DEVELOPMENTS OF 2 INCHES LOOP PIPELINES FOR PARAFFIN DEPOSITION TESTING FACILITY USING PLANT DESIGN MANAGEMENT SYSTEM (PDMS)

AZNI YUSRA BT AHMAD KASIMIRI

A thesis submitted to the Faculty of Chemical and Natural Resources Engineering in partial fulfillment of the requirement for the Degree of Bachelor of Engineering in Chemical Engineering (Gas Technology)

Faculty of Chemical & Natural Resources Engineering

Universiti Malaysia Pahang

FEBRUARY 2013
DEVELOPMENTS OF 2 INCHES LOOP PIPELINES FOR PARAFFIN DEPOSITION TESTING FACILITY USING PLANT DESIGN MANAGEMENT SYSTEM (PDMS)

ABSTRACT

The main frontier of exploring the deepwater ocean bed is due to the risk of paraffin deposition to the pipe. Going further offshore, the risk is increases because of the increasing of the length of pipelines and decreasing of the temperature. Paraffin will start to deposit along the pipeline once there is temperature gradient between oil and pipeline. According to forecaster, the world will increasingly rely on offshore and deepwater exploration. Therefore, it can be seen that the percentage of deepwater oil production is increases year by year as the development of complementary technology is achieved. The main objectives of this study is to develop a multiphase testing loop for paraffin deposition testing by using Plant Design Management System (PDMS). The paraffin deposition testing loop consisting oil system, natural gas system, inclinable test section unit and glycol system. Therefore, it is hope that this research will be beneficial to the industry, society and environment.
PEMBANGUNAN 2 INCI LITAR PAIP BAGI UJIAN PEMENDAPAN PARAFFIN MENGUNAKAN ‘PLANT DESIGN MANAGEMENT SYSTEM’ (PDMS)

ABSTRAK

TABLE OF CONTENTS

TITLE PAGE
- SUPERVISOR’S DECLARATION ii
- STUDENT’S DECLARATION iii
- ACKNOWLEDGEMENT v
- ABSTRACT vi
- ABSTRAK v
- LIST OF FIGURES x
- LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION
1.0 Research Background 1
1.1 Problem Statement 3
1.2 Objectives 4
1.3 Scope of Study 4
1.4 Thesis Organization 5

CHAPTER 2 LITERATURE REVIEW
2.1 Composition of Crude Oil 6
2.2 Wax Deposition Problem in Flow Conditions 7
2.3 Techniques to Remove Wax Deposition 8
2.4 Physics of Wax Deposition Phenomena 9
 2.4.1 Radial Mass Transport 10
2.5 Development of Multiphase Flow Loop 11
 2.5.1 Uses of Piping 12
2.6 Overview of Software 12
 2.6.1 Piping Specification in PDMS 13
2.7 Malaysian Standard 13
2.8 Summary 14

CHAPTER 3 MATERIALS AND METHOD
3.1 Research Tool 15
 3.1.1 Aveva PDMS 12.0.SP4 15
LIST OF FIGURES

Figure 1.1	Oil production in deep sea	2
Figure 2.1	Pigging method for wax removal	8
Figure 2.2	Occurrence of Wax Deposition	10
Figure 2.3	Multiphase Flow Loop PFD	11
Figure 3.1	Summary of Methodology	20
Figure 4.1	Equipment Hierarchy	22
Figure 4.3.1	Equipment Creation Form	24
Figure 4.3.2	Creating Equipment Using Primitives	25
Figure 4.3.3	Nozzle Creation Form	26
Figure 4.4.1	Positioning Control Equipment	27
Figure 4.5	Multiphase Flow Facility Diagram	28
Figure 4.6.1	Oil System Flow Loop	29
Figure 4.6.2	Gas System Flow Loop	31
Figure 4.6.3	Cold Glycol System	32
Figure 4.6.4	Hot Glycol System	32
Figure 4.6.5	Test Section	33
Figure 4.7.1	Pipework Design Hierarchy	35
Figure 4.7.2	Pipe Creation Form and Pipe Toolbar	37
Figure 4.7.3	Pipe Modification Form	38
Figure 4.7.4	Components Creation Form	39
Figure 4.7.5	Head and Tail Connection	40
LIST OF ABBREVIATIONS

CFD = Computational Fluid Dynamics
BPD = Barrel Per Day
Gal = Gallon
PDMS = Plant Design Management System
F = Fahrenheit
CHAPTER 1

INTRODUCTION

1.1 Research Background

Recently, the deep sea area exploration and production are increasing significantly because oil and gas reservoirs near the shoreline have depleted. Crude oil from the oil wells are basically contains complex mixtures which may consist of paraffin or waxes, aromatics compound, naphthenes, asphaltenes and resins. Among all these components, heavy hydrocarbon such as paraffins and asphaltenes are always responsible for production and transportation problems in pipeline system. Paraffin is a major factor for the oil and gas industry for not producing in deepwater fields especially in multiphase flow systems. For deep water exploration, the platform is estimated 160 miles away from the gas processing plant. Therefore, as the oil wells are further offshore, the risk of paraffin deposition is increases due to the longer pipeline on the cold ocean floor. This is because when the water depth increases, the temperature decreases. Once there is a temperature gradient between
oil and pipe line, it is either the solid paraffin will deposit to the wall or it will be transported along the pipeline.

![Figure 1.1 Oil productions in deep sea (Lee, 2008).](image)

Clearly, this phenomena is unfavorable to the industry as it will increase the cost for remediation due to pipeline blockage and management. The remediation cost of pipeline blockage due to paraffin deposition is $200,000 when the water depth is 100m, but it increases to $1,000,000 when the remediation occurs in water depths near 400m (Sarica et. al., 2003). Until today, there is several ways of treating this problem which is pipelines insulation and by injection of wax inhibitor. But, these methods consumed large amount of cost.

So, this study will be concerning on development of 2 inches pipeline for paraffin deposition testing by using Plant Design Management System (PDMS).
1.2 Problem Statement

Several extensive experimental tests have been conducted on this topic. Therefore, this study is going to develop the loop for multiphase paraffin deposition near the flowlines and wellbores by using PDMS. PDMS is a software that majorly used for design and construction work. In this challenging oil and gas world, lowering the percentage of paraffin deposition inside pipelines would be a great advantage as it will help preventing the catastrophic event and lowering the remediation cost. As mention before, there are several methods of reducing the risk of paraffin deposition which is by insulation and by using inhibitor. Pigging method can clean up the pipelines but, before it can be done, it is important to estimate the thickness and hardness of the deposits. As the pig might get stuck inside the pipelines if the deposits is too thick and hard. This situation will cause major problem and the transportation have to be stop. Therefore, getting to the bottom of this study will increase the knowledge about the development of multiphase pipe loops for paraffin deposition testing that is poorly understood before.
1.3 Objectives

The main research objectives for this study are:

1) To study the pipe specification and fittings that suitable for paraffin deposition testing.

2) To obtain the skills of handling and designing in 3 dimension by using PDMS

1.4 Scope of Study

The scope of this study is inside the property of the piping system and design. The selection of each equipments and piping components is vital in order to produce the same exact condition like in the seabed. This study will mainly focus in the equipment and piping design of multiphase flow loop. Due to the facts that wax deposition is the main frontier for deepwater exploration in the oil and gas industry. The significance of the proposed study is to bring the deepwater exploration into a new level which is needed to be more in line with the modern world. If the paraffin deposition problem can be treated, the deepwater fields will be explored widely throughout the world while minimizing remediation cost at the same time. The people in the petroleum industry will have the most benefits, in terms of money and productivity. This study will try to resolve the research questions and trying to find out what is the benefits of the implementing this method in the oil and gas industry. There will also be advantages and disadvantages and the outcomes in this study will be further reviewed.
1.5 Thesis Organization

In general, this thesis consists of 5 chapters. In Chapter 1, the introduction about the research background in brief. Meanwhile in Chapter 2, literature review from various sources is discussed to gain a deep understanding upon the subject matter. Chapter 3 contains the methodology and steps to design the pipe loop using software which consists of more information about the study’s requirement. Later in Chapter 4, the results and discussion will be presented in detail which indicates how the objectives of this study are achieved. Lastly, Chapter 5 will be consisting of conclusion based on the results and few recommendations for future study.
CHAPTER 2

LITERATURE REVIEW

2.1 Composition of Crude Oil

Crude oil or generally known as petroleum is the unrefined oil that is formed over millions of years under the ground. It is found in range of color from clear to black or in liquid or gas phase. Generally, it is made up of hydrocarbon compound. The main hydrocarbon compounds that can be found in the petroleum are complex mixture of saturates (paraffin/waxes), aromatics, naphthenes, asphaltenes and resins. Among these components, high molecular weight paraffin and asphaltenes are typically responsible for production and transportation problems in subsea pipelines system (Lee, 2008).

The carbon content normally is in the range 83-87%, and the hydrogen content varies between 10 and 14%. In addition, varying small amounts of nitrogen, oxygen, sulfur and metals (Ni and V) are found in crude oils. Wax or paraffin is a sub class of the saturates, consisting primarily of straight-chain alkanes,mainly
ranging from C$_{20}$ to C$_{30}$. Wax precipitates as a particulate solid at low temperature (Narve, 2002).

2.2 Wax Deposition Problem in Flow Conditions

Paraffin deposition in multiphase flow conditions has not been systematically investigated, and therefore remains poorly understood. In multiphase systems, the additional gas phase adds to the complexity of understanding wax deposition phenomena. There have been very few published studies reported on the effect of multiphase flow on the phenomena of paraffin deposition (Lee, 2008). Wax consists mainly of heavy paraffins and some naphthenes. At reservoir temperatures (70-150°C) and pressures (50-100MPa), wax molecules are dissolved in the crude oil. However, as the crude oil flows through a subsea pipelines resting on the ocean floor at a temperature of 4°C, the temperature of oil eventually decreases below its cloud point temperature (or wax appearance temperature, WAT) because of the heat losses to the surrounding. From this point, the solubility of wax decreases drastically and wax molecules start to precipitate out of the crude oil (Outlaw et. al., 2011).

Wax deposition along the inner walls of the pipeline increases the pressure drop, decreases the flow rate, and causes operational problems like pipeline blockage which can lead to production loss. To prevent blockage of pipelines, wax deposits should be removed periodically (Hussein et. al., 2008).
2.3 Techniques to Remove Wax Deposition

As mentioned earlier, there are many options for removing deposit in the pipeline which includes pigging, thermal techniques, chemical solvents & dissolvers and wax inhibitors. Each option is described in brief as below.

- **Pigging**- A cleaning pig are launched into a pipe which scrape the waxes at the pipewall and distribute it within the crude oil in front of the pig.

- **Thermal Techniques**- Technique that controlling the temperature of the oil either by maintained it or increased above WAT.

- **Chemical Solvents & Dissolvers** – The blending between the solvents and gas oil will produces excellent wax dispersion and dissolution properties.

- **Wax inhibitors**- Injection of chemical additives in the pipeline. There are four categories of inhibitor which is crystal modifiers, pour point depressants, dispersants and surfactants.

Among these options, pigging technique is the most appropriate technique to remove wax inside the long pipeline from the pipe that lay on the sea floor to the pipe on the flow lines.

![Figure 2.1 Pigging method for wax removal (Nguyen, 2004; Lee, 2008).](image-url)
This is the reasons why it is very important to model the multiphase pipe loops so that the paraffin deposition and aging phenomena can be tested. As a result, appropriates chemical treatments and pigging schedules can be optimized to minimize or alleviate paraffin deposition in wellbores or flowlines (Micheal and Sarica, 2003).

2.4 Physics of Wax Deposition Phenomena

Wax precipitation during crude oil flow causes wax deposition and flow restriction. Wax deposition during the flow of waxy crude oil through subsea pipelines occurs as a result of the precipitation of wax molecules adjacent to the cold pipe wall. Thus, wax deposition can only occur when the inner pipe wall temperature is below the cloud point temperature. The precipitated wax molecules near the pipe wall start to form an incipient gel at the cold surface. The incipient gel formed at the pipe wall is a 3-D network structure of wax crystals and contains a significant amount of oil trapped in it. The incipient as a result of heat losses to the surrounding is shown as in Figure 2.2 below.
2.4.1 Radial Mass Transport

The radial wax transport wax concentration gradient is established by precipitation of wax molecules out of the oil. This lowered wax concentration near the oil-deposits interface results in a mass flux of the wax molecules towards the surface of the incipient gel layer. This mass flux causes the wax deposits to become thicker as time progresses. (Lee, 2008)

There is many type of radial mass transportation mechanism have suggested to cause the growth of a wax depositions which is radial convective flux (Singh et. al., 2000), molecular diffusion (Bern et. al., 1980; Burger et. al., 1981; Majeed et. al., 1990; Brown et. al., 1993; Svendsen, 1993; Ribeiro et. al., 1981; Creek et. al., 1999; Lee, 2008) and precipitated wax particle transportation. However, it is confirmed that the contribution of precipitated wax particles on the wax deposition is not significant.
for flow conditions encountered in oil pipelines on the ocean floor (Matzain et. al., 2008).

2.5 Development of Multiphase Flow Loop

Figure 2.3 below shows the testing facility. It comprises of oil system, gas system, glycol system, separator and test section. The flow loop is in a U-shaped. The test section is 75-ft long that is divided into three main parts: a 25-ft long thermal developing section to allow creation of the oil thermal profile, a 25-ft long test section that is divided into five segments to supervise the phenomena of paraffin deposition and also a 5-ft long spool piece to allow sample collection. Crude oil flows in the inner of 2-inch pipe while glycol circulates countercurrent in a 4-inch annulus. Those pumping, heating, and cooling system are for flow and temperature control purposes (Micheal and Sarica, 2003).

![Figure 2.3 Multiphase flow loop process flow diagram (PFD) (Sarica et. al., 2004)](image-url)
2.5.1 Uses of Piping

Piping is used for various purposes including for industrial (process), marine, transportation, civil engineering and for commercial purposes. In oil and gas industry, basically involves process piping, service piping and transportation piping. Process piping is used to transport fluids from storage tanks to processing units. Meanwhile, service piping or utility piping is used to pass steam, air, fuel gases, fuel oil and water for processing. Transportation piping is normally involves large pipes that is used to pass over hundred miles from offshore that is not used in this study (Sherwood, 1973).

2.6 Overview of Software

Matzain et. al (2008) said Fordyke (1995) and Apte et. al (1999) suggested that the approach for estimating paraffin deposition in multiphase flow could be similar to that for single-phase flow. They described the possible effects of different flow patterns on wax deposition and speculated on the nature of the wax deposits that could occur during each flow pattern.

A computer program following on the international standards will be used for designing paraffin deposition 2 inch multiphase flow pipelines system using PDMS. The program allows the designer to design in three dimensions that makes the equipment and piping look realistic.
2.6.1 Piping Specification in PDMS

PDMS has a set of piping specification from which designer can choose. All the components (valve, reducer, elbow & etc) in the program must be defined in the catalogue and be placed in a specification before they can be selected for joining purposes. There are 3 specifications that have always been used in the industry such as:

A1A = ANSI CLASS 150 CARBON STEEL
A3B = ANSI CLASS 300 CARBON STEEL
F1C = ANSI CLASS 150 STAINLESS STEEL

2.7 Malaysian Standard

The Malaysian Standard are developed by committees that comprise balanced representation of producers, users, consumers and other that might be relevant in this subject matter. The main function of this standard is to foster and promote standardization and accreditation. Standardization and accreditation benefits the consumers and producers and helps facilitating domestic and international user. Over past 16 years there are more than 6300 Malaysian Standard and one of it is MS930. MS930 is Malaysia Standard Code of Practice for the installation of fuel gas piping system and appliances that is derived from international standard so that it meets with the country conditions. MS930 consists of thirteen sections (MS930, 2010).
2.8 Summary

There are previous studies that successfully developed the testing loop in real, but none of it has design it using PDMS. Therefore, this study is going to apply the same process flow diagram, modify it following required standards and presents it into three dimensional visual. It can be said that the process of designing is much more cost and time effective as the program is already equipped with equipment and pipe that follows international standards.
CHAPTER 3

METHODOLOGY

3.1 Research Tool

This research will be carried using Aveva PDMS 12.0.SP4 with piping and equipment feature for 3-D multiphase flow loop design and development.

3.1.1 Aveva PDMS 12.0.SP4

Aveva Plant Design Management System (PDMS) 12.0.SP4 is the simulator that has been chosen for this study. PDMS was chosen because of its ability to design equipments, piping system, ducting, electrical and instrumentation and architectural structure design. It provides a fully interactive, easy-to-use 3D environment and supported by Microsoft Office-style user interface, clash checking and configurable integrity checking rules identify errors and inconsistencies across the design,
conventional issue, revision, and change control processes can all be applied without introducing a large overhead or delays in projects which can have many hundred users, and state-of-the-art 3D editing features with graphical handles and numeric feedback make design and modification quick and easy.

Approximately, around 80% companies related to petroleum and gas industry are using this software. Some of the advantages of PDMS that can be considered vital to this study are because of the availability of industrial world standard for piping, structural steel, ducting, hangers, supports and cable trays. It also produce high level dimension consistency and higher quality design because of its ability to perform multiple design check across the entire design and eliminates error and enable ‘right-first-time’ engineering.

3.2 Research Activities

Several steps of research activities were followed beginning with the collection of plant layout, piping and equipment specification from various sources of journals, books and standard. Then, base on the draft and equipment specification, equipments were assembled and coordinated at appropriate location by referring to human engineering factors. All of the equipment and pipe components are positioned to the north for synchronization purpose. Next, the equipments are then joined together by piping components to form complete flow loop.
3.2.1 Data Collection

A detail understanding regarding the flow loop layout and all of the specifications must be cleared at this stage. The key to design using Aveva PDMS 12.0.SP4 must be well-known prior to collection of data from various sources to be applied in the PDMS. Mostly, the equipments and pipe specifications are ought to be identified in order to join it together. The most difficult part after assembling the equipments is to design the test section and locating electrical components i.e. meter at the test section.

3.3 Process Flow Diagram (PFD)

Process flow diagram is one of the important elements required to designer to position equipments. A lot of important information can be get in this diagram such as flow direction and how the equipment are interconnected to one another. But PFD does not show any utility equipment. The utility equipments can be getting from P&ID.