
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4.4    Fault data collection 

The system also subjects to be affected from several malfunction conditions as 

summarized in Table 4.2. 

Table 4.2: List of abnormal operations in CSTR 

Fault Cases Fault Causes 

1 Pipe 2 or 3 is blocked or pump fails 

2 Pipe 10 or 11 is blocked or control valve 1 fails low 

 

For each fault presented in Table 4.2, both abrupt and incipient faults are 

considered. An abrupt fault indicates a sudden change or step change in a process 

variable or parameter and typically it maintains over the operation time until the cause is 

completely removed. Detecting this kind of malfunctions should be easy for any 

multivariate monitoring system as the deviations are usually very obvious. On the other 

hand, an incipient fault depicts a kind of fault that gradually deviates from the normal 

setting. Thus, the monitoring system typically takes a while to detect these particular 

abnormal behaviours. In particular, all the faults were introduced at sample 2 and the 

sampling time was fixed at 4 seconds. 

By concentrated to fault 1 and 2 for both abrupt and incipient, analyzing on the 

contributed variable to the fault and the impact will be discussed. Firstly, abrupt for 

fault 1 show the contributed variable are variable 10 which is heat exchanger entrance 

pressure. From figure 4.5(a) i when the pump fail or the pipe 2 or 3 is blocked, the flow 

rate enter the heat exchanger entrance pressure are low. From the fault data that have 

been run also show that variable 10 are first detected and have a high contributed to the 

fault. While, the impact are variable 5 which is recycle flow rate. As the flow rate of 

water are low due to pipe 2 or 3 or pump fail hence the recycling flow rate are also low. 

This impact and contributed variable to fault are show on figure 4.5 (a) ii. 
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Figure 4.5: (a) Fault 3 abrupt (b) Fault 3 incipient   (c) Fault 4 abrupt (d) Fault 4 
incipient 
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 Next, for the incipient Fault 1 also heat exchanger entrance pressure which is 

variable 10 are show high contributed to fault as shown in figure 4.5 (b) i. But however, 

the impact is at variable 11 which is valve 1 as shown on figure 4.5 (b) ii. As the water 

flow rate decrease because of pump fail or pipe 2 or 3 blockage hence, the valve will 

open little and outlet flow rate are decreasing. 

 While for the fault 4 abrupt, the figure 4.5 (c) i show the variable 6 which is 

outlet flow rate become low due pipe 10 or 11 is blocked or control valve 1 fails low. 

This has result the outlet flow rate to decrease as the pipe is failed or blockage. 

Meanwhile the impact is at variable 11 which is valve 1 as show on figure 4.5 (c) ii. As 

the pipe 10or 11 fail the valve 1 will open little and resulting the flow rate decrease. 

Moreover, for incipient fault 4, variable 11 which are valve 1 shown the most 

contributed variable show at figure 4.5 (d). Same with abrupt, because the pipe 10 or 11 

is blocked or control valve 1 fails low, it result the outlet flow rate to decrease. 

 
 
Result for T2 and SPE for the the fault no.1 
  
 

 
Figure 4.6: Results of PCA-based MSPM system for incipient fault 
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Figure 4.7: Results of PCA-based MSPM system for Abrupt fault. 
 

 
 Figure 4.6 and illustrate graph of PCA-based MSPM system for incipient data 
for T2 statistic and SPE statistic. It can be seen that the T2 statistic for the PCA-based 
MSPM system for incipient fault data is only five variable is below the limits. The 
limits have sets on 95% and maximum limit 99%. So the results we can see only five 
early data is normal and next data is out of control or fault. However for SPE there are 
only three sample is inside on the limits level. The next data is also out of control for the 
incipient fault of PCA-based MSPM system . Thus, T2 statistic and SPE statistics 
illustrate abnormal operating condition. 
 
 For Figure 4.7 illustrate graph of PCA-based MSPM system for abrupt data for 
T2 statistic and SPE statistic. It can be seen that the T2 statistic for the PCA-based 
MSPM system for abrupt fault data is only two variable is below the limits. The limits 
have sets on 95% and maximum limit 99%. So the results we can see only two early 
data is normal and next data is out of control or fault. However for SPE is also the same 
result as T2 there are only two sample is inside on the limits level. The next data is also 
out of control for the incipient fault of PCA-based MSPM system . Thus, T2 statistic 
and SPE statistics illustrate abnormal operating condition. 
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Figure 4.8: Results of different modes of NOC with PCA-based MSPM system for 

incipient fault 
 

  
Figure 4.9: Results of different modes of NOC with PCA-based MSPM system for 

Abrupt fault 
 

 
 This NOC data has been test by reduce the sample using 50 measurements with 
13 variables. By using PCA algorithm, the standardized NOC data test is analysed. This 
analysis objective is to identify the required number of PCs as to reduce the dimension 
of the multivariate data. Same with NOC data, the Hotelling’s T2 statistic and SPE 
statistic was calculated and plotted together with the 95% and 99% confidence limits. 
 
 Figure 4.8 and illustrate graph of different modes of NOC with PCA-based 
MSPM system for incipient fault for T2 statistic and SPE statistic. It can be seen that the 
T2 statistic for the PCA-based MSPM system for incipient fault data is have five 
variable is below the limits. The limits have sets on 95% and maximum limit 99%. So 
the results we can see only five early data is normal and next data is fault. The variable 
is slow to achieve a fault decision. A. However for SPE there have four sample is inside 
on the limits level. The next data is also out of control for the incipient fault of PCA-

Different modes of NOC with PCA-based MSPM Chart 
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based MSPM system. Is the same because the variable is slow to achieve the fault. 
Thus, T2 statistic and SPE statistics illustrate abnormal operating condition. 
 
 For Figure 4.9 illustrate graph of PCA-based MSPM system for abrupt data for 
T2 statistic and SPE statistic. It can be seen that the T2 statistic for the PCA-based 
MSPM system for abrupt fault data is only two variable is below the limits. The limits 
have sets on 95% and maximum limit 99%. So the results we can see only two early 
data is normal and next data is out of control or fault. However for SPE is also the same 
result as T2 there are only two sample is inside on the limits level. The next data is also 
out of control for the incipient fault of PCA-based MSPM system . Thus, T2 statistic 
and SPE statistics illustrate abnormal operating condition. 
 
 
Result for T2 and SPE for the the fault no.2 
 

  

Figure 4.10: Results of PCA-based MSPM system for incipient fault 

 

Figure 4.11: Results of PCA-based MSPM system for Abrupt fault. 
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 Figure 4.10 and illustrate graph of PCA-based MSPM system for incipient data 
for T2 statistic and SPE statistic. It can be seen that the T2 statistic for the PCA-based 
MSPM system for incipient fault data is only seven variable is below the limits. The 
limits have sets on 95% and maximum limit 99%. So the results we can see only seven 
early data is normal and next data is out of control or fault. The variable is slow to 
achieve the fault. However for SPE there are only four sample is inside on the limits 
level. The next data is also out of control for the incipient fault of PCA-based MSPM 
system . Thus, T2 statistic and SPE statistics illustrate abnormal operating condition. 
 
 For Figure 4.11 illustrate graph of PCA-based MSPM system for abrupt data for 
T2 statistic and SPE statistic. It can be seen that the T2 statistic for the PCA-based 
MSPM system for abrupt fault data is only two variable is below the limits. The limits 
have sets on 95% and maximum limit 99%. So the results we can see only two early 
data is normal and next data is out of control or fault. However for SPE is also the same 
result as T2 there are only two sample is inside on the limits level. The next data is also 
out of control for the incipient fault of PCA-based MSPM system . Thus, T2 statistic 
and SPE statistics illustrate abnormal operating condition. 
 
 

  

Figure 4.12: Results of different modes of NOC with PCA-based MSPM system for 
incipient fault 
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Figure 4.13: Results of different modes of NOC with PCA-based MSPM system for 
Abrupt fault 

 

This NOC data has been test by reduce the sample using 50 measurements with 13 
variables. By using PCA algorithm, the standardized NOC data test is analysed. This 
analysis objective is to identify the required number of PCs as to reduce the dimension 
of the multivariate data. Same with NOC data, the Hotelling’s T2 statistic and SPE 
statistic was calculated and plotted together with the 95% and 99% confidence limits. 
 
 Figure 4.12 and illustrate graph of different modes of NOC with PCA-based 
MSPM system for incipient fault for T2 statistic and SPE statistic. It can be seen that the 
T2 statistic for the PCA-based MSPM system for incipient fault data is have five 
variable is below the limits. The limits have sets on 95% and maximum limit 99%. So 
the results we can see only five early data is normal and next data is fault. The variable 
is slow to achieve a fault decision. However for SPE there have four sample is inside on 
the limits level. The next data is also out of control for the incipient fault of PCA-based 
MSPM system. Is the same because the variable is slow to achieve the fault. Thus, T2 
statistic and SPE statistics illustrate abnormal operating condition. 
 
 For Figure 4.13 illustrate graph of PCA-based MSPM system for abrupt data for 
T2 statistic and SPE statistic. It can be seen that the T2 statistic for the PCA-based 
MSPM system for abrupt fault data is only two variable is below the limits. The limits 
have sets on 95% and maximum limit 99%. So the results we can see only two early 
data is normal and next data is out of control or fault. However for SPE is also the same 
result as T2 there are only two sample is inside on the limits level. The next data is also 
out of control for the incipient fault of PCA-based MSPM system . Thus, T2 statistic 
and SPE statistics illustrate abnormal operating condition. 
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4.5    Summary 

A simulation of CSTR process is applying the conventional PCA to monitor the process. 

The main conventional PCA results have been discussed initially, which includes both 

of the NOC and fault data.  For the fault data, both incipient and abrupt are discussing 

by looking at the contribution causes and impact, and also the T2 statistic and SPE 

statistics. 
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CHAPTER 5 

 

 

CONCLUSION AND RECOMENDATION 

 

5.1 Conclusions 

 

 In this research, MSPM using PCA tools is introduced. Some of the extension of 

MSPM and PCA is be review and the basic methodology to approach the proposed has 

been illustrated. The core technique to formulate the multivariate dimensional data 

reduction has been developing in order to approach the objectives using conventional 

PCA technique. The main goal in carrying out this study is to implement the 

conventional MSPM method based on different modes of NOC and analyze it with the 

conventional PCA technique on single NOC data. Based on the review on literature 

review there are many more method and technique to formulated multivariate data 

reduction. Every method has its own advantages and disadvantages. This research has 

proposed to run the traditional PCA by analyzing it with single NOC data and different 

modes of NOC data. Based on preliminary result get it has shown the technique has 

affected the fault detection solutions. However, it does not mean that it is an excellent 

method for non-linear process monitoring. Therefore, more analyses are required. A 

new fault detection method can be developed which is based on dissimilarity matrix 

application by integrating it with conventional PCA in MSPM system. By the way, PCA 

based MSPM slightly performed better in fault detection specifically for incipient faults 

compared to different modes of NOC with PCA based MSPM. 
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5.1 Recomendations 

 

The results may valid only for CSTR system. It is recommended for future research to 

use data from other chemical processing systems such as PBR, PFR or other known 

chemical reactors. By the way more faults should be tested to come up with much more 

concrete conclusion. 
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APPENDIX 

 

Calculation the NOC data using the MATLAB software. The calculation data was 

install in the MATLAB to compare the result the conventional  MSPM method based on 

a single NOC with the conventional MSPM method based on different modes of NOC.  

 

%TE NOC 

%PCA 

[Sd_N,Me,St]=autosc(Data_NOC); 

Sd_N_te=scal(Data_NOC_te,Me,St); 

Sd_F3a_te=scal(Data_F03a_te,Me,St); 

Sd_F4a_te=scal(Data_F04a_te,Me,St); 

Sd_F3i_te=scal(Data_F03i_te,Me,St); 

Sd_F4i_te=scal(Data_F04i_te,Me,St); 

nv=13; 

 ns=100; 

 C=Sd_N'*Sd_N; 

 [U_cov,S_cov,V_cov]=svd(C);  

 [u,s,v]=svd(Sd_N); 

 for i=1:nv  

 Pc_cov(i)=sum(diag(S_cov(1:i,1:i)))/sum(diag(S_cov(1:nv,1:nv))); 

 end 

 figure 

 plot(Pc_cov,'o') 

 hold 

 plot(Pc_cov) 

 xlabel('Number of principal components') 
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 ylabel('Variance explained (Covariance)') 

 title('Accumulated Variance vs Principal Components') 

 npc=3; 

 Sco_NOC=Sd_N*V_cov(:,1:npc);  

 Sco_NOC_te=Sd_N_te*V_cov(:,1:npc); 

  

 T2_95_lim=npc*(ns-1)*finv(0.95,npc,(ns-npc))/(ns-npc); % 95% control 

limit for T2 

 T2_99_lim=npc*(ns-1)*finv(0.99,npc,(ns-npc))/(ns-npc); % 99% control 

limit for T2 

  

 T2_npc=[]; 

 for i=1:npc 

 Lambd(i)=((S_cov(i,i)/(ns-1))); 

 T2=(Sco_NOC(:,i).^2)/((S_cov(i,i)/(ns-1))); 

 T2_npc=[T2_npc;T2]; 

 end 

 D=[]; 

 D=[D;reshape(T2_npc,ns,npc)]; 

 T2_NOC=sum(D');  

 Lambd1=S_cov(1,1)/(ns-1);  

 Lambd2=S_cov(2,2)/(ns-1); 

 Lambd3=S_cov(3,3)/(ns-1); 

 

T2_NOC_test=Sco_NOC(:,1).^2/Lambd1+Sco_NOC(:,2).^2/Lambd2+Sco_NOC(:,3)

.^2/Lambd3; 

 % Graph for Tesis 

 figure 

 plot(T2_NOC,'ko') 
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  hold 

 plot([0;ns],T2_95_lim*[1;1],'r--') 

 plot([0;ns],T2_99_lim*[1;1],'r-') 

 xlabel('Observations') 

 ylabel('T2 Statistics') 

 legend({'NOC' '95%limit' '99%limit'}, 'Location','NorthWest'); 

 title('PCA-based MSPM Monitoring Chart') 

  

 Th_1=sum(diag(S_cov(npc+1:nv,npc+1:nv)/(ns-1)));  

 Th_2=sum(diag(S_cov(npc+1:nv,npc+1:nv)/(ns-1)).^2);  

 Th_3=sum(diag(S_cov(npc+1:nv,npc+1:nv)/(ns-1)).^3);  

 H_0=1-2*Th_1*Th_3/(3*Th_2^2); 

 Q_95=Th_1*(1.645*sqrt(2*Th_2*H_0^2)/Th_1+1+Th_2*H_0*(H_0-

1)/Th_1^2)^(1/H_0); 

 Q_99=Th_1*(2.326*sqrt(2*Th_2*H_0^2)/Th_1+1+Th_2*H_0*(H_0-

1)/Th_1^2)^(1/H_0); 

 %Th_1=sum(diag(S_cov(npc+1:nv,npc+1:nv)));  

 %Th_2=sum(diag(S_cov(npc+1:nv,npc+1:nv)).^2);  

 %Th_3=sum(diag(S_cov(npc+1:nv,npc+1:nv)).^3);  

 %H_0=1-2*Th_1*Th_3/(3*Th_2^2); 

 %Q_95=Th_1*(1.645*sqrt(2*Th_2*H_0^2)/Th_1+1+Th_2*H_0*(H_0-

1)/Th_1^2)^(1/H_0); 

 %Q_99=Th_1*(2.326*sqrt(2*Th_2*H_0^2)/Th_1+1+Th_2*H_0*(H_0-

1)/Th_1^2)^(1/H_0); 

 th1=sum(diag(s(npc+1:13,npc+1:13).^2/(ns-1))); 

 th2=sum(diag(s(npc+1:13,npc+1:13).^2/(ns-1)).^2); 

 th3=sum(diag(s(npc+1:13,npc+1:13).^2/(ns-1)).^3); 

 h0=1-2*th1*th3/(3*th2^2); 
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 q_cl_95=th1*(1.645*sqrt(2*th2*h0^2)/th1+1+th2*h0*(h0-

1)/th1^2)^(1/h0); 

 q_cl_99=th1*(2.326*sqrt(2*th2*h0^2)/th1+1+th2*h0*(h0-

1)/th1^2)^(1/h0); 

  

 NOC_Norp=Sco_NOC*V_cov(:,1:npc)'; 

 Err_NOC=(Sd_N-NOC_Norp).^2;  

 Spe_NOC=sum((Err_NOC)');  

 figure 

 plot(Spe_NOC,'ko') 

 hold 

 plot([0 ns], Q_95*[1 1],'r--') 

 plot([0 ns], Q_99*[1 1],'r-') 

 xlabel('Observations') 

 ylabel('SPE Statistics') 

 legend({'NOC' '95%limit' '99%limit'}, 'Location','NorthWest'); 

 title('PCA-based MSPM Monitoring Chart') 

  

 sdnp=Sco_NOC*v(:,1:npc)'; % predicting original variables values 

from pc's 

 err_sdn=sdn-sdnp; % score erros (original - prediction) 

 spe_n=sum((err_sdn.^2)')'; % sum of squared prediction error by 

samples 

  
  
 
%CSTR F1 

%PCA   

 no=20; 

 Sco_F1a_te=Sd_F1a_te*V_cov(:,1:npc);  
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T2_F1a_te=Sco_F1a_te(:,1).^2/Lambd1+Sco_F1a_te(:,2).^2/Lambd2+Sco_F1a_

te(:,3).^2/Lambd3; 

 figure 

 semilogy(T2_F1a_te,'ko')  

 hold 

 semilogy([0;no],T2_95_lim*[1;1],'r--') 

 semilogy([0;no],T2_99_lim*[1;1],'r-') 

 xlabel('Observations') 

 ylabel('T2 Statistics') 

 legend({'F1a_te' '95%limit' '99%limit'}, 'Location','NorthWest'); 

 title('PCA-based MSPM Monitoring Chart') 

  

 F1a_Norp=Sco_F1a_te*V_cov(:,1:npc)'; % predicting original variables 

from PCs 

 Err_F1a_te=(Sd_F1a_te-F1a_Norp).^2; % score errors (original - 

prediction) 

 Spe_F1a_te=sum((Err_F1a_te)'); % sum of SPE by samples 

 figure 

 semilogy(Spe_F1a_te,'ko')   

 hold 

 semilogy([0;no], Q_95*[1 1],'r--') 

 semilogy([0;no], Q_99*[1 1],'r-') 

 xlabel('Observations') 

 ylabel('SPE Statistics') 

 legend({'F1a_te' '95%limit' '99%limit'}, 'Location','NorthWest'); 

 title('PCA-based MSPM Monitoring Chart') 

 

 


