ABSTRACT

Demulsification is a process of emulsion breaking. It is important in industry applications such as waste water treatment, refinery and painting industry. Microwave and chemical heating is the most widely used method of water in oil demulsification. In this research, the combination of microwave and chemical is used to increase the efficiency of water in oil demulsification. To prevent the environmental issues, natural chemical is used in this research which is Diethanolamide of coconut fatty acid. The effectiveness of microwave assisted natural chemical in demulsification was assessed experimentally with two different power of microwave which are 450 and 600, and two different concentration of Diethanolamide of coconut fatty acid which are 0.5% and 1.5%. The water in oil emulsion was prepared by using artificial emulsifier. Artificial emulsifiers used are Triton X-100, Low Sulphur Wax Residue (LSWR) and Span 83. The natural chemical (Diethanolamide of coconut fatty acid) were added in the emulsion to increase the performance before heating the emulsion with microwave. The result shows that demulsification by using microwave assisted natural chemical was faster and more environmental friendly compared to conventional method.
ABSTRAK

Demulsifikasi adalah proses pemecahan emulsi. Proses ini amat penting di dalam aplikasi industri seperti rawatan air sisa, penapisan dan industri lukisan. Pemanasan gelombang mikro dan kimia adalah kaedah yang banyak digunakan untuk proses demulsifikasi air dalam minyak. Dalam kajian ini, gabungan pemanasan gelombang mikro dan kimia digunakan untuk meningkatkan prestasi demulsifikasi air dalam minyak. Untuk mengelakkan isu-isu alam sekitar, bahan kimia yang digunakan di dalam penyelidikan ini adalah bahan kimia semula jadi iaitu Diethanolamide dari asid lemak kelapa. Proses gabungan pemanasan gelombang mikro yang dibantu oleh bahan kimia semula jadi ini telah diuji kaji dengan dua kuasa gelombang mikro iaitu 450 dan 600 serta dua kepekatan bahan kimia Diethanolamide dari asid lemak kelapa yang berbeza iaitu 0.5% dan 1.5%. Emulsi air dalam minyak telah disediakan dengan menggunakan pengemulsi tiruan. Pengemulsi tiruan yang digunakan adalah Triton X-100, Sulphur Rendah Wax Residu (LSWR) dan Span 83. Sebelum dipanaskan di dalam gelombang mikro, kimia semula jadi (Diethanolamide dari asid lemak kelapa) telah ditambahkan ke dalam emulsi air dalam minyak untuk meningkatkan prestasi. Keputusan yang diperolehi menunjukkan bahawa demulsifikasi menggunakan cara pemanasan gelombang mikro yang dibantu dengan bahan kimia semula jadi adalah lebih cepat dan mesra alam berbanding kaedah konvensional.
TABLE OF CONTENTS

SUPERVISOR’S DECLARATION iii
STUDENT’S DECLARATION iv
DEDICATION v
ACKNOWLEDGEMENT vi
ABSTRACT vii
ABSTRAK viii
TABLE OF CONTENTS ix
LIST OF TABLES xiv
LIST OF FIGURES xix
LIST OF SYMBOLS xxiii
LIST OF ABBREVIATIONS xxv

CHAPTER ONE INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statement 2
1.3 Research Objectives 2
1.4 Scope of the Study 3
1.5 Expected Outcomes 4
1.6 Significance of the study 4

CHAPTER TWO LITERATURE REVIEW

2.1 Characteristic of Crude Oil Emulsion 5
2.2 Emulsion and Demulsification 6
2.3 Type of Emulsions 7
2.4 Emulsifier and Surfactants 9
2.5 Factors Affecting Stability 10
2.5.1 Asphaltenes and Resins 10
2.5.2 Waxes 12
2.5.3 pH 12
2.5.4 Temperature 14
2.5.5 Solids and Particle Size 15
2.6 Mechanism Involved in Demulsification 17
 2.6.1 Flocculation 17
 2.6.2 Coalescence 18
 2.6.3 Sedimentation or Creaming 19
2.7 Destabilizing Emulsions 19
 2.7.1 Temperature 20
 2.7.2 Residence time 21
 2.7.3 Control of Emulsifying Agents 21
 2.7.4 Solids Removal 22
2.8 Stable, Mesostable and Unstable 22
2.9 Methods of Emulsion Breaking or Demulsification 23
 2.9.1 Thermal Methods 23
 2.9.2 Mechanical Methods 24
 2.9.2.1 Free Water Knockout 24
 2.9.2.2 Three-Phase Separators 25
 2.9.2.3 Desalter 25
 2.9.3 Electrical Methods 26
 2.9.4 Chemical Methods 27
 2.9.5 Microwave Heating Methods 28
2.10 Diethanolamide of Coconut Fatty Acid 29
2.11 Dielectric Properties 30
2.12 Volume Rate of Heat Generation 31
2.13 Colloid Rheology 33

CHAPTER THREE MATERIALS AND METHODS

3.1 Preparation of crude oil emulsions 36
3.2 Procedures for emulsion preparations and emulsion breaking 37
3.3 Breaking of Emulsions 39
3.4 Experimental Setup 40
 3.4.1 Apparatus 40
 3.4.2 Materials 40
 3.4.3 Equipment 40
 3.4.4 Calculations 44
 3.4.4.1 Calculations for Emulsion
CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Result and Observation
 4.1.1 Settling Gravity (Conventional Method) 48
 4.1.2 Demulsification
 4.1.2.1 Result of Demulsification
 (50-50% water in oil emulsion) 55
 4.1.2.2 Result of Demulsification
 (20-80% water in oil emulsion) 67
 4.1.3 Brookfield Test (Emulsion of 50-50%)
 4.1.4 Result of droplet size (50-50% water in oil emulsion) 91
 4.1.5 Result of droplet size (20-80% water in oil emulsion) 100
 4.1.6 Microwave Heating Properties for 50-50% W/O emulsion
 with Microwave Power of 450 109
 4.1.7 Microwave Heating Properties for 20-80% W/O emulsion
 with Microwave Power of 450 115
 4.1.8 Microwave Heating Properties for 50-50% W/O emulsion
 with Microwave Power of 600 121
 4.1.9 Microwave Heating Properties for 20-80% W/O emulsion
 with Microwave Power of 600 127
 4.1.10 Surface Tension
 4.1.11 Interfacial Tension

4.2 Data Analysis
 4.2.1 Brookfield Analysis
 4.2.1.1 Viscosity versus Temperature 134
 4.2.1.2 Discussion on Viscosity versus Temperature 138
 4.2.1.3 Viscosity versus Concentration of Emulsifier 140
 4.2.1.4 Discussion on Viscosity versus Concentration of Emulsifier 142
 4.2.1.5 Viscosity versus Agitation Speed (Brookfield) 143
4.2.1.6 Discussion on Viscosity versus Agitation Speed (Brookfield) 145
4.2.1.7 Viscosity versus Shear Rate 146
4.2.1.8 Discussion on Viscosity versus Shear Rate 147
4.2.1.9 Shear Stress versus Shear Rate 148
4.2.1.10 Discussion on Shear Stress versus Shear Rate 149
4.2.2 Emulsion Gravitational Stability Test (Conventional Method for Demulsification) 151
 4.2.2.1 Emulsion 50%-50% w/o for Emulsifier 0.5v% 151
 4.2.2.2 Emulsion 50%-50% w/o for Emulsifier 1.5v% 153
 4.2.2.3 Emulsion 20%-80% w/o for Emulsifier 0.5v% 155
 4.2.2.4 Emulsion 20%-80% w/o for Emulsifier 1.5v% 157
4.2.3 Demulsification 159
 4.2.3.1 Comparison of Percentage of Water Separation between Conventional Method (Settling Gravity) and Microwave-Assisted Chemical 159
 4.2.3.2 Emulsion 50%-50% W/O for Emulsifier 0.5v% 159
 4.2.3.3 Emulsion 50%-50% W/O for Emulsifier 1.5v% 161
 4.2.3.4 Emulsion 20%-80% W/O for Emulsifier 0.5v% 163
 4.2.3.5 Emulsion 20%-80% W/O for Emulsifier 1.5v% 166
4.2.4 Discussion on Microwave Heating Properties 168
4.2.5 Discussion on droplet size 169
4.3 Summary 170

CHAPTER FIVE CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion 171
 5.1.1 Introduction 171
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Emulsion and aqueous phase properties, operation temperature, applied energy, and water content of the final emulsion for the microwave demulsification tests.</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Information of Calculations for Emulsion Preparation</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Information of Calculations for Demulsification Preparation</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Triton X-100 at different concentration</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>LSWR at different concentration</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Span 83 at different concentration</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Triton X-100 and chemical at different concentration</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>at power of 450</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Triton X-100 and chemical at different concentration</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>at power of 600</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>LSWR and chemical at different concentration</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>at power of 450</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>LSWR and chemical at different concentration</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>at power of 600</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Span 83 and chemical at different concentration</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>at power of 450</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Span 83 and chemical at different concentration</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>at power of 600</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Triton X-100 and chemical at different concentration</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>at power of 450</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Triton X-100 and chemical at different concentration</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>at power of 600</td>
<td></td>
</tr>
</tbody>
</table>
4.12 LSWR and chemical at different concentration at power of 450 71
4.13 LSWR and chemical at different concentration at power of 600 73
4.14 Span 83 and chemical at different concentration at power of 450 75
4.15 Span 83 and chemical at different concentration at power of 600 77
4.16 Brookfield Test 79
4.17 Brookfield Test 80
4.18 Brookfield Test 81
4.19 Brookfield Test 82
4.20 Brookfield Test 83
4.21 Brookfield Test 84
4.22 Brookfield Test 85
4.23 Brookfield Test 86
4.24 Brookfield Test 87
4.25 Brookfield Test 88
4.26 Brookfield Test 89
4.27 Brookfield Test 90
4.28 Droplet Size Distribution (0.5% Triton X-100) 91
4.29 Droplet Size Distribution (1.5% Triton X-100) 93
4.30 Droplet Size Distribution (0.5% LSWR) 94
4.31 Droplet Size Distribution (1.5% LSWR) 96
4.32 Droplet Size Distribution (0.5% Span 83) 97
4.33 Droplet Size Distribution (1.5% Span 83) 99
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.34</td>
<td>Droplet Size for 50-50% W/O Emulsion</td>
<td>100</td>
</tr>
<tr>
<td>4.35</td>
<td>Droplet Size Distribution (0.5% Triton X-100)</td>
<td>100</td>
</tr>
<tr>
<td>4.36</td>
<td>Droplet Size Distribution (1.5% Triton X-100)</td>
<td>102</td>
</tr>
<tr>
<td>4.37</td>
<td>Droplet Size Distribution (1.5% LSWR)</td>
<td>103</td>
</tr>
<tr>
<td>4.38</td>
<td>Droplet Size Distribution (1.5% LSWR)</td>
<td>105</td>
</tr>
<tr>
<td>4.39</td>
<td>Droplet Size Distribution (0.5% Span 83)</td>
<td>106</td>
</tr>
<tr>
<td>4.40</td>
<td>Droplet Size Distribution (1.5% Span 83)</td>
<td>108</td>
</tr>
<tr>
<td>4.41</td>
<td>Droplet Size for 20-80% W/O Emulsion</td>
<td>108</td>
</tr>
<tr>
<td>4.42</td>
<td>Triton X-100 with concentration 0.5% and chemical 0.5%</td>
<td>109</td>
</tr>
<tr>
<td>4.43</td>
<td>Triton X-100 with concentration 0.5% and chemical 1.5%</td>
<td>109</td>
</tr>
<tr>
<td>4.44</td>
<td>Triton X-100 with concentration 1.5% and chemical 0.5%</td>
<td>110</td>
</tr>
<tr>
<td>4.45</td>
<td>Triton X-100 with concentration 1.5% and chemical 1.5%</td>
<td>110</td>
</tr>
<tr>
<td>4.46</td>
<td>LSWR with concentration 0.5% and chemical 0.5%</td>
<td>111</td>
</tr>
<tr>
<td>4.47</td>
<td>LSWR with concentration 0.5% and chemical 1.5%</td>
<td>111</td>
</tr>
<tr>
<td>4.48</td>
<td>LSWR with concentration 1.5% and chemical 0.5%</td>
<td>112</td>
</tr>
<tr>
<td>4.49</td>
<td>LSWR with concentration 1.5% and chemical 1.5%</td>
<td>112</td>
</tr>
<tr>
<td>4.50</td>
<td>Span 83 with concentration 0.5% and chemical 0.5%</td>
<td>113</td>
</tr>
<tr>
<td>4.51</td>
<td>Span 83 with concentration 0.5% and chemical 1.5%</td>
<td>113</td>
</tr>
<tr>
<td>4.52</td>
<td>Span 83 with concentration 1.5% and chemical 0.5%</td>
<td>114</td>
</tr>
<tr>
<td>4.53</td>
<td>Span 83 with concentration 1.5% and chemical 1.5%</td>
<td>114</td>
</tr>
<tr>
<td>4.54</td>
<td>Triton X-100 with concentration 0.5% and chemical 0.5%</td>
<td>115</td>
</tr>
<tr>
<td>4.55</td>
<td>Triton X-100 with concentration 0.5% and chemical 1.5%</td>
<td>115</td>
</tr>
<tr>
<td>4.56</td>
<td>Triton X-100 with concentration 1.5% and chemical 0.5%</td>
<td>116</td>
</tr>
<tr>
<td>4.57</td>
<td>Triton X-100 with concentration 1.5% and chemical 1.5%</td>
<td>116</td>
</tr>
<tr>
<td>4.58</td>
<td>LSWR with concentration 0.5% and chemical 0.5%</td>
<td>117</td>
</tr>
<tr>
<td>4.59</td>
<td>LSWR with concentration 0.5% and chemical 1.5%</td>
<td>117</td>
</tr>
<tr>
<td>4.60</td>
<td>LSWR with concentration 1.5% and chemical 0.5%</td>
<td>118</td>
</tr>
</tbody>
</table>
4.61 LSWR with concentration 1.5% and chemical 1.5%
4.62 Span 83 with concentration 0.5% and chemical 0.5%
4.63 Span 83 with concentration 0.5% and chemical 1.5%
4.64 Span 83 with concentration 1.5% and chemical 0.5%
4.65 Span 83 with concentration 1.5% and chemical 1.5%
4.66 Triton X-100 with concentration 0.5% and chemical 0.5%
4.67 Triton X-100 with concentration 0.5% and chemical 1.5%
4.68 Triton X-100 with concentration 1.5% and chemical 0.5%
4.69 Triton X-100 with concentration 1.5% and chemical 1.5%
4.70 LSWR with concentration 0.5% and chemical 0.5%
4.71 LSWR with concentration 0.5% and chemical 1.5%
4.72 LSWR with concentration 1.5% and chemical 0.5%
4.73 LSWR with concentration 1.5% and chemical 1.5%
4.74 Span 83 with concentration 0.5% and chemical 0.5%
4.75 Span 83 with concentration 0.5% and chemical 1.5%
4.76 Span 83 with concentration 1.5% and chemical 0.5%
4.77 Span 83 with concentration 1.5% and chemical 1.5%
4.78 Triton X-100 with concentration 0.5% and chemical 0.5%
4.79 Triton X-100 with concentration 0.5% and chemical 1.5%
4.80 Triton X-100 with concentration 1.5% and chemical 0.5%
4.81 Triton X-100 with concentration 1.5% and chemical 1.5%
4.82 LSWR with concentration 0.5% and chemical 0.5%
4.83 LSWR with concentration 0.5% and chemical 1.5%
4.84 LSWR with concentration 1.5% and chemical 0.5%
4.85 LSWR with concentration 1.5% and chemical 1.5%
4.86 Span 83 with concentration 0.5% and chemical 0.5%
4.87 Span 83 with concentration 0.5% and chemical 1.5%
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.88</td>
<td>Span 83 with concentration 1.5% and chemical 0.5%</td>
<td>132</td>
</tr>
<tr>
<td>4.89</td>
<td>Span 83 with concentration 1.5% and chemical 1.5%</td>
<td>132</td>
</tr>
<tr>
<td>4.90</td>
<td>Surface Tension of Water and Air and Oil and Air</td>
<td>133</td>
</tr>
<tr>
<td>4.91</td>
<td>Interfacial Tension of Water and Oil</td>
<td>133</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Photomicrograph of a water-in-oil emulsion (Sunil, 2006)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Photomicrograph of an oil-in-water emulsion. (Sunil, 2006)</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Photomicrograph of a water-in-oil-in-water emulsion (multiple emulsions) (Sunil, 2006)</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Asphaltene-resin micelle. (Sunil, 2006)</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Effect of pH and demulsifier concentration on emulsion stability (Abdurahman, Abu Hassan & Rosli Mohd Yunus, 2007)</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Viscosities of very tight emulsions at a shear rate of 0.1 (1/s) (Sunil, 2006)</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Wetting behavior of solids at the oil/water interface (Sunil, 2006)</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Free water knockout</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>Single stage of desalter</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>Major component of Cocoamide DEA</td>
<td>30</td>
</tr>
<tr>
<td>2.11</td>
<td>Viscosity of very tight emulsions at shear rate of 0.1 (1/s) (Sunil, 2006)</td>
<td>33</td>
</tr>
<tr>
<td>2.12</td>
<td>Typical curves of viscosity versus shear rate</td>
<td>34</td>
</tr>
<tr>
<td>2.13</td>
<td>Typical curves of viscosity versus shear rate</td>
<td>35</td>
</tr>
</tbody>
</table>
3.1 Flow diagram of the emulsion preparations procedures 38
3.2 The flow chart process of breaking emulsions 39
3.3 Three Plate Propellers 41
3.4 Brookfield 42
3.5 Microscope 42
3.6 Tension meter 43
3.7 Microwave oven 43
4.1 Droplet Size (Triton X-100) 91
4.2 Droplet Size Distribution (0.5% Triton X-100) 92
4.3 Droplet Size (0.5% Triton X-100) 92
4.4 Droplet Size Distribution (1.5% Triton X-100) 93
4.5 Droplet Size (0.5% LSWR) 94
4.6 Droplet Size Distribution (0.5% LSWR) 95
4.7 Droplet Size (1.5% LSWR) 95
4.8 Droplet Size Distribution (1.5% LSWR) 96
4.9 Droplet Size (0.5% Span 83) 97
4.10 Droplet Size Distribution (0.5% Span 83) 98
4.11 Droplet Size (1.5% Span 83) 98
4.12 Droplet Size Distribution (1.5% Span 83) 99
4.13 Droplet Size (0.5% Triton X-100) 100
4.14 Droplet Size Distribution (0.5% Triton X-100) 101
4.15 Droplet Size (1.5% Triton X-100) 101
4.16 Droplet Size Distribution (1.5% Triton X-100) 102
4.17 Droplet Size (0.5% LSWR) 103
4.18 Droplet Size Distribution (0.5% LSWR) 104
4.19 Droplet Size (1.5% LSWR) 104
4.20 Droplet Size Distribution (1.5% LSWR) 105
4.21 Droplet Size (0.5% Span 83) 106
4.22 Droplet Size Distribution (0.5% Span 83) 107
4.23 Droplet Size (1.5% Span 83) 107
4.24 Droplet Size Distribution (1.5% Span 83) 108
4.25 Viscosity versus Temperature at RPM 100 (Brookfield) 134
4.26 Viscosity versus Temperature at RPM 150 (Brookfield) 135
4.27 Viscosity versus Temperature at RPM 200 (Brookfield) 135
4.28 Viscosity versus Temperature at RPM 250 (Brookfield) 136
4.29 Viscosity versus Temperature at RPM 100 (Brookfield) 136
4.30 Viscosity versus Temperature at RPM 150 (Brookfield) 137
4.31 Viscosity versus Temperature at RPM 200 (Brookfield) 137
4.32 Viscosity versus Temperature at RPM 250 (Brookfield) 138
4.33 Viscosity versus Concentration of Emulsifier at RPM 100 (Brookfield) 140
4.34 Viscosity versus Concentration of Emulsifier at RPM 150 (Brookfield) 140
4.35 Viscosity versus Concentration of Emulsifier at RPM 200 (Brookfield) 141
4.36 Viscosity versus Concentration of Emulsifier at RPM 250 (Brookfield) 141
4.37 Viscosity versus Agitation Speed of 0.5v% at 70°C 143
4.38 Viscosity versus Agitation Speed of 1.5v% at 70°C 143
4.39 Viscosity versus Agitation Speed of 0.5v% at 70°C 144
4.40 Viscosity versus Agitation Speed of 1.5v% at 70°C 144
4.41 Viscosity versus Shear Rate at 70°C 146
4.42 Viscosity versus Shear Rate at 70°C 146
4.43 Pseudoplastic behavior as Viscosity versus shear rate 147
4.44 Shear Stress versus Shear Rate at 70°C 148
4.45 Shear Stress versus Shear Rate at 70°C 149
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.46</td>
<td>Pseudoplastic behavior as shear rate versus shear stress</td>
<td>150</td>
</tr>
<tr>
<td>4.47</td>
<td>Percentage of Water Separation versus Time</td>
<td>151</td>
</tr>
<tr>
<td>4.48</td>
<td>Percentage of Water Separation versus Time</td>
<td>153</td>
</tr>
<tr>
<td>4.49</td>
<td>Percentage of Water Separation versus Time</td>
<td>154</td>
</tr>
<tr>
<td>4.50</td>
<td>Percentage of Water Separation versus Time</td>
<td>159</td>
</tr>
<tr>
<td>4.51</td>
<td>Percentage of Water Separation versus Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using Microwave Assisted Chemical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Emulsion 50%-50% W/O for Emulsifier 0.5v %)</td>
<td>161</td>
</tr>
<tr>
<td>4.52</td>
<td>Percentage of Water Separation versus Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using Microwave Assisted Chemical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Emulsion 50%-50% W/O for Emulsifier 1.5v %)</td>
<td>162</td>
</tr>
<tr>
<td>4.53</td>
<td>Percentage of Water Separation versus Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using Microwave Assisted Chemical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Emulsion 20%-80% W/O for Emulsifier 0.5v %)</td>
<td>164</td>
</tr>
<tr>
<td>4.54</td>
<td>Percentage of Water Separation versus Time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using Microwave Assisted Chemical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Emulsion 20%-80% W/O for Emulsifier 1.5v %)</td>
<td>166</td>
</tr>
<tr>
<td>4.55</td>
<td>Rate of Temperature Increase for 50-50% and 20-80% W/O</td>
<td>168</td>
</tr>
<tr>
<td>4.56</td>
<td>Dielectric loss for 50-50% and 20-80% W/O</td>
<td>168</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(\varepsilon_{r,w} \) - Dielectric constant of water

\(\varepsilon''_{r,w} \) - Dielectric loss of water

\(\varepsilon_{r,o} \) - Dielectric constant of crude oil

\(\tan \delta_o \) - Loss tangent of crude oil

\(q_{MW,z} \) - The volume rate of heat generation

\(A \) - Convective heat transfer area, \(\text{cm}^2 \)

\(V \) - Volume of irradiated emulsion, \(\text{cm}^3 \)

\(T_m \) - Temperature of emulsion, \(^\circ \text{C} \)

\(T_a \) - Ambient Temperature, \(^\circ \text{C} \)

\(\varepsilon \) - Emissivity of surface

\(\sigma \) - Stefan-Boltzmann constant\(= 5.672 \times 10^{-8} \text{W/m}^2\text{K}^4 \)

\(\rho \) - Density of emulsion, \(\text{g/cm}^3 \)

\(C_p \) - Heat capacity at constant pressure, \(\text{cal/g.}^\circ \text{C} \)

\(\frac{dT}{dt} \) - Rate of temperature increase in \(^\circ \text{C/s} \)

\(\rho_m \) - Density of emulsion, \(\text{g/cm}^3 \)

\(\rho_w \) - Density of water, \(\text{g/cm}^3 \)

\(\rho_o \) - Density of crude oil, \(\text{g/cm}^3 \)

\(C_{p,m} \) - Heat capacity of emulsion, \(\text{cal/g.}^\circ \text{C} \)

\(C_{p,w} \) - Heat capacity of water, \(\text{cal/g.}^\circ \text{C} \)

\(C_{p,o} \) - Heat capacity of crude oil, \(\text{cal/g.}^\circ \text{C} \)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>Volume fraction of emulsified water</td>
</tr>
<tr>
<td>D_p</td>
<td>Penetration depth</td>
</tr>
<tr>
<td>c</td>
<td>Electromagnetic wave velocity = speed of light</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>% water separation</td>
<td>Percentage of water separation</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/O</td>
<td>water-in-crude oil</td>
</tr>
<tr>
<td>O/W</td>
<td>crude oil-in-water</td>
</tr>
<tr>
<td>W/O/W</td>
<td>water-in-crude oil-in-water</td>
</tr>
<tr>
<td>LSWR</td>
<td>Low Sulphur Waxy Residue</td>
</tr>
<tr>
<td>Cocamide DEA</td>
<td>Diethanolamide of coconut fatty acid</td>
</tr>
<tr>
<td>HLB</td>
<td>Hydrophilic-Lipophilic Balance</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

1.1 Background of the propose study

Petroleum is hydrocarbon compound containing others chemical which is nitrogen, sulfur oxygen, nickel and vanadium. Petroleum consists of two types which is crude oil and the condensate. Crude oil containing water is harmful to the transportation, refinery, and also decrease the quality of the products. Water in the crude oil is an emulsion, means, a system containing at least one liquid droplet is immiscible to another liquid medium. Thus, breaking of crude oil emulsion is a key
step in petroleum field. In addition, for economic and operational reason, it is necessary to break the emulsion or to separate the water from the crude oil. The process of separation of the water content from the crude oil emulsion is called demulsification. Reducing the water content in the crude oil can reduce pipeline corrosion and others equipment damage. Besides, there are two method approaches of demulsification. Those methods are chemical method and physical methods. The chemical methods is the addition of a demulsifier to the emulsion and physical method is using technique of heating, electrical, ultrasonic, and radiation. However, some of these methods will affect the environmental problem. Thus, in this research, method of microwave assisted chemical which is environmental friendly is applied.

1.2 Problem Statement

For economic purpose, pipeline consideration, and the quality of the product, the crude oil emulsion must be dewatered. The water contain in the crude oil emulsion may cause several operational problems. As a result, methods that can increase the efficiency, inexpensive, and shorten the time are needed.

1.3 Research Objectives

This research is guided by the following research objectives:

1.1.1 To study and understand the characterization of oil and aqueous phases
1.1.2 To compare the efficiency of demulsification of the crude oil emulsions between the conventional and microwave heating methods.

1.1.3 To study the preparation of crude oil emulsions and their characteristic

1.1.4 To evaluate microwave performance in demulsification of crude oil emulsions.

1.4 Scope of the Study

This research will only focus on the separation of water from the crude oil by using microwave assisted chemicals. In order to achieve the objectives, this research must be able to

1.1.5 Identifies the effect of the temperature heating using microwave

1.1.6 Identifies the effect of the chemical added in the emulsion

1.1.7 Determine the amount of water separation

1.1.8 Characterization of emulsions in term of physical three chemical properties

1.1.9 To identify temperature distribution of different locations for irradiations emulsions

1.1.10 To study the effect of varying the microwave power generation

1.1.11 To examine the demulsification of emulsions by microwave and conventional heating.
1.5 Expected Outcomes

In this research it is expected that the water separation from the crude oil is increasing by using microwave method and assisted chemical. This method will be applied in the petroleum field in order to solve the problems of pipeline corrosion, and produce good quality product.

1.6 Significance of the Study

Microwave method has drawn more attention compare to the conventional method as microwave give a clean (environmentally friendly) and efficient result. The used of heating, and electrical methods have disadvantages because it used a large amount of chemical (emulsifier) and environmental pollution. On the other hand, microwave assisted chemical is an economical methods.