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Abstract  
 
This paper discusses the development of optimization strategies for a fed-batch penicillin 
fermentation process. To facilitate the study, a mathematical model of the system was 
developed. The model was simulated in MATLAB environment and good result was obtained. 
To provide on-line estimates of the difficult to measure penicillin concentration, Partial Least 
Squares model was employed. These estimates were then used in the control loop and 
successful control of the product concentration was established. This provided the opportunity 
for optimizing the fermentation operation, in particular to further increase the achievable 
product concentration while satisfying all process constraints. In order to carry out this 
procedure, two optimization algorithms were selected. First, dynamic optimization using direct 
shooting method and second is implementation single step ahead Dynamic Matrix Control 
(DMC). Comparison of these two different approaches was discussed and it was found this 
single step ahead DMC algorithm shown a best result with an optimization procedure. 
 
Keywords:  Penicillin G; Fermentation; Partial Least Squares; Direct shooting method; Single step ahead DMC 
 
 
1. Introduction  
 
Bioprocess control and optimization strategies vary depending on whether the bioprocesses are 
continuous or fed-batch.  In the case of continuous bioreactors, the optimization is restricted to 
find optimal steady state around which the bioprocess is desired to be maintained. The 
controller is designed to regulate the bioprocess around the optimal point. However for 
fed-batch bioreactors, a dynamic optimization problem has to be solved first to determine the 
optimal feeding policies (Kapadi and Gudi, 2004).  Once an off-line optimal control policy has 
been determined, a controller can be designed to track the optimal policy with capability to deal 
with disturbance for the closed loop control problem. In this work, the objective in 
optimization of a fed-batch bioreactor is to maximize penicillin production and optimization 
has been traditionally sought with respect to substrate feed rate. 

 
Optimization strategies of bioprocess model are consisting of dynamic and steady state 
optimization.  In dynamic optimization, the optimal feeding policy of the substrates that 
maximizes the amount of product is to be determined based on the dynamics of the system.  
This is different than the case of steady state optimization where the optimum solution for the 
process given objective function and constraint are achieved when the plant are determined to 
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be at steady state.  For examples, Real Time Optimizer (RTO) is performed once plant has 
achieved steady state condition to keep the plant operating at its optimum.  However, in 
fed-batch operation, there is no steady state for product concentrations and controls involve 
set-point tracking in addition to common task of rejecting disturbances.  Dynamic optimization 
is therefore needed to bring about optimal operations. 

 
Works on dynamic optimization of fed-batch bioprocess have been reviewed in a number of 
articles (Impe and Bastin, 1995; Rodrigues and Filho, 1999; Srinivasan et al., 2002).  One of 
the earliest approaches to optimization was presented by Ohno and Nakanishi (1976) where the 
solution was based on the application of Green’s theorem to reduce the objective function to a 
line integral.  Modak and Lim (1987) have studied the use of Pontryagin’s maximum principle 
for dynamic optimization.  The use of evolutionary techniques based on genetic algorithms for 
optimization of fed-batch bioreactors have also been reported by Wang and Cheng (1999). 
 
Balsa-Canto et al. (2000) used a control vector parameterization technique and transform the 
original Optimal Control Problem (OCP) into a Nonlinear Programming (NLP) problem.  The 
objective function was calculated using second order sensitivities as the solution of the NLP 
problem.  As an alternative to NLP problem, Rodrigues and Filho (1999) suggested an 
optimization algorithm based on modified simplex method.  Using this procedure, operating 
constraints were computed in relation to productivity through the concept of the penalty 
functions. 
 
Disturbances that occur due to the fluctuations during the fed-batch process can cause the 
open-loop feed policy to be suboptimal.  Thus it is necessary to incorporate feedback either in 
the form of estimating the key model parameters or resetting the initial conditions of the model 
and regenerating the optimal policy using on-line optimization once a new measurement is 
available.  Unavailability of measurements due to lack of sensors have led to the use of various 
observers for the estimation of both the unmeasured states and the uncertain parameters.  This 
has been the subject of various studies by Bastin and Dochain (1986) and Tatiraju et al. (1999). 
Impe and Bastin (1995) have coupled the estimation with optimal control and proposed 
adaptive control method for fed-batch bioreactors for tracking the optimal profiles.  Rodrigues 
and Filho (1999) presented an approach for product optimization of a fed-batch penicillin 
production process with a dynamic matrix control (DMC) predictive controller.  Thus there 
have been several approaches for the optimization of fed-batch processes and these are detailed 
in the next section. 
 
This work intends to provide some answers to the above mentioned concerns. In this work, we 
concentrate on product optimization of a Penicillin G fermentation process. The unstructured 
model of Ahmad et al. (2003) was utilized as the basis of our modeling efforts. An inferential 
model constructed using partial least squares (PLS) regressions is employed for estimating the 
product concentration in to facilitate process control. Then optimal control strategies for 
fed-batch penicillin fermentation system are examined using two different optimization 
approaches. Firstly, dynamic optimization using direct shooting method and secondly is the 
implementation of single step ahead Dynamic Matrix Control (DMC).  

 
 

2.  Simulation Model of Penicillin Process  
 
The production phase of the penicillin is carried out in a fed-batch operating mode with 
substrate supplementary addition. The bioreactor is perfectly stirred with aeration and agitation 
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system. The mathematical model is deterministic and unstructured developed upon Contois 
growth type kinetic. Yield coefficients among growth, substrate consumption, oxygen uptake 
and production specific rates are considered in this model. This mathematical model also 
includes additional input variables like feed flow rate of substrate, pH, temperature, aeration 
rate, agitation power as well as output variables such as CO2 evolution and heat generation 
terms. 
 
In this model, dynamic simulation runs were performed for a batch culture which is then 
followed by a fed-batch operation in order to promote the biosynthesis of the product. To 
accomplish this task, a threshold value of 0.3 g/l was assigned to the substrate concentration. 
The system would switch itself to the fed-batch mode of operation once it reached this 
threshold value. At this point, glucose began to be fed continuously into the system. However, 
high concentration of substrate of substrate may inhibit the cell growth. Hence, controlled 
supply of carbon source (glucose) was practiced in this study.  As the base case for this study, a 
feedback control strategy with Proportional-Integral-Derivative (PID) controller was adopted 
for all control loops in the fed-batch bioreactor.  Since temperature and pH play important roles 
in the fermentation process, both are fixed at some optimum values.  pH was kept constant at 
5.1 and temperature of the culture medium was kept constant at 298 K. 
 
The penicillin fermentation model is solved simultaneously using Matlab software. The 
ordinary differential equations were solved using Fourth-Order Runge-Kutta algorithm with 
adaptive step size mechanism. Sampling time was fixed at 0.02 hour. The mathematical 
modeling and kinetic parameters as well as the initial values can be found in Ahmad et al. 
(2003). The dynamic simulation result for penicillin fermentation process is show in Figure 1.  
It shows that the production of penicillin started only after a long lag-phase.  This is typical 
since cells use the lag phase to adapt to their new environment (Bailey and Ollis, 1986).  
Following the lag period, the growth started in the acceleration phase.  As the substrate in the 
culture medium was depleted, glucose began to be fed continuously into the system.  At this 
stage, the penicillin concentration started to increase at this stage indicating that the process 
was in the product formation phase.  
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Figure 1  Dynamic simulations for penicillin fermentation process 

 
3.           Partial Least Squares Regression (PLS) 
 
Partial least squares regression is one of the multivariate analysis methods.  According to Wold 
(1985), it is a linear system identification method that projects the input-output data down into 
a latent space, extracts a number of principal factors with an orthogonal structure, while 
capturing most of the variance in the original data.  Referring to this definition, it is also named 
as Projection to Latent Structures.  PLS model is built using the Non-linear Iterative Partial 
Least Squares (NIPALS) algorithm introduced by Wold (1985).  Details description of the PLS 
algorithm can be found in Geladi and Kowalski (1986). Figure 2 illustrated the PLS model 
schematically. 

 
  

 
 
 
 

 
 
 
 
 
 
 
 

Figure 2 Schematic of the PLS model (Adebiyi and Corripio, 2003) 
 
In this model the following measurements were used as input variables: substrate feed rate, 
aeration rate, agitator power, substrate feed temperature, culture volume, pH, fermentor 
temperature and heat generation. The accuracy of PLS model prediction is illustrated in Figure 
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3 which compares the actual penicillin concentration with that predicted by the PLS model for 
one of the batches.  This figure shows that the model provided good estimates of penicillin 
concentration within the fermenter. 

 
Figure 3 PLS model prediction 

4. Formulation of Optimal Control 
 
Dynamic optimization problems based on direct shooting method were first posed for 
aerospace applications in the 1950s. The mathematical formulation of the optimization 
problem will be stated first. The problem will be reformulated using Pontryagin’s Minimum 
Principle (PMP) and the principle optimality of Hamilton Jacobi Bellman (HJB). In the case of 
a fed-batch bioreactor, one goal is to maximize an appropriate performance objective. Towards 
achieving this goal, it is important to note that decisions made regarding the input during the 
course of the batch play an important role on the objective function. The bioreactor model used 
for simulations was the same as described in previous section. Maximization of the penicillin 
concentration at the end of the batch was used as the performance measure.  
 
The general formulation of the optimal control problem is now presented (Srinivasan et al., 
2002). Let us consider that the system dynamics are described by, 
 

[ ]ttutxfx ),(),(
.
=     for fttt ≤≤0 and )( 0tx                                                                                                      (1) 

 
In this equation, x (t) and u (t) is vector valued state and input respectively, 0t  is the 

initial time and ft  is the final time. Associated with the process operation is an objective 
function that needs to be maximized and the general formulation for the objective function is 
given as, 
 

∫+= ft

tff dtttutxLttxJ
0

)),(),(()),((φ                                                                                                  (2) 

 
The functions φ  accounts for the contribution of the final state, L  accounts for the path 
dependence in the objective function with ft  as the final time of operation. The problem is to 
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find the functions u (t) that maximizes the objective function J , subject to the system dynamics 
described by f . Adjoin Equation (1) to J  with multiplier functions )(tλ   : 

 
[ ]ff ttxJ ),(φ= [ ] [ ]{ }[ ]dtxttutxftttutxLft

t

T∫ −++
0

),(),()(),(),( &λ                                                                (3) 

 
Integrate the last term on the right side of Equation (3) by parts yielding: 

 
[ ] )()()()(),( oo

T
ff

T
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t
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0
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(4) 
 
For convenience, define a scalar function H (the Hamiltonian), as follows: 
 
[ ] [ ] [ ]ttutxftttutxLtttutxH T ),(),()(),(),(),(),(),( λλ +=                                                                                 (5)  

 
Include Equation (5) into Equation (4) yields: 
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T
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T
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t
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0
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The optimization problem is to determine optimal feed rate policy serves as objective function 
for u (t). So it is necessary condition for u (t) to be optimal is that it should maximize the 
Hamiltonian as described by Equation (5). Hence, the dynamic optimization can be formulated 
mathematically as follows:   
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5.  Single Step Ahead Dynamic Matrix Control   
 
Model Predictive Control (MPC) has been the most successful advanced control technique 
applied in the process industries. The formulation naturally handles time-delays, multivariable 
interactions and constraints (Aufderheide and Bequette, 2003). In general MPC refers to a class 
of computer control algorithms that utilize an explicit process model to predict the future 
response of a plant. At each control interval an MPC algorithm attempts to optimize future plat 
behavior by computing a sequence of future manipulated variable adjustments. The first input 
in the optimal sequence is then sent into the plant and the entire calculation is repeated at 
subsequent control intervals (Qin and Badgwell, 2002).  
 
Originally developed to meet the specialized control needs of power plants and petroleum 
refineries, MPC technology can now be found in a wide variety of application areas including 
chemicals, food processing and automotive. One of the MPC technologies is a Dynamic Matrix 
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Control (DMC). DMC algorithm can be separated into two parts, a predictor and an optimizer. 
In the original DMC formulation (Lundstrom et al., 1994) a step response model of the plant is 
used to predict the future behavior of the control variables. For the step response of a system 
with nu inputs and ny outputs: 
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The step response model can be represented in the following state space form: 
 

)()()1( kuSkMYkY Δ+=+                                                                                                                            (12) 
 

)()( kNYky =                                                                                                                                                      (13) 
 
where: 
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)(kuΔ is a vector of changes in the manipulated inputs at time k. )(ky  is the output vector at 
time k. The vector )1( +kY  represents the dynamic states of the system. Each state )1( +ky is 
the future output vector at time )1( +k assuming constant inputs. The new state vector 

)1( +kY is the old vector )(kY  shifted up ny elements plus the contribution made by the latest 
input change )(kuΔ . 
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5.1    DMC Predictor 
 
The objective of the predictor is to generate a vector, )1( kky +  of predicted open loop outputs 
over a horizon of p future time steps, the prediction horizon. This prediction vector is then used 
as an input to the optimizer. The DMC optimizer is described by the following equations: 
 

)1()1()( −Δ+−= kuSkYMkY                                                                                                                     (19) 
 

)()( kYNky =                                                                                                                                                     (20) 
 

[ ])()(ˆ)()1( kykykYMkky p −+=+ l                                                                                                         (21) 
 
Where Mp is the first ynp×  rows of M and: 
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)(ˆ ky is a vector of measured outputs at time k. )(ˆ ky and )(ky are discontinuous at k- while 
)(ku at k+. This is because ŷ is measured slightly before time k and u is adjusted slightly after 

time k. 
 
5.2  DMC Optimizer 
 
The DMC optimizer objective function is adapted from Garcia and Morshedi (1985): 

 
{ 2
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where: 
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)( kkUΔ is the optimal control sequence computed at time k for m future input moves, where m 

is the input horizon. )1( kkR +  is a vector describing the desired output trajectory (set points) 
over p future time steps. Γ and Λ are weighting matrices and are usually chosen to be 
diagonal. )1( kkYm + is a vector of outputs predicted at time k, over a horizon of p future time 
steps including the effect of the m optimal input moves: 
 

)()1()1( kkUkkYkkY m
pm Δ++=+ l                                                                                                          (27) 
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where: 
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In case where m = 1, Equation (24) must be reconstruct. In order to obtain optimal solution for 
the model, a least squares solution must be implemented. Then, Equation (38) becomes single 
step ahead DMC: 
 

[ ] [ ])1()1()( 1 kkYkkRSSSkkU TT
m

T
m

TT
m +−+×ΓΓΛΛ+ΓΓ=Δ

−                                                                          (29) 
 
 
6. Results and Discussion 
 
For the optimal control of the fed-batch penicillin fermentation considered in this work, the 
state variable, x and the system equation f, are described by the model: 
 
x=[X S V CL CO2 P Qrxn T H+] t                                                                                                                     (30) 
 
Here, X is the biomass, S is the substrate, V is the reactor volume, CL is dissolved oxygen, CO2 
is carbon dioxide concentration, P represents the penicillin concentration, Qrxn is the heat 
generation, T is temperature and H+ represents ion hydrogen concentration. The feed rate F, 
serves as the control input u and the objective function for the optimal control problem is the 
maximization of the penicillin concentration at the end of the batch given as, 
 

)](),([max
)(

txtuJ
tu

                                                                                                                                               (31) 

 
J = P (tf)                                                                                                                                                                  (32) 
 
In addition it is assumed that the system is constrained so that the reactor volume at the end of 
the batch is restricted to 110 liter, which is an end-point constraint. The feed rate of substrate 
cannot be negative and the feed rate over any interval cannot exceed the free reactor volume at 
the start of the interval, so that, 
 

)(110)(0 kVku −≤≤                                                                                                                                      (33) 
 

0110)(0
0

Vkuft

tk
−≤≤ ∑ =

                                                                                                                                (34) 

 
In these equations, V (k) is the volume at the time k, and V0 is the initial volume. The final 
batch time was chosen as 400 hours. The entire batch was split into equal intervals of 20-hour 
duration. The optimal control was then discretized into 20 piece-wise constant segments, with 
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the values ui(k) for k = 0, 1, 2, …, 19. Here i is the iteration value during the course of the 
optimization while k represents the time instant at which the input is applied. Thus the value of 
i is increases as the optimization proceeds and the objective function are calculated for each 
iteration until it converges to its maximum or minimum value. The goal of the optimization 
procedure is to find the values of u(k) for all k, which give an optimal value of the performance 
index, J. 
 
For the numerical integration of the state equations, the ode45 routine in MATLAB 6.5 was 
used and the optimization based on direct shooting method was carried out using the MATLAB 
6.5 routine fmincon while single step ahead DMC algorithm was solved by its algorithm 
available in MATLAB 6.5. The results of the both optimization strategy are shown in Figure 4 
and 5.  The both optimal control policy for the fed-batch fermentation shows two distinct 
regions. Initially, it is seen that the fermentation proceeds in a batch mode, as the value of the 
substrate feed rate is zero. The batch growth continues until all of the initial substrate with 
which the fermentation process starts is utilized below the threshold value. At this point, 
glucose feed is sent into the reactor and this is utilized for the production of penicillin. 
 
This approach leads to the optimal glucose feeding profile for maximizing the end of batch 
penicillin concentration. The off-line optimum profile provides the reference trajectory that the 
fed-batch operation must follow in order to maximize the end of batch penicillin concentration. 
The optimal control policy represents the best performance that can be obtained from the 
system for given set of initial and feed conditions.  Although both of the optimization 
approaches shows similar pattern results but single step ahead DMC optimization method 
obtain a better result compare to direct shooting method. It is because several difficulties 
associated with the direct shooting method. Firstly, it can exhibit stability problems in 
integrating the adjoints equations forward in time. It is because direct shooting method is faced 
with Two Point Boundary Value Problem (TPBVP) problem. The boundary condition for state 
and adjoints equation must be accurate in order to obtain optimal solution. Therefore, direct 
shooting method need a good initial guess for the adjoint variables to find the optimal solution 
compare to the single step DMC approach.  
 
Furthermore, the method does not work when there are discontinuities in the adjoints which is 
often the case in the presence of state constraints. Additional degrees of freedom must be 
included to handle these situations. Figure 6 and 7 shows the performance comparison between 
this two optimization approach and nominal operation for substrate feed rate and penicillin 
concentration. 
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Figure 4 Result of direct shooting method optimization 

 
 
 

Figure 5 Result of single model DMC optimization 

            Direct Shooting        Nominal Operation 

            Single Step DMC         Nominal Operation 
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Figure 6  Penicillin concentration profile for direct shooting method, single step ahead 
DMC and nominal operation 

Figure 7  Substrate feed rate profile for direct shooting method, single step ahead DMC 
and nominal operation 

 
Initial substrate feed rate for both the optimization approaches and nominal operation when the 
system switches to the fed batch operation is 0.0426 l/h. A constant substrate feed rate is used 
during the fed-batch operation under nominal operating condition. But substrate feed rate is 
increased when both optimization approaches is implemented in the system. The final substrate 
feed rate for direct shooting method is 0.050169 l/h and single step ahead DMC is 0.055213 l/h. 
In the end of the batch, the process obtains 1.7413 g/l penicillin concentration when single step 
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ahead DMC implemented compare to only 1.6136 g/l when the direct shooting method 
implemented. From the results, it shows single step ahead DMC approaches perform better 
than direct shooting method. The single step ahead DMC not only increase penicillin 
concentration but also improves the purity of penicillin up to 57.99 %. 

 
Table 1 shows comparison performance fed-batch fermentation with different optimization 
algorithm and nominal condition. From Table 1, single step ahead DMC have an ability to 
optimize the objective function which is maximization of penicillin production. Although 
direct shooting method also maximize the objective function compare to nominal operation but 
TPBVP problem in the direct shooting method prevent this algorithm to perform better. This is 
the weakness of direct shooting method to achieve optimum solution. Meanwhile, single step 
ahead DMC shows some potential to overcome direct shooting problem.   

 
Table 1 Comparison performance fed-batch fermentation with different optimization 

algorithm 
 

Optimization 
Algorithm 

Initial F (l/h) Final F (l/h) Pen. Conc. 
(g/l) 

Pen. Purity (%)

Nominal Operation 0.0426 0.0426 1.4127 53.14 

Direct Shooting 
Method 

0.0426 0.050169 1.6136 56.03 

DMC 0.0426 0.055213 1.7413 57.99 
7. Conclusion 
 
An unstructured model for a fed-batch Penicillin G fermentation process has been developed in 
this study. This mathematical model includes additional input variables like feed flow rate of 
substrate, pH, temperature, aeration rate, agitation power as well as output variables such as 
CO2 evolution and heat generation terms. The model was simulated in MATLAB environment. 
Good result was obtained in this work. This has been elaborated in section 2. In section 3, the 
issue of on-line measurement of difficult to measure quality variables such as penicillin 
fermentation was addressed. In practice, it is the lack of robust on-line sensors for some of 
these key fermentation variables has been a significant obstacle for the implementation 
efficient process control. Since it is desirable to be able to optimize fermentation operation, this 
weakness must therefore be overcome. This can either be done through off-line analyses that 
are highly human dependent or making use of on-line inferential estimation strategy. The latter 
was adopted in this study and an inferential estimator based on Partial Least Squares (PLS) 
model has been developed to provide reliable prediction of the unmeasured quality variables. 
The results obtained proved the good capability of the estimator to perform in various 
operating conditions, thus enabling it to be implemented as part of product concentration 
control loop. 

 
The success in providing reasonably accurate estimation of important fermentation variables 
opened the opportunity for process optimization. Dynamic optimization of process operation 
can be established using several approaches. The optimal control policy using direct shooting 
method and single step ahead DMC has been developed, aiming at optimizing the end of the 
batch penicillin concentration.  From this two optimization approaches, it is possible to 
estimate the optimal operating conditions as substrate feed rate so that the systems presents 
high performance within threshold value limit.  The result also showed that the single step 
ahead DMC approach is superior the direct shooting method in term of the penicillin 
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concentration as well as penicillin purity. 
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