PRODUCTION OF SORBITOL FROM *MERANTI* WOOD SAWDUST USING SOLID STATE FERMENTATION (SSF) PROCESS

ZURIANA BT SIDI AHMAD

A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF ENGINEERING (BIO-PROCESS)

FACULTY OF CHEMICAL & NATURAL RESOURCES ENGINEERING UNIVERSITI MALAYSIA PAHANG

AUGUST 2013

ABSTRACT

The main objective of this research is to produce a high concentrations of sorbitol using solid state fermentation (SSF) of *meranti* wood dust by bacteria *Lactobacillus plantarum* (BAA 793; NCIMB 8826). Before the fermentation process, *meranti* wood dust has been treated through physical and chemical processes for the recovery of cellulose, followed by enzymatic hydrolysis process to produce glucose. The resulting glucose is then used as the carbon sources in fermentation to produce sorbitol. Parameters studied in sorbitol production using solid-state fermentation is fermentation time (2 hours to 14 hours), moisture content (40% to 90%) and temperature (25°C to 45°C). Method one factor at a time (OFAT) conducted on all parameters to determine an appropriate range before the response surface methodology (RSM) is implemented. From this study, the results showed that the optimum condition for the production of sorbitol is 29.0625g/L. Results of this experiment showed that SSF produce high sorbitol than SMF

ABSTRAK

Objektif utama kajian ini adalah untuk menghasilkan kepekatan sorbitol yang tinggi menggunakan proses penapaian keadaan pepejal (SSF) daripada habuk kayu *meranti* dengan bacteria *Lactobacillus plantarum* (BAA 793; NCIMB 8826). Sebelum proses penapaian, habuk kayu meranti telah dirawat melalui proses fizikal serta kimia untuk pemulihan selulosa dan diikuti dengan proses enzim hidrolisis untuk menghasilkan glukosa. Glukosa yang terhasil kemudiannya dijadikan sumber karbon dalam penapaian untuk menghasilkan sorbitol. Parameter yang dikaji dalam penghasilan sorbitol menggunakan proses penapaian keadaan pepejal adalah masa penapaian (2 hingga14 jam), kandungan lembapan (40% hingga 90%) dan suhu (25°C hingga 45°C). Kaedah satu faktor pada satu masa (OFAT) dijalankan terhadap semua parameter bagi menentukan julat yang sesuai sebelum kaedah tindak balas permukaan (RSM) dilaksanakan. Daripada kajian ini, keputusan menunjukkan bahawa keadaan optimum untuk penghasilan sorbitol adalah pada 10 jam, dengan 50% kandungan lembapan dan suhu 35°C dimana penghasilan sorbitol adalah pada 10 jam, dengan 50% kandungan lembapan dan suhu 35°C dimana penghasilan sorbitol adalah pada 10 jam, dengan 50% kandungan lembapan dan suhu 35°C dimana penghasilan sorbitol adalah pada 10 jam, dengan 50% kandungan lembapan dan suhu 35°C dimana penghasilan sorbitol adalah pada

TABLE OF CONTENTS

CHAPTER		ITEM	PAGE
	TITL	LE PAGE	i
	SUPE	ERVISOR'S DECLARATION	ii
	STUI	DENT'S DECLARATION	iii
	DED	ICATION	iv
	ACK	NOWLEDGEMENT	V
	ABST	ГКАСТ	vi
	ABST	ГКАК	vii
	TAB	LE OF CONTENT	viii-xix
	LIST	OF TABLES	xv-xvi
	LIST	OF FIGURES	xvii-xx
	LIST	OF SYMBOLS	xxi-xxii
	LIST	OF APPENDICES	xxiii
1	INTR	RODUCTION	1-5
	1.1	Background Study	1-2
	1.2	Problem Statement	2-3
	1.3	Research Objective	3-4
	1.4	Scope of the Study	4
	1.5	Rational and Significance	5

2 LITERATURE REVIEW 6-42

2.1	Backg	ground of Sorbitol	6
	2.1.1	Sorbitol Production	6-8
	2.1.2	Application of Sorbitol	9-10
	2.1.3	Advantages of Sorbitol	10
2.2	Proce	ess of Producing Sorbitol from Meranti	10-11
	wood	Sawdust	
	2.2.1	Woody Biomass as a Substrate	11-12
	2.2.2	Meranti wood Sawdust	12-13
	2.2.3	Lignocellulose	14
		i) Cellulose	14-15
		ii) Hemicellulose	15-16
		iii) Lignin	16-17
2.3	Pre-tr	reatment Process for Cellulose Recovery	17-18
	2.3.1	Type of Pretreatment	18
		i) Physical Pretreatment	18-19
		ii) Chemical Pretreatment	19
		iii) Biological Pretreatment	19
		iv) Hybrid (Combination)	19-21
		Pretreatment	
2.4	Hydro	olysis Process for Glucose Production	21
	2.4.1	Chemical Hydrolysis	21-22
	2.4.2	Enzymatic Hydrolysis	22-23
		i) Cellulase Enzyme	23-24

		ii) Cellobiose Enzyme	24-25
	2.4.3	Comparison of Chemical and Enzymatic	25-26
		Hydrolysis	
2.5	Conve	ersion Glucose to Sorbitol	26
	i)	Glucose as Substrate	26-27
	ii)	Microorganism	27-29
2.6	Subm	erged Fermentation Process	30
2.7	Hydro	ogenation Process	30-31
2.8	Solid	State Fermentation (SSF) Process	31-33
	2.8.1	Fermentation Operating Condition and	33
		Parameter	
		i) Temperature	33-34
		ii) Moisture Content	34
		iii) Fermentation time	35
		iv) Ph	35
	2.8.2	Summary of step involved in solid state	35-37
		fermentation (SSF)	
	2.8.3	Comparisons between Solid State	37-38
		Fermentation and Submerge	
		Fermentation	
	2.8.4	Advantages of Solid State Fermentation	39
		(SSF) Process	
	2.8.5	Application of Solid State Fermentation	39-40
		(SSF) Process	

2.9	Desi	gn Experiment using Ofat Experment and	40-41
	Resp	ponse Surface	
	Metl	hodology (RSM)	
2.10	Solie	d State Fermentation (SSF) Process And	41-42
	Opti	mization by Using Response Surface	
	Metl	hodology (RSM)	
ME	THODO	DLOGY	43-77
3.1	Mate	rials	43
3.2	Equi	pments	44-45
3.3	The V	Vhole Of Experimental Process	46
	3.3.1	Experimental Procedure for Whole Process	47-48
		of Production Sorbitol	
3.4	Meran	ti Wood Sawdust	48-49
3.5	Pretrea	tment Process	49-50
	3.5.1	Physical Pretreatment	50-51
	3.5.2	Predelignification Process Using Sodium	52-53
		Hydroxide (NaOH)	
	3.5.3	First Stage of Pretreatment using Peracetic	54-55
		Acid (CH ₃ COOOH)	
	3.5.4	Second Stage of Pretreatment	56-57
3.6	Enzyma	atic Hydrolysis	58-60
3.7	Glucose	e in Liquid Form Converted to Solid Form	61

3

3.8	Solid S	tate Fermentation (SSF) Process	62-63
	3.8.1	Strain/ Bacteria	64
	3.8.2	Preparation of MRS Agar and MRS Broth	64-65
	3.8.3	Striking Bacteria on Petri Dish	65-66
	3.8.4	Cultivation of Bacteria / Inoculums	67-68
		Preparation	
	3.8.5	Growth Profile of Lactobacillus Plantarum	68-69
		by using the MRS medium	
	3.8.6	Solid State Fermentation (SSF) Process	70-71
	3.8.7	Solid State Fermentation (SSF) process,	72-73
		One factor at a time (OFAT)	
	3.8.8	Design of Experiment (DOE): Experimental	73-75
		Planning	
3.9	Techr	iques to Analysis	75
	3.9.1	Kappa Number	76
	3.9.2	Dinitrosalicylic Colorimetric Method	77
		(DNS) using UV-VIS	
	3.9.3	Functional Group Using Fourier Transform	77
		Infrared (FTIR) Spectroscopy	

RESU	ULT AND DISCUSSION	78-115
4.1	The Composition of Meranti Wood Sawdust	78-79
4.2	Pretreatment of Meranti Wood Sawdust	79-80
4.3	Physical Pretreatment of Meranti Wood Sawdust	80
4.4	Chemical Pretreatment of Meranti Wood	80-85
	Sawdust	
	4.4.1 Characteristic of <i>Meranti</i> Wood	85-88
	Sawdust (Untreated)	
4.5	Conversion of Cellulose to Glucose Using	88-89
	Enzymatic Hydrolysis Process	
	4.5.1 Characteristic of Glucose after	89-90
	Enzymatic Hydrolysis Process	
4.6	Solid State Fermentation (SSF) Process of Glucose	91
	to Produce Sorbitol	
4.7	Profile Growth of Lactobacillus Plantarum	91-93
4.8	Production of Sorbitol using Solid State	93-98
	Fermentation (SSF) Process: One Factor at a Time	
	(OFAT)	
4.9	Production of Sorbitol using Solid State	98-110
	Fermentation (SSF) Process: Response Surface	
	Methodology (RSM)	
4.10	Production of Sorbitol using Solid State	110-111
	Fermentation (SSF) Process: Process Optimization	
4.11	Production of Sorbitol using Solid State	111-113

	Fermentation (SSF) Process: Validation of	
	Empirical Model Adequacy	
4.12	Comparisons the Result of Experimental Before	113-114
	Optimization and After Optimization	
4.13	Comparisons of Solid State Fermentation (SSF) and	114-115
	Submerged Fermentation (SmF)	
4.14	Comparing The Yield Of Sorbitol From Commercial	115
	Glucose and Glucose Pre-Treated from Meranti	
	Wood Sawdust Using SSF	
CON	CLUSION AND RECOMMENDATION	116-118
5.1	General Conclusions	116-117
5.2	Recommendation for Future Work	117-118
REF	ERENCES	119-125
APE	NDIXS	126-138

5

v

LIST OF TABLE

TABLE NO	TITLE	PAGE
Table 2.1	Properties of Sorbitol	7
Table 2.2	Application of Sorbitol	9-10
Table 2.3	Compositions in the several of wood sawdust	13
Table 2.4	Percent dry weight (% w/dw) composition of	13
	lignocelluloses from plants	
Table 2.5	Advantages and disadvantages of pre-treatment method	20-21
	for lignocellulosic material	
Table 2.6	Comparison of Chemical and Enzymatic Hydrolysis	26
Table 2.7	Summary of types of bacteria that used in produce sugar	29
	alcohol	
Table 2.8	The diverse range of agro-residues utilization in SSF	33
	technology	
Table 2.9	Summary of steps involved in SSF	36-37
Table 2.10	The differences between of solid state fermentation and	38
	submerged fermentation	
Table 2.11	Application of SSF	40
Table 3.1	List of Equipments and their Functions	44-45
Table 3.2	The composition of Meranti wood sawdust	49
Table 3.3	The number of preliminary experiment for fermentation	72
	process (Effect of time)	
Table 3.4	The number of preliminary experiment for fermentation	73

	process (Effect of moisture content)	
Table 3.5	The number of preliminary experiment for fermentation	73
	process (Effect of temperature)	
Table 3.6	The experimental range of variables process	74
Table 3.7	The arrangement of experiment using central composite	74-75
	design (CCD) for solid state fermentation process	
Table 4.1	The composition of meranti wood sawdust	79
Table 4.2	Assignments of IR Bands of Ash-Tree Wood	86
Table 4.3	The experimental layout and results of central composite	99-100
	design (CCD)	
Table 4.4	ANOVA for response surface quadratic model (partial	101
	some of square) response; sorbitol production (g/L)	
Table 4.5	The result of the optimum operational conditions for	111
	sorbitol production	
Table 4.6	The validation of experimental design	112
Table 4.7	The comparisons of results before optimization (OFAT)	114
	and after optimization (RSM)	

LIST OF FIGURES

FIGURES NO	TITLE	PAGE
Figure 2.1	The Structure of Sorbitol	8
Figure 2.2	Sorbitol and manitol degradation pathway for LDH-	8
	deficient strain of L. plantarum	
Figure 2.3	Representation of lignocelluloses structure showing	14
	cellulose, hemicelluloses and lignin fractions	
Figure 2.4	Cellulose microfibril	15
Figure 2.5	Structure of Hemicellulose	16
Figure 2.6	Structure of Lignin	17
Figure 2.7	Process of cellulose recovery	18
Figure 2.8	Structure of β-Cellobiose	25
Figure 2.9	Catalytic hydrogenation of D-glucose to D-sorbitol	31
Figure 2.10	Feature for solid state fermentation (SSF) system	32
Figure 3.1	The Experimental Process	46
Figure 3.2	Flowchart of whole experimental procedure	47-48
Figure 3.3	Whole process of Pre-treatment Meranti wood sawdust	50
Figure 3.4	Physical treatment of meranti wood sawdust	51
Figure 3.5	Process of Predelignification pretreatment using NaOH	53
	solution.	
Figure 3.6	Process of first stage pretreatment using PAA solution	55
Figure 3.7	Process of Second stage of pretreatment using H_2SO_4	57
Figure 3.8	Enzymatic hydrolysis process	60

Figure 3.9	Spray drying of Glucose	61
Figure 3.10	Flow chart for whole process of fermentation	63
Figure 3.11	MRS agar and MRS broth before autoclaved	64
Figure 3.12	Process preparation of MRS agar And MRS broth	65
Figure 3.13	Process of streaking bacteria on petri dish	66
Figure 3.14	Process of incubated bacteria	66
Figure 3.15	Process of purged nitrogen gas for inoculums preparation	67
Figure 3.16	Inoculums Preparation	68
Figure 3.17	Profile growth of bacteria process	69
Figure 3.18	SSF process	71
Figure 4.1	The lignin content in meranti wood sawdust after pre-	81
	treatment	
Figure 4.2	The percentage of lignin content removal in meranti	82
	wood sawdust	
Figure 4.3	Meranti wood sawdust after pre-deligninfication process	83
	using NaOH	
Figure 4.4	Meranti wood sawdust after the first stage process using	84
	PAA	
Figure 4.5	Meranti wood sawdust after second stage process using	85
	H_2SO_4	
Figure 4.6	FTIR spectra of meranti wood sawdust before treatment	87
Figure 4.7	FTIR spectra of meranti wood sawdust after second stage	87
	pretreatment using H ₂ SO ₄	
Figure 4.8	FTIR spectra of meranti wood sawdust for cellulose	87

standard

Figure 4.9	FTIR spectra of glucose after enzymatic hydrolysis	90
	process (after spray dried)	
Figure 4.10	FTIR spectra of glucose standard	90
Figure 4.11	The profile growth of Lactobacillus plantarum	93
Figure 4.12	Effect of fermentation time in the SSF process	94
Figure 4.13	Effect of moisture content in SSF process	96
Figure 4.14	Effect of temperature in the SSF process	98
Figure 4.15	Normal probability plot of residuals for sorbitol	103
	production	
Figure 4.16	The plot of residuals against predicted respnse of sorbitol	104
	production	
Figure 4.17	The interaction graph of sorbitol production from the	105
	model equation: effect of fermentation time (hours) and	
	moisture content %	
Figure 4.18	The interaction graph of sorbitol production from the	106
	model equation: effect of fermentation time (hours) and	
	temperature (°C).	
Figure 4.19	The interaction graph of sorbitol production from the	106
	model equation: effect of moisture content % and	
	temperature (°C).	
Figure 4.20	The three dimensional graph (3D) of sorbitol production	107
	from model equation: effect of fermentation time and	
	moisture content	

Figure 4.21	The three dimensional graph (3D) of sorbitol production		
	from model equation: effect of fermentation time and		
	temperature		
Figure 4.22	The three dimensional graph (3D) of sorbitol production	109	

from model equation: effect of moisture content and temperature

LIST OF SYMBOLS

SSF	-	Solid State Fermentamin
SmF	-	Submerged Fermentationb
OFAT	-	One Factor At a Time
RSM	-	Response Surface Methodology
CCD	-	Central Composite Design
G	-	Gram
g/L	-	Gram per Litre
Ml	-	Mililiter
Mm	-	Milimeter
Mg	-	Miligram
Nm	-	Nanometer
μl	-	Microliter
mol/L	-	Mol per Liter
FRIM	-	Forest Research Institute of Malaysia
w/dw	-	Weight per Dry Weight
w/v	-	Weight per Volume
LAB	-	Lactic Acid Bacteria
GRAS	-	Generally Recognised As Safe
ATCC	-	America Type Culture Collection

NaOH	-	Sodium Hydroxide
PAA	-	Peracetic Acid
CH ₃ COOOH	-	Peracetic Acid
H_2O_2	-	Hydrogen Peroxide
H_2SO_4	-	Sulfuric Acid
N_2	-	Nitrogen Gas
O ₂	-	Oxygen Gas
OD	-	Optical Density
DNS	-	Dinitrosalicylic
MC	-	Moisture Content
RH	-	Relative Humidity
a_w	-	Water Activity
HPLC	-	High Performance Liquid Chromatography
FTIR	-	Fourier Transform Infrared Spectrocopy
XRD	-	X-ray Diffraction

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Calculations of Pretreatment Process	126-127
В	Preparation of Buffer Solution	128
С	Experimental Pictures	129-135
D	HPLC Result	136-138

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND STUDY

Malaysia generates an abundance of agricultural wastes such as sawdust, sugar cane baggage, rice husk, rice straw, rubber wood dust, palm kernel cake and many other waste materials. The volume of the agricultural wastes' produced is approximately 5 million tons per year. To avoid this environmental problem, the management of agricultural wastes in this country must be given priority to ascertain the reduction of environment pollution (Pang *et al.*, 2006). The production of new chemicals and biochemical's today must be produced by utilizing minimum energy requirements and zero environmental pollution in order to achieve the environmental friendly status. Production of waste materials is actually an undeniable part of human society. Nowadays many products are produced from these wastes materials and one such product is sorbitol *from meranti* (*Philippine mahogany*) wood sawdust. *Meranti* tree sawdust is an inexpensive raw material and is currently being investigated as an absorbent (Anees *et al.*, 2009).

Production of sorbitol is important as an industrial chemical. It can be produced by the fermentation of glucose using a number bacteria such as *Lactobacillus sp., Zymomonas mobilis, E. Coli* as well as several others microorganisms. However, only a few microorganisms have been suggested as a potential sorbitol producer. Sorbitol or also known as glucitol, is a six-carbon sugar polyol and it has a variety of applications in the pharmaceutical industry, in the food industry as a low-calorie sweetener, humectants, texturing agent and also as a softener (Reinout *et al.*, 2010). Moreover, a polyol like sorbitol is generally used extensively in its liquid form as in in oral care products and it is

also expensive in its crystalline form. The world-wide production of sorbitol is estimated to be approximately 500,000 tons annually and the market for the product is continuously increasing (Ladero *et al.*, 2007).

The fermentation process to produce sorbitol can be divided in two types, namely solid state fermentation (SSF) which is still under intensive research and submerged fermentation (SmF), which is well established. Most of the industries, especially in Malaysia, rely on submerged fermentation where the bacteria or microorganisms are grown in liquid media and yet some industries also use the solid state fermentation process. Some authors such as Manpreet, (2005) have mentioned that SSF has a good option compared to the SmF process because less chances of contamination due to low water activity, better product recovery, low waste water output and others benefits. Besides that, the process using SSF has been increasing nowadays because it is an important process and has applications in bio-pesticides, production of enzymes and aroma compounds, biopharmaceutical and the production of organic acids. The development of the SSF process was achieved sometime around 1950 to 1960 when steroid transformation was reported using fungal culture followed by mycotoxin production using the SSF process (Manpreet *et al.*, 2005).

The present study on sorbitol fermentation is focused primarily on the effect of parameters (fermentation time, moisture content and temperature) on the solid state fermentation (SSF) process using the *Lactobacillus plantarum* (BAA793;NCIMB 8826) strain on *meranti* wood sawdust as substrate.

1.2 PROBLEM STATEMENT

Malaysia is a large country that produces many types of waste materials and one such waste material is wood sawdust. Malaysian sawmills were produced 3.4 million m³ annually of wood wastes. This waste production can result in a significant environmental problem if not disposed of in proper manner. The agro-industry likes sawdust as it has great potential as a substrate for sorbitol fermentation because it contains cellulose that can be

converted to glucose and then utilized by *Lactobacillus sp.* Such utilization would further increase profitability for the sorbitol industry and consequently solving an environmental problem.

Sorbitol can be produced by the fermentation of glucose by using either the solid state fermentation (SSF) process or the submerged fermentation (SmF) process. Solid state fermentation has gained renewed attention in the recent years. To produce a high yield of sorbitol, the solid state fermentation is used. SSF has the potential for the economical production of sorbitol. SSF also has many advantages over submerged fermentation including economy of space needed for fermentation, superior yield, less energy demand, low capital and recurring expenditure. The submerged fermentation (SmF) process on the other hand, has many drawbacks including lower production quantity compared to the solid state fermentation (SSF). In addition, submerged fermentation requires processed ingredients that are expensive and the media concentration is very much lower as compared to the water content. Submerged fermentation also uses a large amount of water in the process and therefore it becomes a major cause of contamination besides making the downstream process difficult and very expensive. In the SmF process, the level of liquid waste produced is very high and it will cause difficulties in dumping later on (Manpreet *et al.*, 2005).

1.3 RESEARCH OBJECTIVE

The main objective of this project is to produce a high yield of sorbitol by solid sate fermentation (SSF) using the *meranti* wood sawdust. To achieve this objective, the following steps has been carried out:

- To identify the effect of fermentation time, moisture content and temperature on the sorbitol concentration during solid state fermentation (SSF).
- To determine the optimum condition of solid state fermentation (SSF) which can produce high yield of sorbitol.

• To compare the conversion yield of sawdust and yield of sorbitol between solid state fermentation (SSF) and submerged fermentation (SmF), thereafter to compare the yield of sorbitol for commercial glucose between glucose pretreated from *meranti* wood sawdust using solid state fermentation (SSF).

1.4 SCOPE OF THE STUDY

There are mainly four scopes in this research:

- The characterization of *meranti* wood sawdust (raw material), cellulose (after pretreated *meranti* wood sawdust) and glucose (after enzymatic hydrolysis) was done before the reaction and separation was carried out. The *meranti* wood sawdust was characterized based on the Forest Research Institute of Malaysia (FRIM) laboratory by using in house (FRIM) methods and functional groups (FTIR), while the cellulose and glucose characterized by its functional group (FTIR) and quantitative analysis (HPLC).
- The glucose produced after the enzymatic hydrolysis process was used in this study in order to investigate the parameters (fermentation time, moisture content and temperature) controlling the sorbitol production for the (OFAT) study. The amount of sorbitol was analyzed using the HPLC method.
- Prior to its application and in order to determine the optimum condition for sorbitol production (fermentation time, moisture content and temperature), the response surface methodology (RSM) was performed. This phase is very important in order to determine the optimum yield of sorbitol production.
- Commercial glucose was used in this study to produce sorbitol in order to compare the concentration of sorbitol and/between glucose from pretreated *meranti* wood sawdust using the optimum condition of parameters (fermentation time, moisture content and temperature).