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ABSTRACT 

 

Multivariate statistical techniques are used to develop detection methodology for abnormal 

process behavior and diagnosis of disturbance which causing poor process performance 

(Raich and Cinar, 2004). Hence, this study is about the development of principal component 

analysis (PCA) -based fault detection system based on various modes of normal operating 

condition (NOC) models for continuous-based process. Detecting out-of-control status and 

diagnosing disturbances leading to the abnormal process operation early are crucial in 

minimizing product quality variations (Raich and Cinar,2004). The scope of the proposed 

study is to run traditionally multivariate statistical process monitoring (MSPM) by defining 

mode difference in variance for continuous-based process. The methodology use to identify 

and detection of fault which undergo two phase which phase I is off-line monitoring while 

phase II is on-line monitoring. As a result, it will be analyze and compared of the 

implementing traditional PCA of Single NOC modes and Multiple NOC modes. Particularly, 

this study is critically concerned more on the performance during the fault detection 

operations comprising both off-line and on-line applications, hence it will analyze until fault 

detection and comparing between two modes of NOC data. 
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ABSTRAK 

 

Multivariat teknik statistik yang digunakan untuk membangunkan kaedah pengesanan proses 

untuk tingkah laku yang tidak normal dan diagnosis gangguan yang menyebabkan prestasi 

proses miskin (Raich dan Cinar, 2004). Oleh itu, kajian ini adalah mengenai pembangunan 

analisis komponen utama (PCA) berasaskan kesalahan sistem pengesanan berdasarkan 

pelbagai mod keadaan operasi normal (NOC) model untuk proses yang berterusan 

berasaskan. Mengesan status out-of-kawalan dan mendiagnosis gangguan yang membawa 

kepada operasi proses abnormal awal adalah penting dalam mengurangkan variasi kualiti 

produk (Raich dan Cinar, 2004). Skop kajian yang dicadangkan adalah untuk menjalankan 

pemantauan tradisional multivariat proses berstatistik (MSPM) dengan menentukan 

perbezaan mod dalam varians proses yang berterusan berasaskan. Metodologi yang 

digunakan untuk mengenal pasti dan pengesanan kesalahan yang menjalani dua fasa fasa 

yang saya off-line pemantauan manakala fasa II adalah on-line pemantauan. Hasilnya, ia akan 

menganalisis dan berbanding PCA pelaksana tradisional mod Single NOC dan Pelbagai mod 

NOC. Terutama sekali, kajian ini secara kritikal berkenaan lanjut mengenai prestasi semasa 

operasi pengesanan kesalahan yang terdiri daripada kedua-dua aplikasi off-line dan on-line, 

maka ia akan menganalisis sehingga pengesanan kerosakan dan membandingkan antara dua 

mod data NOC. 
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CHAPTER    1 

 

 

INTRODUCTION 

 

 

1.1 Background of Proposed Study 

 

Statistical process control (SPC) is the basic performance of monitor and 

detection of abnormal process (Zhao et al., 2004). According to MacGregor and 

Kourti (1995) the main objective of SPC is to monitor the process performance over 

time in order to verify the status of the process whether it is remaining in a “state of 

statistical control” or not. However, most SPC methods are based on charting only a 

small number of variables and examining them one at time (MacGregor and Kourti, 

1995). As a result, multivariate statistical process control (MSPC) has been proposed 

especially to monitor multivariable process (Kumar and Madhusree, 2001; Kano et 

al., 2002; Zhao et at., 2004; MacGregor et al., 1995; Maestri et al. 1995). According 

to Kourti et al. 1995, multivariate method can treat and extract information 

simultaneously on the directionality of the process variation. Jackson and Mudholkar 

(1979) investigated principal component analysis (PCA) as a tool of MSPC and 

introduce a residual analysis. Typically, the Shewhart-type control chart is applied, 
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for depicting the progression of two different types of monitoring statistics, namely 

as T2 and Q statistic. The T
2
 statistics is a measure of the variation within PCA 

model while Q statistic is a measure of the amount of variation not capture by the 

PCA modes. When PC‟s is being scaling by the reciprocal of its variance, it will 

compute same role as T
2
 irrespective of the amount of variance it‟s explain in the Y 

matrix, which Y  is matrix of mean centered and scaled measurements.  T
2
 is not 

sufficient for first PC because it only detect whether the variation in the quality 

variables in the plane or not. Kresta et al., (1991) say new event can be detected by 

computing the squared prediction error (SPE) or also known as Q statistics. 

According to Jackson, (1991) and Nomikos and MacGregor (1995) Q statistics 

represents the square perpendicular distance of a new multivariate observation from 

the plane. Q statistics also represent unstructured fluctuation that cannot be 

accounted for by the model when the process is “in control”. Hence it will be more 

effective multivariate control chart when T
2 

chart on dominant orthogonal PC‟s plus 

a SPE chart. 

 

 

1.2 Problem Statement 

 

In order to ensure the successfulness of any operation, it is important to detect 

process upsets, equipment malfunctions or other special events as early as possible 

and then to diagnose and remove the factors that cause those events. However, Zhao 

et al., (2004) mentioned that a process which is having multiple operating modes 

tends trigger continuous warning signal even when the process itself is operating 

under another steady-state. In other word, the comprehensive mode is to sensitive  as 
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it will show the false alarm although the process are normal. Hence, MSPC is the 

only method, of which, the data is treated simultaneously into a single monitoring by 

way of reducing the dimensionality of the data observed without losing any of 

important information. 

 

 

1.3 Research Objectives 

 

The main purpose of this research is to study the impact of applying various modes 

of normal operating condition (NOC) in terms of the number of samples and variable 

variations on the process monitoring performance for continuous-based process. 

Therefore, the main objectives of this research are: 

i. To develop the conventional  MSPM method based on a single NOC  

ii. To implement the conventional MSPM method based on different modes 

of NOC.  

iii. To analyze the monitoring performance between system (i) and (ii). 

 

 

1.4 Research Question 

 

i. What is the main impact of reducing the number of samples as well as 

variations on the monitoring performance? 

ii. What are the criteria should be used in selecting the NOC model? 
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1.5 Scopes of Study 

 

Scope of propose study are on the development of PCA-based fault detection system 

based on various modes of NOC models for continuous-based process. There are 

three main scope will be investigated using MATLAB. 

i. The conventional MSPM method will be develop based on single NOC 

mode. The linear PCA algorithm is used for reducing the multivariate 

data dimensions. 

ii. The MSPM will be run traditionally by implementing different mode, 

which in this research is on two modes. According to Zhao et al. (2004),in 

spite of the success of applying PCA based MSPM tools to process data 

for detecting abnormal situations, when these tools are applied to a 

process with multiple operating modes, many missing and false alarms 

appear even when the process itself under  other steady-state nominal 

operating conditions. 

iii. As all data have been obtained, it will be analyze further with two 

multivariate control charts namely Hotelling‟s T2 and Squared Prediction 

Errors (SPE) statistic for the fault detection operation. 
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1.6 Contributions 

 

i. A new set of criteria is proposed for selecting the optimized NOC data for 

monitoring.  

ii. As a result of (i), the monitoring performance can be enhanced in terms of 

missing and false alarm.  

 

 

1.7 Organization of This Report 

 

The new monitoring algorithm has been proposed in this study by developing PCA-

based fault detection system based on various modes of NOC models for continuous-

based process. Hence, this report is divided into five main chapters. The first chapter 

discusses the background of the works which includes the problem statement, 

objectives, scopes and contributions. Chapter II which is literature review describes 

the fundamental of MSPC and justification of applying PCA in MSPM frameworks. 

Chapter III explains the research methodology of this study. Chapter IV presents 

some of the preliminary results. Conclusions and further research works are given in 

Chapter V. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1    Introduction 

 

According to Venkatasubramaniam, Rengaswamy, Kavuri and Yin (2003) 

MSPM tools are data driven technique that generally reduce the dimension of 

process data and extract key features and trends that are of interest to plant personnel. 

MSPM tools used to reduces dimensions of process data, like PCA and subsequent 

refinements, which have show great success. In chapter 2, we will discuss on the 

fundamental or theory of process monitoring on MSPM using PCA tools, process 

monitoring issues and extension and justification of applying PCA in MSPM 

frameworks. Lastly, a summary is given at the end of this chapter. 
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2.2    Fundamentals / Theory of Process Monitoring on MSPM Using PCA Tools 

 

Reformation and upgrading of conventional Statistical Process Control (SPC) 

method has produce MSPC. MSPC tools such as principal component analysis 

(PCA) were used to reduce the explaining dimension of the process data. Maestri et 

al. say this method has show great success and particularly suited to data set 

comprising correlated and collinear variables. Ge and Song (2008) define process 

data as different group based, for instance, on variation in the operating capacity, 

seasonal variations or changes in the feedstock characteristics and also on 

modifications in the operation strategies. From a geometric point of view, whenever 

such as a change occurs, the process data tend to group into a new cluster in a 

different location in the high dimensional space containing the process normal 

operating region. However when the data is considered belong to a unique normal 

operating region, the volume of this region becomes incorrectly large. Zhao et al, 

(2006) say this region will lead to an increasing number of missing and false alarm. 

According to Zhao et al, (2004) when PCA based MSPC tools applied to a process 

with multiple operating modes, many missing and false alarm can appear even when 

the process itself is operating under other steady-state nominal operating conditions. 

Particularly this technique is for reducing the number of dimensions used from the 

original data as well as projected them into a number of uncorrelated variables, by 

means of forming the appropriate linear combinations of the original variables. 

Hence, MSPC is the only method where the data is treated simultaneously by way of 

reducing the dimensionality of the data observed without losing any of important 

information. In addition, this method can reduce the burden of constructing a large 

amount of single-variable control charts and enable detecting events that are 
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impossible or difficult to detect from the single-variable control charts (Phatak, 

1999). 

According to Venkatasubramaniam et al, (2003) multivariate statistical 

techniques are powerful tool that capable to compressing data and reducing its 

dimensionality. Hence the essential information is retained and easy to analyze than 

the original huge data set. Moreover, it is able to handle noise and correlation to 

extract true information effectively. Initially, PCA method is proposed by Pearson 

(1901) later, it been develop by Hotelling (1947). This is a standard multivariate 

technique which has been including in many textbooks (Jackson, 1991; Anderson, 

1984) and research paper (Wold, Esbensen and Geladi, 1987; Wold, 1978). 

Venkatasubramaniam et al, (2003) say PCA is based on orthogonal decomposition of 

the covariance matrix of the process variables along directions that explain the 

maximum variation of the data. Yu and Zhang say this method involved a 

mathematical procedure that transforms a number of correlated variables into a 

smaller number of uncorrelated variables, which are called principal component. 

 

 

2.3 Extensions of Principal Component Analysis  

 

There are many extension of Principle Component Analysis (PCA) which is 

some of these is Kernel of PCA, Multiway-PCA, , Three Modes PCA and many 

more. 
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2.3.1 Kernel of PCA 

 

Some extension of PCA is nonlinear principle components (NLPCA) or also 

Kernel PCA (KPCA). According to Vidal, Ma, and Sastry, (2005) KPCA is method 

of identifying a nonlinear manifold from sample points. NLPCA is a standard 

solution based on embedding the first data into a higher space, then applying PCA. 

As a result it will give large dimension space, so the eigen value is being 

decomposition or also known as kernel matrix. 

 

 
 

Figure 2.1 Linear PCA and Kernel PCA 
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From Figure 2.1 above, it show the basic idea of kernel PCA. By using a 

nonlinear function k instead of the standard d dot product, we implicitly perform 

PCA in a possibly high dimensional space F which is nonlinearly related to input 

space. The dotted lines are contour lines of constant feature value. Suppose that the 

number of observations m exceeds the input dimensionality n. In linear PCA, most 

samples are nonzero eigen values (Welling, nd). While for Kernel PCA variable will 

be nonzero eigen values. Thus, this is not necessarily a dimensionality reduction 

(Scholkopf, Smola and Muller, 2001). Furthermore, it may not be possible to find an 

exact preimage in input space of a reconstructed pattern based on a few of the 

eigenvectors. One of the disadvantages of KPCA is that, in practice, it is difficult to 

determine which kernel function to use because the choice of the kernel naturally 

depends on the nonlinear structure of the manifold to be identified (Vidal, Ma, and 

Sastry, 2005). In fact, learning kernels is an active topic of research in machine 

learning. 

 

2.3.2 Multi-way-PCA 

 

A monitoring approach using a multivariate statistical modelling technique 

namely multi-way principle component analysis is a method that overcome the 

assumption that the system is at steady state and it‟s provide a real time monitoring 

approach for continuous processes (Chen and McAvoy,1998). Recently MacGregor 

and Nomikos (1992) and Nomikos and MacGregor (1994) employed multiway PCA 

(MPCA) to extend multivariate SPC methods to batch processes. This multi-way 

PCA model can detect fault in advance compare to other monitoring approaches as it 

will analyzing a historical reference distribution of the measurement trajectories from 
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past successful batches (Nomikos and MacGregor, 1995). Besides Nomikos et al. 

also say that the latent-vector space is reducing as the variation in the trajectories is 

characterized.  

 This make multi-way PCA is a useful procedure because each dynamic 

response signature is highly auto-correlated. Gallagher, Wise and Stewart (1996) say 

the correlation at different times within each signature, hence there is a high degree 

of correlation between signatures. Wold et al.(1987) has discuss that multi-way PCA 

will allows the multivariate data to be described in far fewer components than 

original variables. The multi-way PCA procedure can be described as follows. The 

data from a historical database of batch runs are organized in a three-way array X (I 

× J × K). The batch runs (I) are organized along the vertical axis, the measurement 

variables (J) along the horizontal axis, and their time evolution (K) occupies the third 

dimension. Usually, the minimum duration of the batch process defines the time 

length of a batch (K) and the data are synchronized based on a trigger variable whose 

change indicates the beginning of the batch. Nomikos et al. (1996) say multi-way 

PCA will give a great result as more information related with analysis is provided 

such as quantities from mass or energy balances, properties related to quality, and 

degradation rates. Hence, X is decomposed into scores vectors t and loadings vectors 

p using traditional principal components analysis (PCA) (Jackson and Mudholkar, 

1979, Wold, 1987).  

The p-loading matrices, which define the reduced space upon the actual data 

are projected and summarize the time variation of the measurement variables around 

the average trajectories. The elements are the weights applied to the observations of a 

particular batch to give the t-scores for this batch which each element of a t-vector 

corresponds to a single batch and represent the projection of this batch onto the 



 
 

12 
 

reduced space. Finally, the sum of squared residuals for a given batch represents the 

squared distance of this batch perpendicular to the reduced space. A small number 

(R) of principal components usually 3 to 5 can express most of the variability in the 

batch data since the measurement variable are highly cross-correlated with one 

another and highly auto-correlated over time (Nomikos et al.,1996). 

A process abnormality will result in poor quality product, hence multi-way 

PCA will help to detect and classify the cases. This is because multi-way PCA is an 

easily interpret tool which characterized batches based on their process operation. 

Then it is up to the engineers to remove the root cause and eliminate any future 

appearances of this fault. In some cases, MPCA might detect an abnormal behavior 

which may not have an immediate impact on quality, but may constitute an alarm for 

an incipient equipment failure such as an agitator or sensor deterioration. In these 

cases, one will have the opportunity to correct such process deteriorations which 

otherwise could lead to permanent malfunctions (Nomikos et al., 1996; Gallagher et 

al., 1996;Chen et al. 1998).  

 

2.3.3 Three-Mode PCA 

 

Tucker (1963) was first formulated the three-mode model principal 

component analysis or also known as Tucker3 model and it subsequently extended in 

articles by Tucker (1964, 1966) and Levin (1963). Kroonenberg and Leeuw say the 

articles review on the mathematical description and programming aspects of the 

model. In term of multidimensional scaling  references to the mode l   occur  

frequently  (Harshman,  1970;  Jennrich,  1972;  Carroll  & Chang,  1972; Takane ,  

Young & de Leeuw,  1977), hence the Tucker3 mode l  is the  general mode l  
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comprising various individual  differences models. Tucker (1972), Carroll & Wish 

(1974), and  Takane , Young & de Leeuw (1977) has discuss more on the 

relationships between multidimensional scaling and three-mode PCA. In article by 

Tucker (1966) remarks that the procedures "do not produce a least squares 

approximation to the data. Investigations of the mathematics of a least squares fit for 

three-mode factor analysis indicates a need for an involved series of successive 

approximations. "The procedures described in the sequel are designed to provide 

least squares estimates of the parameters in the three -mode model. The alternating 

least squares approach used can also be extended to accommodate other levels of 

measurement, as has been recently demonstrated by Sands & Young (I980) for a 

more restricted model. 

 Three-way data are data that can be classified in three ways. For an example 

is scores of a number of subjects on different variables measured on different 

occasions. Three-mode principal components analysis (Tucker, 1966) is a method for 

summarizing three-way data, and is a generalization of standard two-way principal 

components analysis (PCA). In two-way PCA the data are decomposed into two 

matrices, namely the component scores matrix and the component loading matrix. In 

three-mode PCA, the three-way data are decomposed into three component matrices, 

where the numbers of components to be used are not necessarily equal for each 

component matrix. When the numbers of components are not suggested by the nature 

of the data, a method is needed to indicate these numbers. In order to choose the 

numbers of components, Tucker (1966) proposed the application of a method 

ordinarily used in two-way PCA. However, it is not clear that this method is suitable 

for use in three-way problems. Therefore, a new method is proposed for indicating 
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the numbers of components in three-mode PCA, and this method is compared to two 

methods ordinarily used in two-way PCA by means of a simulation study.  

Timmerman and Kiers (2000) three-mode PCA model is usually fitted to the 

data by Tuckals3 which is an alternating least squares algorithm. Unfortunately, this 

kind of algorithm may end in a local optimum. At the cost of computational effort, 

the possibility of missing the global optimum can be reduced by using multiple 

„starts‟ for a single three-mode PCA model. Since the new method of determining 

the numbers of components requires a large number of three-mode PCAs, it is useful 

to examine the necessity of using multiple starts. In several applications of three-

mode principal component analysis to sets of correlation matrices, results turned out 

to be very similar to results obtained via perfect congruence analysis for weights 

(Louwerse and Smilde, 2000). Three-mode PCA is meant for the analysis of possibly 

preprocessed three-way data xijk that give the score of individual i on variable j at 

measurement occasion k, i=1,...,I, j=1,...,J, k=1,...,K. In 3MPCA, as in PCA, matrices 

A and B are found that summarize the individuals and the variables, respectively, but 

in addition, a matrix C is found that summarizes the occasions. Usually, in three-

mode PCA these matrices are all referred to by the general term “component 

matrices” and a distinction between component scores and loadings is not made 

(Kiers and Mechelen, 2001).   
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2.4 Extension of Multivariate Statistical Process Monitoring 

 

Besides PCA, there also have several more extension of MSPM such as 

Projection to Latent Structures (PLS), Independent Component Analysis (ICA), 

Subspace Identification and many more. 

 

2.4.1 Projection to Latent Structures (PLS) 

 

Projection to latent structures or partial least squares (PLS) is a multivariable 

statistical regression method based on projecting or viewing the information in a high 

dimensional data space down onto a low dimensional one defined by some latent 

variables (Zhao et al., 2006). Abdi (2010) say PLS is a recent technique that 

combines features and generalizes PCA and multiple linear regressions. Zhao et al. 

(2000) support Abdi statement as PLS is one of the most powerful linear regression 

techniques to deal with noisy and highly correlated data. Its goal is to predict a set of 

dependent variables from a set of independent variables or predictors. This prediction 

is achieved by extracting from the predictors a set of orthogonal factors called latent 

variables which have the best predictive power (Abdi, 2010). 

PLS already has been successfully applied in diverse fields including process 

monitoring and quality control and identification of process dynamics & control with 

a limited number of observations available (Lee et al, 2006). When dealing with 

nonlinear systems, this approach assumes that the underlying nonlinear relationship 

between predictor data and response data can be approximated by quadratic PLS 

(QPLS) or neural network based PLS (NNPLS) while retaining the outer mapping 

framework of linear PLS algorithm and matrices were auto-scaled before they were 
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processed by PLS algorithm (Wold, 2005). PLS model consists of outer relations 

which data are expressed in terms of their respective scores and inner relations that 

link the data to the data in the latent subspace. PLS finds the latent variables from the 

measured data by capturing the largest variance in the data and achieves the 

maximum correlation between the predictor variables and response variables. 

A tutorial description along with some examples on the PLS model was 

provided by Geladi and Kowalaski (1986). PLS reduces the dimensionality of the 

measured data, finds the latent variables from the measured data by capturing the 

largest variance in the data and achieves the maximum correlation between the 

predictor X variables and response Y variables. In PLS based process dynamics, the 

inner relationship between variance and scores. The process dynamics in latent 

subspace could not be well identified by linear or quadratic relationships. For 

multivariable processes, the Partial least squares (PLS) controllers offer the 

opportunity to be designed as a series of SISO controllers (Qin and McAvoy (1992, 

1993). Because of the diagonal structure of the dynamic part of the PLS model, 

input-output pairings are automatic. Series of SISO controllers designed on the basis 

of the dynamic models identified into latent subspaces and embedded in the PLS 

framework are used to control the process. Till date there is no reference on NNPLS 

controllers in the open literature though PLS & NNPLS based process identification, 

PLS controllers are well documented. The quality of the prediction obtained from a 

PLS regression model is evaluated with cross-validation techniques such as the 

bootstrap and jackknife. There are two main variants of PLS regression which is the 

most common one separates the roles of dependent and independent variables and 

the second one is used mostly to analyze brain imaging data that gives the same roles 

to dependent and independent variables. 
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2.4.2 Independent Component Analysis (ICA) 

 

Hyvarinen (n.d) identified independent component analysis (ICA) is a statistical and 

computational technique for revealing hidden factors that underlie sets of random 

variables, measurements, or signals. It is a generative models for the observed 

multivariate data, which is typically given as a large database of samples. In the 

model, the data variables are assumed to be linear mixtures of some unknown latent 

variables, and the mixing system is also unknown (Lee et al., 2004). The latent 

variables are assumed non Gaussian and mutually independent and they are called 

the independent components of the observed data (Lee et al., 2003). ICA seeks to 

extract these independent components as well as the mixing matrix of coefficients. 

 Although ICA can be looked upon a useful extension of PCA, its objective 

differs from that of PCA. Bakshi (1998) say PCA is a dimensionality reduction 

technique that reduces the data dimension by projecting the correlated variables onto 

a smaller set of new variables that are uncorrelated and retain most of the original 

variance. However, its objective is only to correlate variables, not to make them 

independent. PCA can only impose independence up to second order statistics 

information which is mean and variance (Kano et al., 2004). While constraining the 

direction vectors to be orthogonal, whereas ICA has no orthogonality constraint and 

involves higher-order statistics, for an example it not only correlates the data for 

second order statistics but also reduces higher order statistical dependencies (Yoo et 

al., 2004). Hence, ICs reveal more useful information from observed data than 

principal components (PCs). 

The data analyzed by ICA could originate from many different kinds of 

application fields, including digital images, document databases, economic indicators 
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and psychometric measurements (Kano et al., 2004). In many cases, the 

measurements are given as a set of parallel signals or time series; the term blind 

source separation is used to characterize this problem. Typical examples are mixtures 

of simultaneous speech signals that have been picked up by several microphones, 

brain waves recorded by multiple sensors, interfering radio signals arriving at a 

mobile phone, or parallel time series obtained from some industrial process (Lee at 

al., 2004). A number of applications of ICA have been reported in speech processing, 

biomedical signal processing, machine vibrationanalysis, nuclear magnetic resonance 

spectroscopy, infrared optical source separation, radio-communications, and so on 

(Girolami, 1999). Kano et al. (2004) say the key idea or motivation of using ICA is 

that the monitoring performance can be improved by focusing on essential variables 

that drive a process. 

 

2.4.3 Subspace Identification 

 

Subspace methods or also known as 4SID or Subspace State Space System 

Identifcation are used to find linear state space model from experimental data as a 

relatively new alternative to widely used regression methods such as ARX, ARMAX 

and many more (Trnka and Havlena, 2005). Subspace identification algorithms are 

widely known and appreciated for their quick and reliable estimation of linear 

models based on available input/output measurements (Goethals et al. 2004). Much 

of the reliability of subspace identification algorithms is attributed to the fact that a 

model is obtained, solely by using numerically reliable matrix and vector 

manipulations such as projections and singular value decompositions. This is 

different from the classical predictor error methods, which usually involve with the 
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minimization of a non-convex cost-function. There will be no guarantee that the 

obtained local minimum yields a good model. Treasure et al. (2003) say subspace 

identification can determine a set of state variables for describing process dynamics, 

produce a reduced set of variables to monitor process performance and offer 

contribution charts to diagnose anomalous behavior. This is demonstrated by an 

application study to a realistic simulation of a chemical process (Treasure et al., 

2003). This point of view on subspace methods will show suitable fields for their 

application, where we can take advantage of their good properties like numerical 

robustness implemented by QR and SVD factorization, implicit rank reduction, non-

iterative algorithm and few user parameters (Trenka et al., n.d.). 

Goethals et al. (2004) say although subspace identification algorithms are fast 

and robust, a major drawback is that their use is mostly restricted to the class of 

linear systems. Some attempts to extend the use of subspace identification algorithms 

to nonlinear systems have been made in the past for general nonlinear systems, or 

more restricted model structures such as bilinear models, Wiener models, and 

Hammerstein models. Overschee and Moor (1996) say that Subspace identification 

algorithms are based on concepts from system theory, (numerical) linear algebra and 

statistics. The subspace identification approach does not suffer from any of these 

inconveniences. The only parameter to be user-specified is the order of the model, 

which can be determined by inspection of certain singular values. 

Ljung et al. (1993) say when implemented correctly, subspace identification 

algorithms are fast, despite the fact that they are using QR and singular value 

decompositions. As a matter of fact, they are faster than the “classical” identification 

methods, such as Prediction Error Methods, because they are not. Hence there are 

also no convergence problems. Moreover, numerical robustness is guaranteed 
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precisely because of these well-understood algorithms from numerical linear algebra. 

As a consequence, the user will never be confronted with hard-to-deal-with-problems 

such as lack of convergence, slow convergence or numerical instability ( Chiuso et 

al., 2004). 

 

 

2.5 Summary 

 

In conclusion, this chapter review and discuss on fundamental of MSPM using PCA 

tools, and some of extension of PCA and MSPM. Thus it have show that PCA and 

MSPM are really important with many advantages. Beside that, the purpose of 

MSPM and PCA really give many benefit to the industrial process as many industrial 

are using multiple operating mode. Moreover Chapter three will illustrates the basic 

of methodology and techniques applied to achieve the objectives. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1   Introduction 

 

Generally MSPC procedure could be categorized into two phases. For phases 1, it 

involves the off-line monitoring operation, while for phases 2 it involves on-line 

monitoring operation. However, for this study before undergo this two phase, the 

normal operating condition sample data is structured based on the assumption that 

has been made.  The Figure 3.1 below show the procedures involves in MSPC to 

detect, identified, diagnosis and recover the fault detection. 
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Figure 3.1 MSPC procedure (Adapted from Yusri and Zhang, 2010) 

 

 

3.2 Phase I Procedures 

 

There are four step that been proposed in this phases. After normal operating 

condition samples data have been structure based on the assumption have be made. 

Then a set of normal operation condition (NOC) data, X n x m  which n is samples and 

m is variables, are identified off-line based on the historical process data archive. 
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According to Martin et al., (1996) NOC simply implies that the process is 

operated at the desired setting condition and produces satisfactory products that meet 

the qualitative as well as quantitative specified standard. Then, the data are 

standardized to zero mean and unit variance with respective to each of the variables 

because PCA results depend on data scales. 

 

 

 

 (3.2) 

 

In the second step, the development of PCA model for the NOC data requires the 

establishment of a set of variance-covariance matrix, C m x m. 

 

 

 

 (3.3) 

 

C is then transformed into a set of basic structures of eigen-based formula. 

 

 (3.4) 

 

Finally, the PCA model of can be simply developed by: 
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 (3.6) 

 

Jolliffe (2002) say the equation below presents a measure of data variations captured 

by the first a principal component. 

 

 

 (3.7) 

 

The third step is to calculate monitoring statistics for NOC data. This calculation 

basically involves calculation of the Hotelling‟s T
2
 and SPE monitoring statistics. 
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The final task in phase I which is 4
th

 step deals with developing the control limits for 

both of the statistics. 

 

 

 (3.11) 

 

 

 (3.12) 

 

 

3.3 Phase II Procedures 

 

For the second phases, all the first phases of fault detection procedure will be 

developed for on-line application. However for the last step which is step 8 there are 

two main operations which have to be conducted separately which is fault detection 

and fault identification. Fault detection is a result of an occurrence of a special event 

that is not in conformance to the common cause nature. This fault detection will be 

declared if monitoring statistics exceeding its respective control limit for a pre-

defined successive number of samples. While, for the fault identification is based on 

contribution plot. Typically, the circumstance of the on-line MSPC application 

always involves monitoring the real-time states of process condition. In other words, 

the dynamic behavior of the operation conditions should be analyzed in a real time 

manner to reflect the process status immediately. Even though, the procedures are 

still considering, more or less, the major steps taken during the off-line application 

development previously.   
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3.4 Summary 

 

In conclusion, there are four main steps of MSPC system which is fault 

detection, fault identification, fault diagnosis and process recovery. This method will 

designated the departure of observed samples from an acceptable range using a set of 

parameters. For the new monitoring method that have been propose which is multiple 

operating mode, the NOC sample of 500 sample which is mode 1 are divide into two 

part where mode 2 consist of first 250 sampe of NOC while mode 3 is consist of the 

last 250 sample of NOC Moreover, it will identify the observed process variables 

that most relevant to the fault by using the contribution plot technique. This will 

specifically determine the type of fault which has been significantly contributed to 

the signal.  
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CHAPTER 4 

 

 

RESULT AND DISCUSSION 

 

 

4.1    Introduction 

 

Initially some work has been done, that specially emphasize on the 

integration of process monitoring algorithms based on the conventional PCA. Hence, 

several works are represented in this chapter. Firstly, a description on the case study 

is briefly explained for the particular analysis. Next, is discussion on the result of 

NOC data and the tested fault data. The tested data are discussed for abrupt and 

incipient. Finally, is the summary of the chapter. 

 

4.2    Case Study of an industrial chemical process in Tennessce Eastmant 

 

This case study desribe a model of an industrial chemical process in 

Tennessce Eastmant as shown in figure 4.1 below (Downs and Vogel, 1993). This 

process is involving two simultaneously gas-liquid exothermic reactions which also 

produce two additional byproduct reactions. The reactions are: 
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A(g) + C(g) + D(g)                   G(liq)       Product 1 

A(g) + C(g) + E(g)                    H(liq)      Product 2 

              A(g) + E(g)                   F(liq)     Byproduct 

      3D(g)           2F(liq)   Byproduct  

 

The process has five major unit operations which is the reactor, the product 

condenser, a vapor-liquid separation, arecycle compressor and a product stripper. 

The gaseeous reactants are fed to the reactor where it reacts to form liquid products. 

The gas phase reactions are catalyzed by a nonvolatile catalyst dissolved in the liquid 

phase. The reactor has an internal cooling bundle for removing the heat of reaction. 

The products leave the reactor as vapors along with the unreacted feeds while the 

catalyst remains in the reactor. The reactor product stream passes through a cooler 

for condensing the products and from there to a vapor-liquid separator. 

Noncondensed components recycle back through a centrifugal compressor to the 

reactor feed. Condensed components move to a product stripping column to remove 

remaining reactants by stripping with feed stream number 4. Products G and H exit 

the stripper base and are separated in a downstream refining section which is not 

included in this problem. The inert and byproduct are primarily purged from the 

system as a vapor from the vapor-liquid separator.  
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Figure 4.1 Tennessce Eastmant industrial chemical process 
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The process has 41 measurements and 12 manipulated variables as listed in 

Table 4.1 (a)-(c) below. 

 

Table 4.1 (a) Process manipulated variables 

 

Variable name 
Variable 

number 
Units 

D feed flow (stream 2) XMV (1) kg hˉ¹ 

E feed flow (stream 3) XMV (2) kg hˉ¹ 

A feed flow (stream 1) XMV (3) kscmh 

A and C feed flow (stream 4) XMV (4) kscmh 

Compressor recycle valve XMV (5) % 

Purge valve (stream 9) XMV (6) % 

Seperator pot liquid flow (stream 10) XMV (7) m³ hˉ¹ 

Stripper liquid product flow (stream 11) XMV (8) m³ hˉ¹ 

Stripper steam valve XMV (9) % 

Reactor cooling water flow XMV (10) m³ hˉ¹ 

Condenser cooling water flow XMV (11) m³ hˉ¹ 

Agitator speed XMV (12) rpm 

 

Table 4.1 (b): Continuous process measurements 

 

Variable name 
Variable 

number 
Units 

A feed (stream 1) XMEAS (1) kscmh 

D feed (stream 2) XMEAS (2) kg hˉ¹ 

E feed (stream 3) XMEAS (3) kg hˉ¹ 

A and C feed (stream 4) XMEAS (4) kscmh 

Recycle flow(stream 8) XMEAS (5) kscmh 

Reactor feed rate (stream 6) XMEAS (6) kscmh 

Reactor pressure XMEAS (7) kPa gauge 

Reactor level XMEAS (8) % 

Reactor temperature XMEAS (9) ˚C 

Purge rate (stream 9) XMEAS (10) Kscmh 

Product seperator temperature XMEAS (11) ˚C 

Product seperator level XMEAS (12) % 

Product seperator pressure XMEAS (13) kPa gauge 

Product seperator underflow (stream 10) XMEAS (14) m³ hˉ¹ 

Stripper level XMEAS (15) % 

Stripper pressure XMEAS (16) kPa gauge 

Stripper underflow (stream 11) XMEAS (17) m³ hˉ¹ 
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Stripper temperature XMEAS (18) ˚C 

Stripper steam flow XMEAS (19) kg hˉ¹ 

Compressor work XMEAS (20) kW 

Reactor cooling water outlet temperature XMEAS (21) ˚C 

Seperator cooling water outlet temperature XMEAS (22) ˚C 

 

Table 4.1 (c): Sample process measurement 

 

Component Variable number Units 

Reactor feed analysis (stream 6) 

A XMEAS (23) mol% 

B XMEAS (24) mol% 

C XMEAS (25) mol% 

D XMEAS (26) mol% 

E XMEAS (27) mol% 

F XMEAS (28) mol% 

Purge gas analysis (stream 9) 

A XMEAS (29) mol% 

B XMEAS (30) mol% 

C XMEAS (31) mol% 

D XMEAS (32) mol% 

E XMEAS (33) mol% 

F XMEAS (34) mol% 

G XMEAS (35) mol% 

H XMEAS (36) mol% 

Product analysis (stream 11) 

D XMEAS (37) mol% 

E XMEAS (38) mol% 

F XMEAS (39) mol% 

G XMEAS (40) mol% 

H XMEAS (41) mol% 

 

 

4.3    Normal Operating Condition Data Collection 

 

This simulation has identified and collects a set of normal operating 

condition. This set of NOC data containing 500 measurements of 53 variables. By 

using PCA algorithm, the standardized NOC data is analysed. This analysis is 

performing to identify the required number of PCs as to reduce the dimension of the 

multivariate data.  
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Figure 4.2: Accumulated data variance explained by different PCs 

 

 From figure 4.2 above, show the accumulated data variance explained by 

different PCs. Its shows that at leasts 31 PCs are needed to represent over 90% of the 

total NOC data variance and 18 PCs are required to explain over 70% of the total 

variance. Therefore, for this particular case study, 18 and 31 PCs are retained in the 

PCA model for the calculation of NOC scores.  The Hoteling‟s T
2 

statistic and SPE 

statistic was then to be calculated and plotted together with the 95% and 99% 

confidence limits. 
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(a) T
2
 statistic for NOC data       (b) SPE statistic for NOC data   

 

Figure 4.3 Mode I at 18PCs 

 

 

 

(a) T
2
 statistic for NOC data                     (b) SPE statistic for NOC data   

 

Figure 4.4 Mode I at 31PCs 
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 Figure 4.3 illustrate graph of NOC data of mode I which consist 500 sampel, 

for T
2
 statistic and SPE statistic for at 18 PCs at 70% total NOC variance. It can be 

seen that the T
2
 and SPE statistic for the NOC data is below the confident limits. The 

data is still normal as the fault is considered when 3 samples in series are out from 

the boundaries. Thus, T
2
 statistic and SPE statistics illustrate normal operating 

condition. 

While, figure 4.4 show graph of mode I of 500 sampel of NOC data for T
2
 

statistic and SPE statistic for 31 PCs at 90% total NOC variance. For the T
2
 statistic 

for the NOC data show it below the confident limits however for SPE there are one 

sample outside the limit boundaries. The data is still normal as the fault is considered 

when 3 samples in series are out from the boundaries. Thus, T
2
 statistic and SPE 

statistics illustrate normal operating condition. 

 This NOC data has been test by reduce the sample using 250 measurements 

with 53 variables. By using PCA algorithm, the standardized NOC data test is 

analysed. This analysis objective is to identify the required number of PCs as to 

reduce the dimension of the multivariate data. Same with NOC data, the Hoteling‟s 

T
2 

statistic and SPE statistic was calculated and plotted together with the 95% and 

99% confidence limits. 

Figure 4.5 and figure 4.6 below show statistic for NOC data which is T
2
 

statistics and SPE statistics for 18 PCs and 31 PCs respectively. Besides that, both 

figure also representing T
2
 and SPE statistics of mode II and mode III. Moreover 

mode 1 is data of  the first 250 sample of NOC from mode I, while mode II is consist 

the last 250 of NOC data from mode I.This figure show that all the statistics process 

are normal as all the statistics NOC data test is below the confident limit. Thus, T
2
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statistic and SPE statistics illustrate normal operating condition for mode II and 

mode III at 18 PCs and 31 PCs. 

 

 

        (a) T
2
 statistic for NOC data         (b) SPE statistic for NOC data  

 

Mode II First 250 Sample 

 

 

 (a) T
2
 statistic for NOC data              (b) SPE statistic for NOC data  

 

Mode III Second 250 Sample 

 

 

Figure 4.5 18 PCs at 70% total NOC variance 
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 (a) T
2
 statistic for NOC data         (b) SPE statistic for NOC data  

 

Mode II First 250 Sample 

 

 

   

          (a) T
2
 statistic for NOC data               (b) SPE statistic for NOC data  

 

Mode III Second 250 sample 

 

 

Figure 4.6 31 PCs at 90% total NOC variance 
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4.4    Fault data collection 

 

The system also subjects to be affected from several malfunction conditions and 

detecting this kind of malfunctions should be easy for any multivariate monitoring 

system as the deviations are usually very obvious. By concentrated to fault 1,2,8 and 

9, the study are divided into three modes which first mode for 250 sample, while for 

next second and third mode it analyzing on the first and last of 500 sample from 

mode 1 respectively. Then the contributed variable to the fault and the impact will be 

discussed by comparing mode II and mode III with mode I. 

  

 

4.4.1 Fault Detection and The Comparison Between The Mode 

 

Table 4.2 and Table 4.3 below show the result of different mode at 18 PC‟s 

and 31 PC‟s respectively. Moreover, the both table also show that the mode 2 and 

mode 3 have fast fault detection compare to the mode 1. Besides that, the low 

number of PC use the total variance of normal operating condition cover are also low 

as well, but however the fault detection are faster. Table 4.4 in appendix A is to show 

variance of the normal operating condition (NOC) of 500 sample and 53 fault at each 

mode of different PC.Beside to study the number of variance of each variable at 

every mode this figure also approve that the data that have been use is same.  
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Table 4.2: Result of fault detection for 18 PC‟s of 70% total variance 

 

FAULT 
Mode 1 

Final 

 Mode 2 

Final 

Mode 3 

Final T
2
 SPE T

2
 SPE T

2
 SPE 

1 55 13 13 7 9 7 7 9 9 

2 11 12 11 17 11 11 17 12 12 

8 81 25 25 10 6 6 25 13 13 

9 45 9 9 12 6 6 12 7 7 

 

Table 4.3: Result of fault detection for 31 PC‟s of 90% total variance 

 

FAULT Mode 1 

Final 

 Mode 2 

Final 

Mode 3 

Final   T
2
 SPE T

2
 SPE T

2
 SPE 

1 65 51 51 15 9 9 50 9 9 

2 33 11 11 11 12 11 33 11 11 

8 43 14 14 16 6 6 16 6 6 

9 42 11 11 42 15 15 45 8 8 

 

This both tabel approve that, mode 2 and mode 3 which have low number of 

sampel use the higher the sensitivenes due to decreasing the variance. Besides that 

the mode 1 which use 500 sampel of NOC have high variances, thus the sensitivenes 

of fault detection are decreasing as the process in steady state , it will detect fault. 

Thus mode 2 and mode 3 analyse all the sampel better than mode 1 because the 

variance is low. 
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4.4.2 Mode I 

 

Figure 4.7 below show result of T
2
 statistics and SPE statistics for fault 8 and 

9 for the 500 sample of normal operating condition (NOC). This figure have show 

that for all fault which is fault 8 and 9 the result of both T
2
 statistic and SPE statistic 

for 18 pc of 70% total variance is outside of the boundaries limit which show 

abnormal process thus occurs in suddenly. This figure show, T
2
 statistics for fault 8 

and 9 the fault detection are detect at sampel 81 and 45 respectively. While for SPE 

statistics the fault are detect at sampel 25 and 9 for fault 8 and 9 respectively. Thus 

the final fault detection is 25 and 9 for fault fault 8 and 9 respectively. 

 

 
(a) T

2
 statistics for fault 8            (b) SPE statistics for fault 8 

 

  
(c) T

2
 statistics for fault 9    (d) SPE statistics for fault 9 
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While for Figure 4.8 below the result of T
2
 statistics and SPE statistics for 

fault 8 and 9 for the 500 sample of normal operating condition (NOC) at 31 pc of 

90% total variance are show. This figure show that  all fault is outside of the 

boundaries limit which show abnormal process thus occurs in suddenly. Beside that 

for fault 8 the fault detection are detect at sampel 43 and 14 for T
2
 statistics and SPE 

statistics respectively. While, for the fault 9 the T
2
 statistics and SPE statistics are 

detect at sampel 42 and 11 respectively. Hence, the final fault detection for fault 8 

and 9 are at sampel 14 and 11 respectively. 

 

           
(a) T

2
 statistic for fault 8             (b) SPE statistic for fault 8 

  

   
(c) T

2
 statistic for fault 9             (d) SPE statistic for fault 9 

 

 

Figure 4.8 Mode I: T
2
 statistics and SPE statistics for fault 8 and 9 for 31 pc 

of 90%  total  variance 
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4.4.3 Mode II 

 

This mode II are base on first 250 sample of NOC from the first mode. This 

figure 4.9 show the result of T
2
 statistics and SPE statistics for fault 8 and 9 for 18 pc 

of 70% total variance have show that for all the fault is outside of the boundaries 

limit which this show abnormal process thus occurs in sudden. Beside that for fault 8 

the fault detection are detect at sampel 10 and 6 for T
2
 statistics and SPE statistics 

respectively. While, for the fault 9 the T
2
 statistics and SPE statistics are detect at 

sampel 12 and 6 respectively. Thus the final fault detection is 6 and 6 for fault fault 8 

and 9 respectively 

 

 
(a) T

2
 statistics for fault 8               (b) SPE statistics for fault 8 

 

 
(c) T

2
 statistics for fault 9                (d) SPE statistics for fault 9 

 

 

Figure 4.9 Mode II:T
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This figure 4.10 show the result of T
2
 statistics and SPE statistics for fault 8 

and 9 for 31 pc of 90% total variance have show that for all the fault is outside of the 

boundaries limit which this show abnormal process thus occurs in sudden. This 

figure show, T
2
 statistics for fault 8 and 9 the fault detection are detect at sampel 16 

and 42 respectively. While for SPE statistics the fault are detect at sampel 6 and 15 

for fault 8 and 9 respectively. Hence, the final fault detection for fault 8 and 9 are at 

sampel 6 and 15 respectively. 

 

 
(a) T

2
 statistics for fault 8          (b) SPE statistics for fault 8 

 

 

 
(c) T

2
 statistics for fault 9         (d) SPE statistics for fault 9 

 

 

Figure 4.10 Mode II: T
2
 statistics and SPE statistics for fault 8 and 9 for 31 pc 

of 90% total variance 
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4.4.4 Mode III 

 

Figure 4.11 below show result of T
2
 statistics and SPE statistics for fault 8 

and 9 for the 500 sample of normal operating condition (NOC) for 18 pc of 70% total 

variance. This figure have show that for all fault which is fault 8 and 9 the result of 

both T
2
 statistic and SPE statistic is outside of the boundaries limit which show 

abnormal process thus occurs in suddenly. Beside that for fault 8 the fault detection 

are detect at sampel 25 and 13 for T
2
 statistics and SPE statistics respectively. While, 

for the fault 9 the T
2
 statistics and SPE statistics are detect at sampel 12 and 7 

respectively. Hence, the final fault detection for fault 8 and 9 are at sampel 13 and 7 

respectively. 

 

 
(a) T

2
 statistics for fault 8             (b) SPE statistics for fault 8 

 

 
(c) T

2
 statistics for fault 9             (d) SPE statistics for fault 9 

 

 

Figure 4.11 Mode III: T
2
statistics and SPE statistics for fault 8 and 9 for 18 pc 

Of 70% total variance 
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Figure 4.12 below show result of T
2
 statistics and SPE statistics for fault 8 

and 9 for the 500 sample of normal operating condition (NOC) for 31 pc of 90% total 

variance. This figure have show that for all fault which is fault 8 and 9 the result of 

both T
2
 statistic and SPE statistic is outside of the boundaries limit which show 

abnormal process thus occurs in suddenly. This figure show, T
2
 statistics for fault 8 

and 9 the fault detection are detect at sampel 16 and 45 respectively. While for SPE 

statistics the fault are detect at sampel 6 and 8 for fault 8 and 9 respectively. Thus the 

final fault detection is 6 and 8 for fault fault 8 and 9 respectively 

 

 
 

(a) T
2
 statistics for fault 8           (b) SPE statistics for fault 8 

 

 

(c) T
2
 statistics for fault 9             (d) SPE statistics for fault 9 

 

 

Figure 4.12 Mode III T
2
statistics and SPE statistics for fault 8 and 9 for 31 pc 

of  90% total variance 
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4.5    Summary 

 

A simulation of an industrial chemical process in Tennessce Eastmant is 

applying the conventional PCA to monitor the process. The main conventional PCA 

results have been discussed initially, which includes both of the NOC and fault data. 

Then the fault detection are discussing and each mode are then comparing the NOC 

variance of each mode and the percentages error. Hence, it show that the main 

conventional PCA use in mode I has slow fault detection compared to mode II and 

mode III which applying the different operating modes. For an example, in table 4.2 

at fault 9, for the mode I the fault detection are detect at sampel 9, while for the mode 

II and mode III the fault are detect at sampel 6 and 7 respectively. Thus it approve 

that, the mode II and mode III that been apply different operating mode are having 

fast fault detection compare to mode I. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

5.1 Conclusions 

 

In this research, MSPM using PCA tools is introduced. Some of the extension of 

MSPM and PCA is be review and the basic methodology to approach the proposed 

has been illustrated. The core technique to formulate the multivariate dimensional 

data reduction has been developing in order to approach the objectives using 

conventional PCA technique. The main goal in carrying out this study is to 

implement the conventional MSPM method based on different modes of NOC and 

analyze it with the conventional PCA technique on single NOC data. Based on the 

review on literature review there are many more method and technique to formulated 

multivariate data reduction. Every method has its own advantages and disadvantages. 

This research has proposed to run the traditional PCA by analyzing it with single 

NOC data and different modes of NOC data. Based on the result get it has shown the 

technique has affected the fault detection solutions. However, it does not mean that it 
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is an excellent method for non-linear process monitoring. Therefore, more analyses 

are required. 

 

 

5.2 Recommendation  

 

 The result and analysis for this research only valid to this indusrial process 

only whic is Tennessce Eastmant industrial chemical process. Hence, it is 

recommended for future research by using other data from the others chemical 

processing system. Beside that, more fault should be tested to come up with strongly 

conclusion that approve the reseach objectives. 
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APPENDIX 

 

Appendix A 

 

Table 4.4: Normal Operating Condition Variance of each mode 

 

Fault 

NPC 18 NPC 31 

NOC MODE 1 MODE 2 NOC MODE 1 MODE 2 

1 0.000815 0.000757 0.000876 0.000815 0.000757 0.000876 

2 1026.023 896.1234 1158.955 1026.023 896.1234 1158.955 

3 1006.447 1052.389 948.8497 1006.447 1052.389 948.8497 

4 0.005854 0.005577 0.006152 0.005854 0.005577 0.006152 

5 0.043541 0.042708 0.044546 0.043541 0.042708 0.044546 

6 0.048638 0.047854 0.049955 0.04883 0.047854 0.049955 

7 27.70322 19.41776 35.99501 27.70322 19.41776 35.99501 

8 0.279002 0.288889 0.269493 0.279002 0.288889 0.269493 

9 0.000348 0.000275 0.00042 0.000348 0.000275 0.00042 

10 0.000137 0.00014 0.000134 0.000137 0.00014 0.000134 

11 0.037726 0.031513 0.043972 0.037726 0.031513 0.043972 

12 1.069353 1.101457 1.033217 1.069353 1.101457 1.033217 

13 30.61652 21.758 39.50775 30.61652 21.758 39.50775 

14 1.132037 1.071723 1.191732 1.132037 1.071723 1.191732 

15 1.035486 0.977003 1.083558 1.035486 0.977003 1.083558 

16 21.0923 15.95738 26.1791 21.0923 15.95738 26.1791 

17 0.392885 0.376792 0.40568 0.392885 0.376792 0.40568 

18 0.117225 0.136004 0.097734 0.117225 0.136004 0.097734 

19 66.37931 80.84395 50.48489 66.37931 80.84395 50.48489 

20 1.496126 1.322528 1.673472 1.496126 1.322528 1.673472 

21 0.014232 0.01499 0.013506 0.014232 0.01499 0.013506 

22 0.06176 0.062794 0.060966 0.06176 0.062794 0.060966 

23 0.078979 0.074877 0.083261 0.078979 0.074877 0.083261 

24 0.009808 0.009154 0.010113 0.009808 0.009154 0.010113 

25 0.074212 0.079251 0.0689 0.074212 0.079251 0.0689 

26 0.010496 0.009836 0.01119 0.010496 0.009836 0.01119 

27 0.058737 0.061734 0.055823 0.058737 0.061734 0.055823 

28 0.000636 0.000579 0.000693 0.000636 0.000579 0.000693 

29 0.098922 0.082165 0.116076 0.098922 0.082165 0.116076 

30 0.010375 0.010339 0.01044 0.010375 0.010339 0.01044 

31 0.09865 0.084483 0.11132 0.09865 0.084483 0.11132 

32 0.010819 0.01109 0.010416 0.010819 0.01109 0.010416 
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33 0.091703 0.086452 0.097124 0.091703 0.086452 0.097124 

34 0.000689 0.000603 0.000778 0.000689 0.000603 0.000778 

35 0.003347 0.002579 0.004104 0.003347 0.002579 0.004104 

36 0.00275 0.002804 0.002689 0.00275 0.002804 0.002689 

37 8.16E-05 7.41E-05 7.96E-05 8.16E-05 7.41E-05 7.96E-05 

38 0.000207 0.000199 0.000214 0.000207 0.000199 0.000214 

39 9.12E-05 9.84E-05 8.39E-05 9.12E-05 9.84E-05 8.39E-05 

40 0.286971 0.273277 0.300976 0.286971 0.273277 0.300976 

41 0.23923 0.17754 0.300645 0.23923 0.17754 0.300645 

42 0.31155 0.310008 0.312823 0.31155 0.310008 0.312823 

43 0.18297 0.184915 0.179847 0.18297 0.184915 0.179847 

44 7.981287 7.39374 8.600689 7.981287 7.39374 8.600689 

45 1.404937 1.523811 1.271541 1.404937 1.523811 1.271541 

46 0.171138 0.14964 0.193299 0.171138 0.14964 0.193299 

47 2.067926 2.11576 2.028227 2.067926 2.11576 2.028227 

48 9.260773 9.538717 8.947894 9.260773 9.538717 8.947894 

49 5.546086 5.232666 5.803699 5.546086 5.232666 5.803699 

50 4.507303 5.434861 3.477856 4.507303 5.434861 3.477856 

51 0.276211 0.242945 0.310578 0.276211 0.242945 0.310578 

52 2.214309 2.11694 2.289996 2.214309 2.11694 2.289996 
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Appendix B 

 

 

   (a) T
2
 statistic for fault 1                  (b) SPE statistic for fault 1  

 

 

 (c) T
2
 statistics for fault 2               (d) SPE statistics for fault 2  

 

 

 

Mode I: T
2 

statistics and SPE statistics for fault 1and 2 for 18 pc of 

   70%  total variance 
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Appendix C 

 

           

   (a) T
2
 statistic for fault 1                     (b) SPE statistic for fault 1  

 

            

(c) T
2
 statistic for fault 2               (d) SPE statistic for fault 2 

 

 

 

Mode I: T
2
 statistics and SPE statistics for fault 1 and 2 for 31 pc 

     of 90%  total  variance 
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Appendix D 

 

 

  (a) T
2
 statistics for fault 1           (b) SPE statistics for fault 1 

 

 

  (c) T
2
 statistics for fault 2            (d) SPE statistics for fault 2 

 

 

 

Mode II:T
2
 statistics and SPE statistics for fault 1 and 2 for 18 pc 

     of 70% total variance 
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Appendix E 

 

 

 

(a) T
2
 statistics for fault 1            (b) SPE statistics for fault 1 

 

 

(c) T
2
 statistics for fault 2            (d) SPE statistics for fault 2 

 

 

 

Mode II: T
2
 statistics and SPE statistics for fault 1 and 2 for 31 pc 

     of 90% total variance 
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Appendix F 

 

 

(a) T
2
 statistics for fault 1             (b) SPE statistics for fault 1 

 

 

(c) T
2
 statistics for fault 2                    d) SPE statistics for fault 2 

 

 

 

Mode III: T
2
 statistics and SPE statistics for fault 1 and 2 for 31 pc 

     of 90% total variance 
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Appendix G 

 

 
(a) T

2
 statistics for fault 1              (b) SPE statistics for fault 1 

 

 

 
(c) T

2
 statistics for fault 2          (d) SPE statistics for fault 2 

 

 

 

Mode III: T
2
statistics and SPE statistics for fault 1 and 2 for 31 pc 

    of  90% total variance 
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