

ESTIMATION SYSTEM USING FUNCTION

POINT

HIMALA DEWI A/P JAGANATHAN

BACHELOR OF COMPUTER SCIENCE
(SOFTWARE ENGINEERING)

UNIVERSITI MALAYSIA PAHANG

http://fskkp.ump.edu.my/index.php?option=com_content&view=article&id=59:bachelor-of-computer-science-software-engineering&catid=39:undergraduate&Itemid=98
http://fskkp.ump.edu.my/index.php?option=com_content&view=article&id=59:bachelor-of-computer-science-software-engineering&catid=39:undergraduate&Itemid=98

UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS

JUDUL ESTIMATION SYSTEM USING FUNCTION POINT

SESI PENGAJIAN: 2012/2013

Saya HIMALA DEWI JAGANATHAN____ (HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan
Universiti Malaysia Pahang dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang.
2. Perpustakaan Perpustakaan Universiti Malaysia Pahang dibenarkan membuat

salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran

antara
 institusi pengajian tinggi.
4. **Sila tandakan ()

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau
kepentingan Malaysia seperti yang termaktub di dalam AKTA
RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh

organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

 Disahkan oleh
 _______________________ _________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)
 Alamat Tetap:226, Taman Thivy Jaya PENYELIA
 Jalan Tok Ungku, AZLINA BTE ZAINUDDIN
 70300 Seremban,
 Negeri Sembilan,
 Malaysia

 Tarikh:_ 29 MAY 2013___ Tarikh:__________________

CATATAN: * Potong yang tidak berkenaan.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini
perlu dikelaskan sebagai SULIT atau TERHAD. Tesis dimaksudkan sebagai tesis bagi
Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertai bagi pengajian
secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

ESTIMATION SYSTEM USING FUNCTION
POINT

HIMALA DEWI A/P JAGANATHAN

This thesis is submitted in partial fulfilment of the
requirements for the award of degree of Bachelor of

Computer Science (Software Engineering)

Faculty of Computer Systems & Software
Engineering

Universiti Malaysia Pahang (UMP)

i

DECLARATION

I hereby declare that the work in this thesis “Estimation System using Function

Point” is my own except a s cited in reference. This thesis has not been accepted for

any degree and is not concurrently submitted in any candidature of any other degree.

Signature : …………………………………………..

Name of Candidate : HIMALA DEWI A/P JAGANATHAN

Date : 5th June 2013

ii

SUPERVISOR’S DECLARATION

“I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in

terms of scope and quality for the award of the degree of Bachelor of Computer Science

(Software Engineering)”

Signature : ...

Supervisor : Miss. Azlina Zainuddin

Date : ……………………………………………….

iii

ACKNOWLEDGMENTS

First and foremost praise to God for all his blessings for giving me patience and

good health throughout the duration of this research. I am very fortunate to have

Miss Azlina Zainuddin as a research supervisor for all the encouragement and

constant support in making this report successful. I feel I’m sincerely very lucky to

get her as my supervisor. I honestly do appreciate all her consistent support from

the beginning of this research.

I acknowledge my sincere thanks to my family members, especially my parent that

brought me up until here. There are no words to describe their scarifications. I

would like to thank my sister for all the moral support that she gave me. Not to

forgotten my friends that helped me to complete this research paper successfully.

iv

ABSTRACT

 Software cost estimation is one of the most important parts in the project

planning phase to ensure that the project will lead to success. Function point is one

of the best methods used in estimating the software cost and size. Function point

focuses more on measure the functionality thus make its estimation accurate and

efficient. Function points features such as independent of programming language,

product design and documented method makes it as an advantage. Besides

measure the size and cost, function point also helps to measure the estimating the

effort, schedule and defect in the project. The prototype of this research was

developed using Microsoft Visual Studio 2008.

v

ABSTRAK

Penganggaran kos Perisian adalah salah satu bahagian yang paling penting dalam

fasa perancangan projek untuk memastikan projek itu akan membawa kepada

kejayaan. Fungsi titik adalah salah satu kaedah terbaik yang digunakan dalam

menganggar kos perisian dan saiz. Titik fungsi lebih tertumpu kepada pengukur

fungsi itu membuat anggaran yang tepat dan cekap. Titik fungsi mempunyai ciri-

ciri seperti bebas daripada bahasa pengaturcaraan, reka bentuk produk dan kaedah

didokumenkan menjadikan ia sebagai satu kelebihan. Selain mengukur saiz dan

kos, titik fungsi juga membantu untuk mengukur menganggarkan usaha, jadual

dan kecacatan dalam projek itu. Prototaip kajian ini telah dibina dalam Microsoft

Visual Studio 2008

vi

TABLE OF CONTENT

CHAPTER TITLE PAGE

 DECLARATION i

 SUPERVISOR’S DECLARATION ii

 ACKNOWLEDGEMENT iii

 ABSTRACT iv

 ABSTRAK v

 TABLE OF CONTENTS vi

 LIST OF TABLES ix

 LIST OF FIGURES x

 LIST OF APPENDICES xii

1 INTRODUCTION

 1.1 Introduction 1

 1.2 Problem Statement 2

 1.3 Objectives 3

 1.4 Scope of study 4

 1.5 Thesis Organization 4

 2 Literature Review

 2.1 Estimation System 5

 2.2 Existing Application and Its Problem 6

 2.2.1 Lines of Codes (LOC) 6

 2.2.2 Constructive Cost model (Cocomo) 7

 2.3 Function Point 8

 2.4 Applied Function Point in the Industry 11

 2.5 Comparison Study 14

vii

2.6 Function Point Technique 17

 2.6.1. Example of Function Point Calculation 19

 2.7 Use of Analytic Hierarchy Process (AHP) as an indicator 22
 In Function Point.

 3 Methodology

 3.1 Existing Process 23

 3.2 Issue with Existing Process 24

 3.3 Technique 25

 3.4 Validating Function Point Weighting Factor 27

 3.5 Hardware 28

 3.6 Software 29

 3.7 Flow Chart 30

 3.8 Gantt Chart 31

 4 Implementation

 4.1 Introduction 32

 4.1.1 Introduction about Booking Module 32

 4.1.2 Manage Facilities Module 35

 4.2 Use Case Point Calculation 38

 4.2.1 Unadjusted Use Case Weight (UUCW) 38

 4.2.2 Unadjusted Actor Weight (UAW) 39

 4.2.3 Environmental Complexity Factor (ECF) 39

 4.2.4 Technical Complexity Factor (TCF) 40

 4.2.5 Total UCP 41

 4.3 Basic COCOMO 42

 4.3.1 The Formula 43

 4.4 Function Point 44

 4.5 Estimation System Prototype 46

viii

 4.6 Implementation Findings 51

 5 Discussion and Conclusion

 5.1 Introduction 52

 5.2 Constraints 53

 5.3 Conclusion 54

 REFERENCES 55

 APPENDIX 58

 Appendix A 58

ix

LIST OF TABLES

TABLE TITLE PAGE
NO.

2.1 Comparison between Function Point and Lines of Code 16

2.2 Crude Function Point Calculation Table 17

2.3 Relative Complexity Adjustment Factor Table 18

2.4 Calculate CFP Example 20

2.5 RCAF Example Table 21

3.1 Hardware item that will be used for this thesis 28

3.2 Software item that will be used for this thesis 29

4.1 Environmental factor table 39

4.2 Technical Complexity Factor table 40

4.3 Coefficient for basic COCOMO formula 42

4.4 Crude Function Point Calculation 44

4.5 RCAF calculations Point 45

x

 LIST OF FIGURES
 Figure Number Page

 2.1 Relation between function point and software effort 9

 2.2 Linear relation between function point and software effort 10

 2.3 The attend-master data flow diagram 19

 3.1 AHP Technique 26

 3.2 Research Outcome 27

 3.3 Flow Chart 31

 4.1 Booking Facilities Use Case Diagram 33

 4.2 Booking Facilities Flow 34

 4.3 Manage Facilities Use Case Diagram 35

 4.4 Manage Facilities Flow 37

 4.5 Total numbers of lines in Manage Facilities module 43

 4.6 Total numbers of lines in Booking Facilities module 43

 4.7 Main page Prototype 46

 4.8 Choose system size interface 47

 4.9 CFP calculation interface 47

 4.10 RCAF calculation interface 48

 4.11 Calculation Function Point 49

 4.12 Next button enabled 49

 4.13 Calculate Duration 50

 4.14 Calculate cost 50

xi

LIST OF APPENDICES

APPENDIX TITLE PAGE

 NO.

A Gantt chart 58

xii

LIST OF ABBREVIATIONS

FP: Function Point

LOC: Lines of Codes

SLOC: Source Lines of Codes

COCOMO: Constructive Cost model

FPA: Function Point Analysis

IFPUG: International Function Point Users Group

ISBSG: International Software Benchmarking Standards Groups

ISO : International Organization for Standardization

CFP : Crude Function Point

RCAF: Relative Complexity Adjustment Factor

DFD : Data Flow Diagram

SRS: Software Requirement Specification

1

CHAPTER 1

1.1 Introduction

 Software cost estimation is one of the most important parts in the software planning

phase. A good planning and requirements from the beginning will lead a project to success.

In software projects, size is not everything, but it does influence most of the things like cost

and resource. So if we do not have an accurate prediction of size, it’s difficult to plan. A

precise software to calculate the software cost estimation will be helpful to project

managers to estimate their software size.

 There are many factors, which lead to software projects fails. The major causes of

software failure are poor planning and cost estimation. The initial cost and estimated

schedule are not more frequently revised as more information available. Besides that,

current practices in software cost estimation are being done manually and causes to

project's failures. Such a major problem can be avoided if a software tool used to calculate

the cost estimation of the projects to get an accurate result in estimating. An accurate and

efficient cost estimation methodology for web-based application is very important for

software development as it would assist the management team to estimate the cost.

Furthermore, it will ensure the development of cost suits the planned budget and provides a

fundamental motivation for the development of a web-based application project (Zulkefli,

M., Zarinah, M.K., Habibah, A., Saadiah, Y, 2011). There have been various cost

estimation models and methods that are being used in the software-development process.

Function Points is one the example to calculate the estimation cost.

2

 Function point is one of the most accepted and robust sizing techniques used in the

software cost estimation process, function point, which formulate by Albrecht was

established in the early of 1970 (M.A. Al-Hajri, A.A.A. Ghani, M.S. Sulaiman, M.H.

Selamat. 2005). Function point has many advantages over the other cost estimation models

like they are independent of programming language, product design or development style;

it is a well-documented method and many more. In addition, function point estimation is

achieved directly without the formalization of step by step analytical procedures. Besides

that, research did by Graham C. Low and D. Ross Jeffery has proven that function point

counts appear to be more consistent with measure software size.

1.2 Problem statement

 Software cost estimation has a great impact on the software-development process.

The success of the software project depends on factors such as time and cost. There have

been researched conducted on this issue in Malaysia. However, the data used to have not

been sourced locally. Therefore, the accuracy is questionable. Moreover, the factors can be

dependent on local environment and needs specific to those in Malaysia. There is still

much to be discovered and that is what this study is aimed at. According to a study made in

Malaysia, they have come up with the statistic based on literatures that 52.7% projects

were not able to be complete on time and over budget and 31.1% not fulfilled the scope

(Iman.A, Ow.S.H.008.)

 The causes of the project failure were mainly poor planning and estimation. Besides

that, case studies on a group of50students were taken. 49undergraduates were from Faculty

of Computer Science and Information Technology and an undergraduate from the

department of Information science from University of Malaya, who took the course Project

Management. The students were assigned a team project based on their preference. The

students were divided into seven groups with seven to eight members comprising Malays,

Chinese and Indians. All the projects were focused on the budget, schedule and quality.

Based on the lecturer’s assessment on the students projects based on budget only one team

managed to complete the project within the budget. The remaining six teams were over the

budget. Besides that, analysis made on the cost estimation, two groups budgets were over

the project cost, and four teams manage to make good estimation but failed to complete

3

within budget. Another research was also carried out based on estimation using function

point and source of line code. The research was carried out based on two programs using

specification prepared by an experienced professional analyst (G.C. Low And D.R.Jeffery.

1990). The 1st program used was Fixed Asset Master File Update, and the 2nd program

used was Fixed Asset Depreciation Calculation and Reporting. The data collected, and the

relationship was divided into three major data sets. The first data set was comprised of

twenty-two function point experienced analyst counting a priori from the program

specification. The second data set was comprised of two groups of function point naïve

analysts where one group very experienced in analysis and the other group do not. The

third data set was consisting of twelve analyst estimating source lines of code from the

program specification. The result of their research on the comparison of the consistency of

the function point and source lines of code estimates suggests that on an organizational

basis source bank line of codes, estimates are no better than function point estimates when

estimating from a program specification. The research concluded that function point counts

appear to be a more consistent a a-priori measure of software size than source lines of

codes. With the assistant of software estimation tool and a correct methodology used to

calculate the estimation; such a problem can be avoided. By having software for the

estimation calculation, the time taken to calculate for estimation can be reduced. Thus, the

additional time left can be reallocated to focus on the difficult part on the software project

phase like designing.

1.3 Objective

i. To analyze the consistency of the function point in measuring the software cost

estimation

ii. To compare and find out the best way to practice the software cost estimation

between function point and other method.

iii. To choose the best estimation method using the Analytical Hierarchy Process.

4

1.4 Scope

 The study is carried out on the method of calculating the software cost estimation.

The prototype focuses on the function point method. This prototype will be a standalone

system. This project focuses on two modules of Ump- Automatic Sports Facilities

Management System.

1.5 Thesis Organization.

 Chapter one is mainly about the details of the case study. It contains introduction,

problem statement, scope, and objective. Chapter two is about the literature review. A

literature review is an account of what has been published on a topic accredited scholars

and researchers. It is a part of the introduction to research report. The purpose is to convey

the reader what knowledge and idea have been established on a topic and their strengths

and weaknesses are. Chapter three is basically about the methodology used in this research

paper. This chapter discusses about identifying the data collection instrument to be

employed for the study, determining the sample or participants of the study, and analyses

the data collected for the study. Chapter four discusses about the design of the system.

Chapter five is about the implementation of the system followed by chapter six, which is

about the result and discussion of the thesis. Finally, chapter seven is the conclusion of the

thesis.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Estimation System

Estimation is the process of finding an estimate, or approximation, which is a value

that is usable for some purpose even if input data may be incomplete, uncertain,

or unstable. Typically, estimation involves "using the value of a statistic derived from

a sample to estimate the value of a corresponding population parameter.”

Estimation is one of the most important parts in the software planning phase. The

estimation involves estimating the size of the software, budget, time and resource. Errors or

mistakes in estimation can attribute to many factors. The meaning of an estimation system

in this context is estimating the size of the software. An accurate estimate of software size

is an essential element in the calculation of estimated project costs and schedules. The fact

that these estimates are required very early in the project (often while a contract bid is

being prepared) makes size estimation a formidable task. If the estimation is inaccurate

there will be major problems. If the under estimation was done, it can result in under-

staffing and may result in an over worked and burnt-out team. The estimation process has

sub tasks. As the size increases, the interdependency among various elements of the

software grows rapidly. There are different methodologies for arriving at and expressing

the size/complexity of the Software Program. Some of the popular ones are Function

Points, Lines of Codes, and Cocomo.

http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Instability
http://en.wikipedia.org/wiki/Statistic
http://en.wikipedia.org/wiki/Sample_(statistics)

6

 In conclusion, estimation is extremely a vital process in a software planning phase.

Thus, having a good estimation system to estimate the size of the system would be an

advantage. In addition, it will make sure that we would keep us on the track to complete

the system on time and with the entire requirement are fulfilled.

2.2 Existing Application and its Problems

2.2.1 Lines of Code

 Lines of code often referred as Source Lines of Code, SLOC or LOC. Lines of

code are a formal method to measure the size by counting number of lines of Code. This

metric was very popular primarily because of its use simple and easy. Lines of code

measure the number of source instruction used to solve a problem. While counting the

number of source instructions, lines used for commenting and blank lines are ignored.

Although using lines of code is simple but there are many disadvantages in using it.

 Usually estimation will be done at the beginning of the project but by using lines

of code estimation at the beginning of the project will be very tricky. In order to make the

estimation easy, the project manager will divide the project managers divide the problem

into modules, and each module into sub modules, and so on until the sizes of the different

leaf-level modules can be approximately predicted. The next disadvantage is some

programmers may create a lengthy code structure to solve a problem as they do not make

effective use of the available instruction set. At the same time, skilled programmers can

code a simple and effective code for the same problem. Thus, a poorly written code cannot

be a good metric for estimation purpose.

 Lines of code only focus on the coding part and ignore other important parts

such as designing and implementation. Coding is only a small part in a software

development system. Besides that, LOC also have problem with its language dependence.

LOC only allow usage of one language in the estimation process unlike function point that

does not depend on what language used. It is not possible to directly compare projects

developed by using different languages. For example, the time per line for a high-level

6

7

language may be greater than for a lower-level language. There is no way to accommodate

the fact that fewer lines of code may be required for a higher-level language to provide the

same function. Moreover, LOC is lack of a universally accepted definition for exactly what

a line of code really is. Jones (1986) identified 11 major variations of line counting

methods. Since few authors state the line-counting rules they used, much of the literature

has an “uncertainty of perhaps 500% attributable to line counting variations.” The

variations make it very difficult to compare studies using lines of code as a measure of

software size (Matson.J.E, Barrett.E.B., Mellichamp.J.M., 1994). In conclusion, with so

many disadvantages, using LOC for estimating a software system is not a good idea.

2.2.2 Constructive Cost model (COCOMO)

 Constructive Cost Model (COCOMO) is an algorithmic software cost

estimation model. It was developed by Barry W. Boehm. The model is a combination of

statistical figures, mathematical equations and expert judgments. Furthermore, COCOMO

is an open model, so all the details such as the underlying cost estimation equations, Every

assumption made in the model, Every definition, and The costs included in an estimate are

explicitly stated. This model also have been widely use in the companies. COCOMO is

composed into three levels of the models which is basic, intermediate and detailed. The

basic COCOMO'81 model is a single-valued, static model that computes software

development effort (and cost) as a function of program size expressed in estimated

thousand delivered source instructions.

 The intermediate COCOMO'81 model computes software development effort

as a function of program size and a set of fifteen "cost drivers" that include subjective

assessments of product, hardware, personnel, and project attributes. Some of the

COCOMO’s limitations are primarily COCOMO represents development from planning to

implementation. It doesn’t consider maintenance, rework, porting and integration, and

reuse. COCOMO model ignores requirements and all documentation. Function point

method measures the developed system by point counts that can determined relatively early

in the development process. It measures software project size by studying external features

of the projects (Gao.X, Lo.Bruce, .1995). So it avoids the difficulty of the COCOMO

method which means in COCOMO does not support some newer programming

environment like Authorware, make counting of LOC difficult as the definition of a line is

http://en.wikipedia.org/wiki/Barry_Boehm

8

less clear-cut. Besides that, it ignores customer skills, cooperation, knowledge and other

parameters. It oversimplifies the impact of safety/security aspects. It ignores hardware

issues. It ignores personnel turnover levels. It is dependent on the amount of time spent in

each phase.

2.3 Function point

 The Function Point methodology was developed by Allan Albrecht at IBM in 1979.

This methodology is based on the belief that the size of a software project can be estimated

during the requirements analysis. Function Point Analysis (FPA), or the method of sizing

software in terms of its function and expressed in Function Points is now very widely used

(Vicker.P.). It takes into account the inputs and outputs of the system. Function points can

be determined from the requirement specifications, design specification, source listing or

live system. Function point focuses on “functionality” or “utility” rather than counting

LOC (Gao.X, Lo.Bruce, .1995). Since function point measure functionality, they should be

independent of technology and language used for the software implementation (Low,G.C.

And Jeffery,D.R. 1990). It helps to estimate software effort more accurately without

considering the languages or developing environment you choose (Zheng.Y, Wang.B,

Zheng.Y, Shi.L. 2009).In addition, the ability of function point could help in effort,

schedule, and defect estimation and aids in setting project scope. Function point does not

counts the lines like how LOC does instead it counts the number of externals that make up

the system. The function point approach has features that overcome the major problems

with using lines of code as a measure of system size.

 First, function points are independent of the language, tools, or

methodologies used for implementation; i.e., they do not take into consideration

programming languages, data base management systems, processing hardware, or any

other data processing technology (Matson.J.E, Barrett.E.B., Mellichamp.J.M., 1994).

Function points are based on the system user’s external view of the system, nontechnical

users of the software system have a better understanding of what function points are

measuring (Matson.J.E, Barrett.E.B., Mellichamp.J.M., 1994). By using function point, its

make us easy for comparing project productivity and organization besides help manager

9

better understand and articulate to client the impact of change request and enhancements.

Function points also allow the manager to make informed decision more objectively with

the limited time and budget.

 A case study done by few researches have proved that relationship between

software effort and function point count can be assumed as a linear regression model y = a

+ bx where a is the slope of the line (gradient) and b is the y intercept. From the scatter

diagram which was shown in the figure 1,the relationship between the variable and the

dependent variable tends to be a straight line with highly positive correlation. The case

study also concluded that though it is difficult to figure out the count of function point, the

linear function will greatly simplify the process of software estimation, and then help the

manager to have an accurate software effort measurement (Zheng.Y, Wang.B, Zheng.Y,

Shi.L. 2009).
 Another case study which was carried out in 1994 has also come out with a

conclusion which is Function point counts appear to be a more consistent a priori measure

of software size than source lines of code (Low,G.C. And Jeffery,D.R. 1990).

Figure 2.1 Relation between function point and software effort

10

Example of a linear regression model. The vertical axis is the ᵡ-axis that represents the

software effort and the horizontal axis the y-axis that represents the Function point.

Figure 2.2 Linear relation between function point and software effort

11

2.4 Applied Function Point application in the Industry.

 The function point methodology is being successfully applied by

innumerable organizations world‐wide to measure software size for existing applications,

enhancements to those applications, and new development projects. Function Points

Analysis (FPA) has become a world standard over the years. The mission of International

Function Point Users Group (IFPUG) is to be a recognized leader in promoting and

encouraging the effective management of application software development and

maintenance activities through the use of Function Point Analysis and other software

measurement techniques. IFPUG endorses FPA as its standard methodology for software

sizing (Dekkers.T). Carol Dekkers from Quality Plus Technologies and Mauricio Aguiar

from Caixa Economica Federal has stated that trough their experience shows that FPA is

often more effective than peer or user walkthroughs in identifying the full set of functional

user requirements and uncovering potential defects. In fact, benefits gained by applying

FPA to functional user requirements can be more valuable than the mere function point

size of the software (Carol A.D., Aguiar.M).

 There are many reasons why most of the industries choose Function Point as

a tool for estimating. The outcome of a Function Point count provides the metric ‘unit of

software delivered and can be used to assist in the management and control of software

development, customization or major enhancements from early project planning phases

through to the ongoing support of the application. In addition, the software size facilitates

the creation of more accurate estimates of project resources and delivery dates and

facilitates project tracking to monitor any unforeseen increases in scope. Industry figures

available from International Software Benchmarking Standards Groups (ISBSG)

Repository for projects measured with IFPUG function points indicates that complete

applications tend to have consistent and predictable ratios of each of the function types.

 The research conducted by the Total Metrics Pty. Ltd shows that industry

figures show that the risk of project failure rapidly increases with project size. Projects less

12

12

than 3500 function points have a risk of failure of less than 20% in comparison with

projects over 5000 function points which have a probability of cancellation close to 40%.

This level of risk5 is unacceptable for most organizations. Data within the ISBSG

Repository Release 6 supports the premise that smaller projects are successful. Over 65%

of the projects in the repository are less than 500 function points and 93% of the projects

are less than 2000 function points. Thus, they concluded that Industry experience suggests

that the best managed projects which deliver quality software on time and within budget

tend to less than 700 function points and up to 1500 function points.

 While in Malaysia, many projects were developed but only very little

percentage of projects that have succeed while other succeed with challenges such as over

run budget, time overrun, and impaired functionality. There are many factors which can

lead to such condition but the main factor would be choosing the wrong method to estimate

the software size and budget. A research based on software cost estimation practices in

Malaysia was conducted by Zulkefli, M., Zarinah, M.K., Habibah, A., and Saadiah, Y in

the year 2012. The research has come out with a random survey in order to get an overview

of current practice in cos testimation process among project managers and web developers

in Klang Valley. The research have concluded that Both project managers and web

developers agreed that Expert Judgment, Price-to-Win and Algorithmic Model methods

produce most accurate result in cost estimation process and at the same time the result is

incongruent to the method preferable used by the project manager and web developer. The

method Parkinson-Ian shows the most accurate method to count the cost estimation. The

paper conclude that in order to get accurate cost estimation result a good estimation process

with the proper selection of cost estimation technique, correct size measure, person

experiences, and familiarity of software developed.

 We do have SIRIM and International Organization for Standardization (ISO) in

Malaysia. SIRIM Berhad is a wholly-owned company of the Malaysian Government under

the Ministry of Finance Incorporated. SIRIM is recognized the world over as a global

research and standards development organization. SIRIM focus on discovering and

developing new technologies to help businesses compete better through quality and

innovation. Besides that, SIRIM also continuously reinventing the way we do things and

ensuring that they remain market-driven, flexible, cost-effective, and responsive to our

13

clients. ISO organization is responsible for developing standards for products and services

that identify a need for standardization. The ISO is usually contacted by a sector of an

industry or stakeholders in a product and asked to develop a standard, such as those created

for manufacturing. ISO helps governments around the world create environmental, health

and safety policies. The ISO helps test products during the standard-setting process. Many

international trade agreements also incorporate ISO standards. ISO standards allow

consumers to buy and use products safely. The use of ISO branding allows products to be

produced safely and efficiently.

14

2.5 Comparision Study

 Function Point (FP) Lines Of Code (LOC)
Definition measure software size by quantifying

its functionality provided to the user,
based on the requirements and
logical design.

measure the amount of code in a
software program typically used to
estimate the amount of effort that will
be required to develop a program, as
well as to estimate productivity once
the software is produced.

Structure Consist of 5 major components. Consist of 2 parts. 1st part – provide a
base estimate as a function of software
size.
2nd part-modifies the base estimate to
count for the influence of environment
factors

Advantages Helps Monitor Scope Creep :
provide a mechanism to track and
monitor scope creep. The FP count at
the end of requirements and/or
designs can be compared to FP
actually delivered. If the project has
grown, there has been scope creep.
Ease of Contract Negotiations:
From a customer view point,
Function Points can be used to help
specify to a vendor, the key
deliverables, to ensure appropriate
levels of functionality will be
delivered, and to develop objective
measures of cost-effectiveness and
quality. They are most effectively
used with fixed price contracts as a
means of specifying exactly what
will be delivered

An intuitive metric :
Line of Code serves as an intuitive
metric for measuring the size of
software due to the fact that it can be
seen and the effect of it can be
visualized

Scope for Automation of Counting:
Since Line of Code is a physical
entity; manual counting effort can be
easily eliminated by automating the
counting process. Small utilities may
be developed for counting the
SLOC in a program.

15

Function Point (FP)

Use of Historic Data : Once project
size has been determined in Function
Points, estimates for Duration,
effort, and other costs can be
computed by using historic data.
Since FP is independent of languages
or tools, data from similar past
projects can be used to produce
consistent results

Enables Better Communication:
FP can help improve
communications with senior
management since it talks in terms of
functionality rather than any
implementation details, technical
aspects, or physical code.

Offers Better Benchmarking:
Since FP is independent of language,
development methodology,
programming practices, and
technology domain, projects using
FP become better candidates for
benchmarking across organizations
and geographies.

Lines Of Code (LOC)

Disadvantages Necessitates Significant Level of
Detail: A great level of detail is
required to estimate the software size
in terms of Function Points

Requires Experience: Function
Point Analysis requires good deal of
experience if it were to be done
precisely. FPA inherently requires
sufficient knowledge of the counting
rules, which are comparatively
difficult to understand.

Lack of Accountability: It is
completely inaccurate and unfortunate
to have to measure the productivity of
a development project with the
outcome of one of the phases (coding
phase) which usually accounts for only
30% to 35% of the overall effort.

Lack of Cohesion with Functionality
: skills developer may able to produce
a program with less code compared to
less skilled developer. so one program
with less LOC may exhibit more
functionality than another similar
program

16

Table 2.1 Comparison between Function Point and Lines of Code

Function Point (FP)

Size of a system in unadjusted
function points (UFPs): The
classification of all system
component types as simple, average
and complex is not sufficient for all
needs.

Interpreting on-line interactive
transactions : Difficulty when each
input data element is followed by an
output response on the same screen.
Does not sure if the screen was
suppose to count as output, or input
or both.

Lines Of Code (LOC)

Developer’s Experience :
Implementation of a specific logic
differs based on the level of
experience of the developer. Hence,
number of lines of code differs from
person to person.

Difference in Languages- when
applications are written in different
language, the aspects of the
application would be different, thus
the amount of effort also will be
different.

Lack of Counting Standards- There
is no standard definition of what a line
of code is.

17

2.6 Function Point Technique

The first step that does to count the function point is identifying the system functional

components to compute the crude functions points (CFP). There are five types of

software system components that are considered in counting the CFP such as the user

inputs, user outputs, user online queries, logical files and external interfaces. Each

component is then further classified as being simple, average or complex depending on

the number of data elements in each type and other factors. Each component is then

assigned a points value on the basis of its type and complexity. The point’s values of all

the components are summed then to give a size for the system in crude functions points

(CFP). Each software system component is multiplied according to its weight factor .

Software
System

Component

Complexity Level Total
CFP

Simple Average Complex

Count Weight
factor

points Count Weight
factor

points Count Weight
factor

points

A B C =
A×B

D E F =
D×E

G H I =
G×H

J=C+F+I

User inputs 3 4 6

User Outputs 4 5 7

User Online
Queries

 3 4 6

Logical Files 7 10 15

External
Interfaces

 5 7 10

Total CFP

Figure 2.2 Crude Function Point Calculation Table

18

The second step is calculating the relative complexity adjustment factor (RCAF). The

RCAF summarizes the complexity characteristics of the software system by assigning

grades (0 to 5) to the fourteen General Application Characteristics that affect the

requirement development efforts.

No

.

Subjects Grades

1 Requirement for reliable backup and recovery. 0 1 2 3 4 5

2 Requirement of data communication 0 1 2 3 4 5

3 Extend of distributed processing 0 1 2 3 4 5

4 Performance requirement 0 1 2 3 4 5

5 Expected Operational requirement 0 1 2 3 4 5

6 Extend of online data entries 0 1 2 3 4 5

7 Extend of multi screen or multi operation online data input 0 1 2 3 4 5

8 Extend of online updating of master files 0 1 2 3 4 5

9 Extend of complex inputs, outputs, online queries and files 0 1 2 3 4 5

10 Extend of complex data processing 0 1 2 3 4 5

11 Extend that currently developed code can be designed for

reuse

0 1 2 3 4 5

12 Extend of conversion and installation included in the design 0 1 2 3 4 5

13 Extend of multiple installation in an organization and variety

of customer organizations

0 1 2 3 4 5

14 Extend of change and focus on ease of use. 0 1 2 3 4 5

Total = RCAF

Table 2.3 Relative Complexity Adjustment Factor Table

 The last step is calculating number of Function Point. The number of function point is

calculated by the following formula:

FP = CFP × (0.65 + 0.01 × RCAF)

19

2.6.1 Example of Function Point Calculation.

The Attend-master software system

The attend-master is a basic employee attendance system that is planned to serve small

to medium-sized businesses employing 10–100 employees. The system is planned to

have interfaces to the company’s other software packages: Human-Master, which serves

human resources units, and Wage-Master, which serves the wages units. Attend-Master

is planned to produce several reports and online queries. The scheme of the planned

software system is shown in the data flow diagram (DFD) shown in Figure 2.4.

Figure 2.3.The attend-master data flow diagram.

20

Step 1. Calculating the crude function point

Analysis of the software system as presented in the DFD summarizes the number of the

various components:

 Number of user inputs – 2

 Number of user outputs – 3

 Number of user online queries – 3

 Number of logical files – 2

 Number of external interfaces – 2.

The degree of complexity (simple, average or complex) was evaluated for each

component (shown in table 2.5), after which CFP calculations were performed.

Software

System

Component

Complexity Level Total

CFP

Simple Average Complex

Count Weight

factor

points Count Weight

factor

points Count Weight

factor

points

A B C =

A×B

D E F =

D×E

G H I =

G×H

J=C+F

+I

User inputs 1 3 3 - 4 - 1 6 6 9

User Outputs - 4 - 2 5 10 1 7 7 17

User Online

Queries

1 3 3 1 4 4 1 6 6 13

Logical Files 1 7 7 - 10 - 1 15 15 22

External

Interfaces

-- 5 - - 7 - 2 10 20 20

Total CFP 81

Table 2.4 Calculate CFP

21

Step 2. Calculating the Relative Complexity Adjustment Factor (RCAF)

No

.

Subjects Grades

1 Requirement for reliable backup and recovery. 0 1 2 3 4 5

2 Requirement of data communication 0 1 2 3 4 5

3 Extend of distributed processing 0 1 2 3 4 5

4 Performance requirement 0 1 2 3 4 5

5 Expected Operational requirement 0 1 2 3 4 5

6 Extend of online data entries 0 1 2 3 4 5

7 Extend of multi screen or multi operation online data input 0 1 2 3 4 5

8 Extend of online updating of master files 0 1 2 3 4 5

9 Extend of complex inputs, outputs, online queries and files 0 1 2 3 4 5

10 Extend of complex data processing 0 1 2 3 4 5

11 Extend that currently developed code can be designed for

reuse

0 1 2 3 4 5

12 Extend of conversion and installation included in the design 0 1 2 3 4 5

13 Extend of multiple installation in an organization and variety

of customer organizations

0 1 2 3 4 5

14 Extend of change and focus on ease of use. 0 1 2 3 4 5

Total = RCAF 41

Table 2.5 Relative Complexity Adjustment Factor Example Table

Step 3. Counting the Function Point

FP = CFP × (0.65 + 0.01 × RCAF)

FP = 81 × (0.65 + 0.01 × 41)

 = 85.86

22

2.7 Use of Analytic Hierarchy Process (AHP) as an indicator in Function Point.

Analytic Hierarchy process is a process where it takes consideration of all the choices

not based on a particular choice. It can said to be as a group decision making where it

involves, expert judgments and opinion asking. After consideration by all the choices

then only the perfect decision is made. With the help of the AHP technique in

estimating the system using function point would be a great advantage because it will

let choices that were not chosen to improve their characteristics.

Using AHP in estimation system is a good choice because it allows us to do comparison

with all the choice. By doing comparison with all the choices that have been stated, the

percentage of confident for choosing the best answer is more.

23

CHAPTER 3

METHODOLOGY

3.1 Existing Process

 The existing function point estimation process estimates the total function point

value. The user need to identify the all the functionality that the project has before

proceed with the next step. Then once the functionality has been identified, all the

functionality is then multiplied with its respective weight factors before being add

together to get the total to get the crude function point.

 The next step is calculating the Relative complexity adjustment factor (RCAF).

The user needs to identify the complexity characteristic of the software by assigning a

grade between zero to five with zero meaning no influence and five meaning that

characteristic has an extensive influence throughout the project. There is fourteen

General Application Characteristics that affect the requirement development efforts.

All the values have been assigned to the fourteen general application characteristics will

be added together to get the total RCAF value before proceed with the last step.

 The last step in the process is calculating the function point where the user needs

to choose the RCAF value of the project that ranges from 0.65 to 1.35 where 0.65 is

chosen if all complexity has no influence and the maximum 1.35 if all complexity has

significant influence. Mostly the RCAF value will be lower than 1 because the majority

the complexity factors would be small influence. Once the value has been finalized, the

user needs find the total function point of the system by adding the RCAF value with

24

0.01 which is an empirically derived formula is multiplied with the total value of the

RCAF. Lastly this value is then multiplied with the CFP to get the Function point.

FP = CFP × (0.65 + 0.01 × RCAF)

3.2 Issues with Existing System.

 The existing system for the function point calculation is seemed to be focusing

on getting the function point, calculate the software cost, size, duration of the project

and optimizing staffing size. It is clearly understood that by using function point, the

ability to accurately estimate the project cost, duration and optimum project staffing

size besides its also helps to determine other important metrics, such as project defect

rate, cost per FP, and FP’s per hour. But at the same time, according to the research

conducted by Total Metrics Pty. Ltd shows that industry figures show that the risk of

project failure rapidly increases with project size. The research also stated that if the

function point is less than 3500 the possibility of failure is 20% and probability of

cancelation of project is 40% if the function point is over 5000.

 This function point method does not take account the risk factor in the

calculation of finding the function point. If the risk factor is taken as a consideration,

the chances for the project to fail or probability of cancelation can be reduced. Thus,

many projects can be saved from failures. The International Function Point Users Group

(IFPUG) should provide a guideline to all function point users where it contains the

amount range per function point counts according to the developers skill so that, there

will be a synchronization.

25

3.3 Technique

 The technique we are going to use in this research is analytic hierarchy process

(AHP). AHP technique is not making a decision by one particular person. It involves

making decision in groups. It has particular application in group decision making, and is

used around the world in a wide variety of decision situations, in fields such as

government, business, industry, healthcare, and education. As we all know AHP is a

structured technique for organizing and analyzing complex decisions. AHP is one of the

best theories of measurement that consider both the judgments from the experts and the

priority scales. The decision makers systematically evaluate its various elements by

comparing decision situation such as choice, ranking, prioritization, and bench marking.

The AHP technique can be done by using the following this steps which is state the

objective then define the criteria and lastly pick the alternative.

 In AHP, decision making involves many criteria and subcriteria used to rank

the alternatives of a decision. AHP first decompose their decision problem into a

hierarchy of more easily comprehended sub-problems, each of which can be analyzed

independently. The elements of the hierarchy can relate to any aspect of the decision

problem tangible or intangible, carefully measured or roughly estimated, well- or

poorly-understood anything at all that applies to the decision at hand.

 So, when we handling a software project, it would be easy for us to use this

technique to solve our problems or making decisions when we are in a tight situation

especially when we calculate how long it does take to finish the project. It also will

assist the project manager based on risk. The applications of AHP to complex decision

situations have numbered in the thousands, and have produced extensive results in

problems involving planning, resource allocation, priority setting, and selection among

alternatives.

 As for AHP, we can that using the AHP involves the mathematical synthesis of

numerous judgments about the decision problem at hand. The judgments are not based

on 1 particular person, its made by few higher experienced authority to make the final

judgment regarding which will be the best decision for that particular problem.

http://en.wikipedia.org/wiki/Group_decision_making
http://en.wikipedia.org/wiki/Decision_making
http://en.wikipedia.org/wiki/MCDA
http://en.wikipedia.org/wiki/Planning
http://en.wikipedia.org/wiki/Resource_allocation

26

Decision Making with AHP Modeling

Figure 3.1 AHP Technique

3.4 Validating Function Point Weighting Factor.

Albrecth (1979) and IFPUG (1994) use the weight table to assign he value to particular

individual function type. To determine empirically the weight coefficient for the IFPUG

function point method, a formal methodology has been proposed by Wittig et al. (1996).

To establish the weight factor Wittig et al. (1996) use the Analytic Hierarchy

Process(AHP). The AHP technique compares and relates pairs of individual. Users of

an Information system will be asked assess, based on which of two function types are

which the larger function types is and how large it is. When the samples needed is

sufficient of all the combinations it will produce a value set for FPA function types.

Wittig et al. (1998) have comes out with a collection of questionnaire which consist of

25 component pairs. The 25 component pair is selected from the total of 105 where 15

different components of function types (5 types with 3 complexity levels each). Within

each of the 5 function types all three combinations between the three complexity levels

were included. It ensured, however, that the assessor was familiar with the function

types. It further provided a variety of different instances of individual components.

Define the decision
problem

(State the objective)

Decompose problem
into criteria selection

and alternative

Using judgments to
Determine the

ranking
of the criteria

Synthesize these
judgments to yield a

set of overall priorities
for the hierarchy

Check the
consistency of the

judgments.

Come to a final
decision based on the
results of this process

27

Based on the research done by Wittig et al, during the first field test they found out that

assistance was required to provide assessment criteria for functional size. the paper also

stated that the IFPUG classification only covers individual function types and also

stated is the danger that either the development effort or the benefit to the business may

influence the judgment of functional size of a component.

The research comes out with the first results which is based on 23 projects. Later for a

more guidance purpose further 22 projects were collected and combined with the

previous 23 projects and analyzed. The data for the first result based on the 23 projects,

the second result based on 45 projects and Albrecht weight factors are compared. The

data are shown in the table below.

Figure 3.2 Research Outcome

The additional observations are very close to the initial results of the AHP study.

Overall the results appear to confirm Albrecht‘s weight factors. The transaction function

types, however, seem to score higher at the expense of the data oriented function which

appear to be overrated. The study also concluded that the function point calculation is

not far apart from the AHP calculation.

28

3.4 Hardware

 In order to develop the prototype of this thesis, hardware specifications are very

important. Table 3.1 shows the hardware that has been used on to develop this system.

Hardware No. of

Quantity

Speculation Function

Laptop 1 I. Intel® Core™ i5

CPU M640 @

2.53GHz

II. RAM 4.00GB

III. Microsofts Windows

7

Prepare Document

and prototype

Printer 1 Canon PIXMA E500 To print the

documents

USB device 1 Pendrive 8GB To store data as

backup

Table 3.1 Hardware item that will be used for this thesis

29

3.5 Software

 In order to develop this system, the software specification is important. Table

3.2

shows the software that has been used on to develop this system.

Software Function

Microsoft Office

 Microsoft Word 2003 & 2007

 Microsoft PowerPoint 2003 & 2007

 Microsoft Project 2003 & 2007

Prepare proposal and documentation

Presentation

Gantt Chart, schedule and planning

Web Browser Software:

 Mozilla Firefox

 Google Chrome

 Find information in the internet

Visual Studio 2010 Do the prototype

Operating System Microsoft Windows 7

Table 3.2 Software items that will be used for this thesis

30

3.6 Flow Chart

Figure 3.3 Flow chart

31

3.7 Gantt Chart

Please refer to Appendix A

32

CHAPTER 4

IMPLEMENTTATION

4.1 Introduction

 This chapter discusses about the implementation of the system proposed

thesis with the coding into the interface.

This phase is one of the important phases where the prototype is being developed based

on the requirement that has been discussed in previous chapter. The data for this thesis

was taken from UMP Automatic Sports Facilities Management System. Only two

modules will be taken out of thirdteen modules in the project which is Booking module

and Manage Facilities Module. The modules are taken based on the SRS (Software

Requirement Specification) document. SRS is a document where it contains the

description and features of the system, the interfaces of the system, what the system will

do, the constraints under which it must operate and how the system will react to external

stimuli.

4.1.1 Introduction about Booking Module

 The booking module is one of the modules in the UMP Automatic Sports

Facilities Management System where user needs to select the facilities and quantity

first. Then proceed with the start booking date, start booking time, end booking date and

end booking time. Then user needs to click save booking to validate the data and save

33

the booking the database. If user does not want to continue the user can cancel the

booking that the user wants to do by clicking cancel instead of save booking.

Figure 4.1 Booking Facilities Use Case Diagram

Basic Flow of the Module

i. User click the Booking Facilities Link

ii. Select Booking facilities(ex-Field/squash court)

iii. Then user enter the start booking date and time

iv. Enter the end booking date and time

v. Then save/ cancel booking to proceed

vi. If the Information entered is Invalid, an error message appears.

vii. If valid, information is saved in the database.

34

Figure 4.2 Booking Facilities flow

35

4.1.2 Manage Facilities Module

Figure 4.3 Manage Facilities Use case Diagram

Basic flow of the module

i. Admin click the manage facilities link

ii. List of facilities appear

iii. Choose the one function

• Add facilities

 Click add facilities

 Fill in details such as facilities name, quantity, description and

category

 To save it click save / to cancel it click cancel and exit the

application

 If all the details valid, the data will be stored in the database

 If there is an invalid detail the system will show error for that

field fill in wrongly.

• Edit facilities

 Click on the edit image hyperlink

 Admin can edit the field that he wanted to edit

 Click on the update

• Delete facilities

 Click on the delete facilities link

 A prompt message ask for confirmation

36

 If admin proceed, the facilities that are not being used will be

deleted.

• Update facilities

• Sort facilities

 Click on the sort facilities link

 Admin can sort which link he wants to be first, second and so on.

37

Figure 4.4 Manage Facilities Module

38

4.2 Use Case Point Calculation

Use case point (UCP) modeling is a widely accepted estimation technique to capture the

business processes and requirements of a software application. UCP is usually is used

when the Unified Modeling Language (UML) and Rational Unified Process (RUP)

methodologies are being used for the software design and development. The concept of

UCP is based on the requirements for the system being written using use cases, which is

part of the UML set of modeling techniques. The time to complete the application is

affected by the number of steps to complete the use case, the number and complexity of

the actors, the technical requirements of the use case such as concurrency, security and

performance, and various environmental factors such as the development teams’

experience and knowledge.

 To determining the size estimate to develop a system using the UCP There

are four steps to be followed which is

• Unadjusted Use Case Weight (UUCW) – the point size of the software that accounts
for the number and complexity of use cases.

• Unadjusted Actor Weight (UAW) – the point size of the software that accounts for
the number and complexity of actors.

• Environmental Complexity Factor (ECF) – factor that is used to adjust the size
based on environmental considerations.

• Technical Complexity Factor (TCF) – factor that is used to adjust the size based on
technical considerations.

4.2.1 Unadjusted Use Case Weight (UUCW)

It is calculated based on the number of use case and its complexity. Each classification

of use case has a predefined weight assigned.

UUCW = (Total No. of Simple Use Cases x 5) + (Total No. Average Use Case x 10) +

 (Total No. Complex Use Cases x 15)

 = (1 x 5) + 0 + (1 x 15)

 = 20

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Use_cases

39

4.2.2 Unadjusted Actor Weight (UAW)

It is calculated based on the number and complexity of the actors for the system. Similar
to finding the UUCW, each of the actors must be identified and classified as Simple,
Average or Complex based the type of actor. Each classification also has a predefined
weight assigned.

UAW = (Total No. of Simple actors x 1) + (Total No. Average actors x 2) +

 (Total No. Complex actors x 3)

 = (0 x 1) + (0 x 2) + (2 x 3)

 = 6

4.2.3 Environmental Complexity Factor (ECF)

Environmental Complexity estimates the impact on productivity that various

environmental factors have on an application. Each environmental factor is evaluated

and weighted according to its perceived impact and assigned a value between 0 and 5. A

rating of 0 means the environmental factor is irrelevant for this project; 3 is average; 5

mean it has strong influence.

Environmental

Factor

Description Weight Perceived

Impact

E1 Familiarity with UML 1.5 4 6

E2 Application Experience 0.5 3 1.5

E3 Object Oriented Experience 1 5 5

E4 Lead analyst capability 0.5 2 1

E5 Motivation 1 1 1

E6 Stable Requirements 2 5 10

E7 Part-time workers -1 0 0

E8 Difficult Programming language 2 1 2

Total 26.5

Table 4.0 Environmental factor table

40

ECF = 1.4 + (-0.03 x EF)

 = 1.4 + (-0.03 x 26.5)

 = 0.605

4.2.4 Technical Complexity Factor (TCF)

The TCF is one of the factors applied to the estimated size of the software in order to

account for technical considerations of the system. It is determined by assigning a score

between 0 (factor is irrelevant) and 5 (factor is essential) to each of the 13 technical

factors listed

Factor Description Weight Perceived

Complexity

Calculated

Factor

T1 Distributed system 0 2 0

T2 Response time/performance objectives 2 3 6

T3 End-user efficiency 2 3 6

T4 Internal processing complexity 1 2 2

T5 Code reusability 2 3 6

T6 Easy to install 0.5 5 2.5

T7 Easy to use 0.5 4 2

T8 Portability to other platforms 1.5 3 4.5

T9 System maintenance 1 3 3

T10 Concurrent/parallel processing 0.5 3 1.5

T11 Security features 2 3 6

T12 Access for third parties 1 5 5

T13 End user training 1 3 3

 47.5

Table 4.1 Technical Complexity Factor table

41

TCF = 0.6 + (TF/100)

= 0.6 + (47.5/100)

=1.075

4.2.5 Total UCP

There are few steps to be followed to calculate the total UCP. The first step is to add the

UUCW value and UAW value together. Then the value is multiplied with the ECF and

then the TCF.

UCP = (UUCW + UAW) x ECF x TCF

 = (20 + 6) x 1.075 x 0.605

 = 16.91

Estimated Effort = UCP x Hours/UCP

 = 16.91 x 20

 = 338.2 hours

Effort applied hour/per week

=338.2/30

=11.27 weeks

= 2.8 months

42

4.3 Basic COCOMO

The basic COCOMO'81 model is a single-valued, static model that computes software

development effort (and cost) as a function of Program size which is expressed in

estimated thousands of source lines of code (SLOC). COCOMO applies to three classes

of software projects which are organic projects, semi-detached project and embedded

projects. Organic projects means "small" teams with "good" experience working with

"less than rigid" requirements meanwhile semi-detached projects means “medium"

teams with mixed experience working with a mix of rigid and less than rigid

requirements. An embedded project means projects developed within a set of "tight"

constraints. It is also combination of organic and semi-detached projects including the

hardware and software. The formula for basic COCOMO is stated below.

4.3.1 The Formula

 The first step of basic COCOMO formula is we need to calculate the Effort

Applied based on the given formula where we need to multiple the total KLOC with the

coefficient of ab before being powered by bb.

Effort Applied (E) = ab(KLOC)b
b [man-months]

Development Time (D) = cb(Effort Applied)d
b [months]

Since the KLOC is not very big and it’s just comprises 2 modules of a software project,

it will be suitable to use organic class. The coefficients ab, bb, cb and db are given in the

following table

Software Project ab bb cb db

Organic 2.40 1.05 2.50 0.38

Semi-Detached 3.00 1.12 2.50 0.35

Embedded 3.60 1.20 2.50 0.32

Table 4.2 Coefficient for basic COCOMO formula

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Man-month

43

Manage facilities

Figure 4.5 Total numbers of lines in Manage Facilities module

Booking Facilities

Figure 4.6 Total numbers of lines in Booking Facilities module

KLOC = (276 + 280) /1000

 = 0.556 KLOC

Effort Applied (E) = ab(KLOC)b
b

 =2.4 (0.556) ^ 1.05

 =1.354

 Development Time (D) = cb(Effort Applied)d
b

 = 2.5 (1.354) ^ 0.38

 = 1.56 months

44

4.4 Function Point

Calculating the Crude Function Point (CFP)

Software
System

Component

Complexity Level Total
CFP

Simple Average Complex

Count Weight
factor

points Count Weight
factor

points Count Weight
factor

points

A B C =
A×B

D E F =
D×E

G H I =
G×H

J=
C+F+I

User inputs 2 3 6 1 4 4 0 6 0 10

User Outputs 2 4 8 0 5 0 0 7 0 8

User Online
Queries

0 3 0 0 4 0 0 6 0 0

Logical Files 1 7 7 1 10 10 0 15 0 17

External
Interfaces

0 5 0 0 7 0 0 10 0 0

Total CFP 21 14 0 35

Table 4.3 Crude Function Point Calculation

45

RCAF

No

.

Subjects Grades

1 Requirement for reliable backup and recovery. 0 1 2 3 4 5

2 Requirement of data communication 0 1 2 3 4 5

3 Extend of distributed processing 0 1 2 3 4 5

4 Performance requirement 0 1 2 3 4 5

5 Expected Operational requirement 0 1 2 3 4 5

6 Extend of online data entries 0 1 2 3 4 5

7 Extend of multi screen or multi operation online data input 0 1 2 3 4 5

8 Extend of online updating of master files 0 1 2 3 4 5

9 Extend of complex inputs, outputs, online queries and files 0 1 2 3 4 5

10 Extend of complex data processing 0 1 2 3 4 5

11 Extend that currently developed code can be designed for

reuse

0 1 2 3 4 5

12 Extend of conversion and installation included in the design 0 1 2 3 4 5

13 Extend of multiple installation in an organization and variety

of customer organizations

0 1 2 3 4 5

14 Extend of change and focus on ease of use. 0 1 2 3 4 5

Total = RCAF 27

Table 4.4 RCAF calculation Point

FP = CFP × (0.65 + 0.01 × RCAF)

 = 35 × (0.65 + 0.01 × 27)

 = 32.2

Duration: 32.3 / 20 hours per week

 : 1.61 weeks

 ~ Approximately 2 weeks

46

4.5 Estimation System Prototype

From the study that has been made, a prototype has been designed. This part will show

the prototype interface with the explanation for each interface.

Main Page

Figure 4.7 Prototype main page

This is the main interface of the prototype where there user just need to click the enter

button to go to other interface.

47

Choose System Size Interface

Figure 4.8 Choose system size interface

In this interface, the user needs to select the size of the user system. It is not going to be

wrong if the user select the wrong system size because the user still able to do changes

for the given criteria in the next interface and calculate the Crude Function Point.

Simple System Crude Function Point

Figure 4.9 CFP calculation interface

This is the interface for the user to calculate the Crude Function Point. There has been

value which is already inserted based on a simple project. If the user feels the value is

48

not appropriate for the user system, the user can change it. Then click on the calculate

button to calculate the total crude function point.

Simple system RCAF

Figure 4.10 RCAF calculation interface

This interface will calculate the Relative Cumulative Adjustment Factor. Just as the

previous interface the values are already inserted based on a simple project. If user feel

the value is not appropriate to count the user’s system the user can change the value

based on the system.

49

Function Point Calculation

Figure 4.10 Calculation Function Point

Figure 4.11 The Next button is enabled after the calculation

The CFP value and RCAF that have been calculated earlier is brought forward to

calculate the overall function point of the system. Once the Function Point is calculated

then only the user is allowed to continue to the next page. Once calculated the system

will show if the system is a simple, average or complex based on the Function point

calculated.

50

Measurement

 Figure 4.12 Calculate Duration

Figure 4.13 Calculate the cost

This interface will count the duration to develop the system. The duration is calculated

based on how many hour can the programmer can develop number of function points

per week. Once the calculate duration button is clicked the calculated function point

51

will be divided with the number of function point developed in hours per week. Then

click on the cost button to calculate the cost to develop the system. If the developer

feels the cost per function is too high or low the user can change cost.

4.6 Implementation Findings

 Based on the study and comparison that has been done, it shows that among the

chosen estimation method function points is the best method to be chosen as a software

estimation technique. Two modules from a project have been decided to use in this

study for finding out which of the three techniques among function point, use case point

and basic COCOMO is the best technique. The result show when using function point

technique, the software project can be done earlier compared with the other two

techniques. The duration taken by function point to develop the two modules is

approximately 2 weeks when compared with use case point where it takes 2.8 months

and basic COCOMO 1.56 months. Thus, this proves that using function points for

software estimation would be a good decision.

52

Chapter 5

DISCUSSION AND CONCLUSION.

5.1 Discussion

This chapter will be discussing on the result of the research on Estimation system Using

Function point. Based on the prototype developed and after the testing phase, the

prototype able to work without any error with the inputs from the users.

 From the study that had been done on estimation system using function

point, it is proven that the studies do support the title. The main purpose of this study

was to prove that function point is the best estimation technique among the three

techniques that had been proposed. The results do support the claims that function point

is the best method to be chosen as the estimation technique in a software project.

 Although function point do have few disadvantages it requires only those

have enough experience in calculating the system size and needs great level of detail is

required to estimate the software size but this can be overcome with the help from the

professionals or senior manager in the company. A research paper shows that in

Malaysia shows that based on their survey on 30 software companies in Kuala Lumpur

and Selangor indicates that the “Expert Judgment” model achieve the highest average

score in this research. It justifies that the project managers have the theoretical and

practical knowledge of Expert Judgment in relation to estimation method. It also

indicates that the Expert Judgment is the most popular method used. (Zulkefli, M.,

Zarinah, M.K., Habibah, A., Saadiah). There should be more exposure about function

point and the significant advantages.

53

5.2 Constraints

 One of the experienced constraints while doing this thesis is the need of

Software Requirement Specification (SRS) document from the industries. The SRS

document contains all the specific details of a project which makes it to be private and

confidential. Sometimes before the company starts to develop the project, an agreement

is signed between the two parties stating all the details regarding the projects should not

be revealed out without owner’s permission.

 Besides, only limited people can use this technique. For function point

technique, only people with more experience and qualified as professionals can use this

technique. In order to be specific in estimating the size of software, function point needs

all the specific details of a project accurately and only professionals know how to define

the complexity of the project.

 The prototype that was done is a standalone system. The user is tied to the

specific platform for which the application is written. Upgrading the application to a

new version involves installations on each workstation, which can become cumbersome

for large organizations.

 The source available for function point technique on the internet is not

sufficient. There should be more examples on samples of project that have been

estimated the size. Thus this will make one to understand about function point technique

more.

 The last constraint is those who are planning to use this function point

technique should believe in this concept. Beliefs can be constructive and destructive. In

order to count the size of software to be measured correctly, one should beliefs that

function point will estimate the size accurately.

54

5.3 Conclusion

 As a conclusion, Function Point (FP) is the best method that can be used for

software cost and size estimation. Through the research and findings that was done, the

objective have been achieved where the results of the findings shows function points is

the best method to be chosen as the estimation technique. According to the results of

several researches presented in this paper, the root cause for software project failures is

inaccurate estimation in early stages of the project. So introducing and focusing on the

estimation methods such as function points seems necessary for achieving to the

accurate and reliable estimations.

 Although FP have few disadvantage, but it does not give much impact to the

estimation. By using FP as a method for software estimation, the project size and cost

can be estimated accurately and efficiently. Besides that, FP value also allows user to

estimating the effort, schedule and defect in the project. By having an accurate cost

estimation and size in the project planning phase, the project can be delivered to the

customer on time. Thus, this will maintain a good reputation of the company.

 For future improvement, this technique should be applied in few projects in

order to see the rate of success using this function point technique. In addition, the

prototype should have more advance function where it can show the chart on successful

project rate because this could be a factor to increase the confident of the particular

person when estimating the size of the software. Furthermore, the prototype can be

upgraded more where when there is too much different among the inputs in the crude

function point, the system can remind the user about it.

55

Reference

Zulkefli, M., Zarinah, M.K., Habibah, A., Saadiah, Y. . 2011.Current Practices of

Software Cost EstimationTechnique in Malaysia Context. ICIEIS Part I, CCIS 251, pp.

566–574.

 M.A. Al-Hajri, A.A.A. Ghani, M.S. Sulaiman, M.H. Selamat,. 2005. Modification of

standard function point complexity weights system,” Journal of Systems and Software

vol.74 ,195–206.

Iman.A, Ow.S.H . 2008. Project management Practices: The criteria for success and

failure. Commuication of the IBIMA Volume 1.

Wikipedia contributors. 2012. Estimation. (Online)

http://en.wikipedia.org/w/index.php?title=Estimation&oldid=517418923

C. Jones. Proprammina Productivirv. New York: McGraw-Hill, 1986.

Matson.J.E, Barrett.E.B.,Mellichamp.J.M., 1994. Software Development Cost

EstimationUsing Function Points. IEEE Transactions On Software Engineering, 20.

275-285

Gao.X.,Lo.Bruce,.1995An Integrated Software Cost Model Based on COCOMO and

Function Point Approaches. IEEE. 86-93.

Low,G.C. And Jeffery,D.R. 1990. Function Points in the Estimation and Evaluation of

the Software Process. IEEE Transactions On Software Engineering. 16. :64-71

Zheng.Y, Wang.B, Zheng.Y, Shi.L. 2009. Estimation of software projects effort based

on function point. 4th International Conference on Computer Science & Education.

941-943

Dekkers.T.: Function Point Analysis. Software Estimation Series– sheet 2.1-2

http://en.wikipedia.org/w/index.php?title=Estimation&oldid=517418923

56

Carol A.D., Aguiar.M: Applying Function Point Analysis to requirement completeness.

8.

Greene.J. :Can Function Points Be Used To Real-Time, Scientific,Object-Oriented,

Extreme Programmed, Or Web-Based Software. IT metrics Strategies vol. VII, no. 7. 1-

16.

Bhushan, Navneet; Kanwal Rai (January 2004).Strategic Decision Making: Applying

the Analytic Hierarchy Process. London: Springer-Verlag. ISBN 1-85233-756-7.

Linda M. Lair. M. Carol Brennan. 2006. Software Measurement and Estimation: A

Practical Approach. Hoboken, New Jersey; John Wiley & Sons, Inc.

2013. Analytic Hierarchy Process (online).

http://en.wikipedia.org/w/index.php?title=Analytic_hierarchy_process (21 March 2013)

2013. Source lines of codes (online).

http://en.wikipedia.org/w/index.php?title=Analytic_hierarchy_process (11 September

2012)

Tichenor, Charley. "Recommendations for Further Function Point Research."

SoftwareMetrics.Com (14 September 2012)

Yuri Marx Pereira Gomes (2006-2013). Functional Size, Effort and Cost of the SOA

Projects with Function Points. http://www.servicetechmag.com/I68/1112-4 (21

February 2013)

IFPUG 1994. Function Point Counting Practices Manual, Release 4.0, International

Function Point User Group, 5008-28 Pine Creek Drive, Westerville, OH 43081-4899,

USA.

http://www.amazon.com/dp/1852337567
http://www.amazon.com/dp/1852337567
http://www.amazon.com/dp/1852337567
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-85233-756-7
http://en.wikipedia.org/w/index.php?title=Analytic_hierarchy_process
http://en.wikipedia.org/w/index.php?title=Analytic_hierarchy_process
http://www.servicetechmag.com/I68/1112-4

57

International Function Point User Group. What are function points.

http://www.ifpug.org/?page_id=1143 . 20 November 2012

Rick Southard. 2000. Using Function Point Analysis.

http://www.umsl.edu/~sauterv/analysis/function_point/UsingFPAS3.html. 22 March

2013. 22 Disember 2012

Alvin Alexander. 2013. How to Determine Your Application Size Using Function

Points. http://conferences.embarcadero.com/article/32094. 15 Disember 2012

Abbas HeydarNoori. Function Point Analysis.

https://cs.uwaterloo.ca/~apidduck/CS846/Seminars/abbas.pdf. 26 May 2013

http://www.ifpug.org/?page_id=1143
http://www.umsl.edu/~sauterv/analysis/function_point/UsingFPAS3.html.%2022%20March%202013
http://www.umsl.edu/~sauterv/analysis/function_point/UsingFPAS3.html.%2022%20March%202013
http://gp.embarcadero.com/authors/edit/1513.aspx
http://conferences.embarcadero.com/article/32094
https://cs.uwaterloo.ca/~apidduck/CS846/Seminars/abbas.pdf.%2026%20May%202013

58

Appendix A

59

	4.2 Use Case Point Calculation
	To determining the size estimate to develop a system using the UCP There are four steps to be followed which is
	4.2.1 Unadjusted Use Case Weight (UUCW)
	It is calculated based on the number of use case and its complexity. Each classification of use case has a predefined weight assigned.
	UUCW = (Total No. of Simple Use Cases x 5) + (Total No. Average Use Case x 10) +
	(Total No. Complex Use Cases x 15)
	4.2.2 Unadjusted Actor Weight (UAW)
	UAW = (Total No. of Simple actors x 1) + (Total No. Average actors x 2) +
	(Total No. Complex actors x 3) = (0 x 1) + (0 x 2) + (2 x 3)
	TCF = 0.6 + (TF/100)
	= 0.6 + (47.5/100)
	=1.075
	Alvin Alexander. 2013. How to Determine Your Application Size Using Function Points. http://conferences.embarcadero.com/article/32094. 15 Disember 2012

