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Abstract—Optimization problem relates to finding the best
solution from all feasible solutions. Over the last 30 years, many
meta-heuristic algorithms have been developed in the literature
including that of Simulated Annealing (SA), Genetic Algorithm
(GA), Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO), Harmony Search Algorithm (HS) to name a
few. In order to help engineers make a sound decision on the
selection amongst the best meta-heuristic algorithms for the
problem at hand, there is a need to assess the performance of
each algorithm against common case studies. Owing to the fact
that they are new and much of their relative performance are still
unknown (as compared to other established meta-heuristic
algorithms), Bacterial Foraging Optimization Algorithm (BFO)
and Bat Algorithm (BA) have been adopted for comparison using
the 12 selected benchmark functions. In order to ensure fair
comparison, both BFO and BA are implemented using the same
data structure and the same language and running in the same
platform (i.e. Microsoft Visual C# with .Net Framework 4.5).  We
found that BFO gives more accurate solution as compared to BA
(with the same number of iterations).  However, BA exhibits
faster convergence rate.

Keywords— metaheuristc optimization algorithms; meta-
heuristics algorithm; bat algorithm; bacterial foraging optimization
algorithm;

I. INTRODUCTION

Solving optimization problem using population based meta-
heuristics algorithm has been investigated for over a few
decades. As the optimization problems become more and more
complex (e.g. with multi-objectives requirements), existing
meta-heuristics algorithms appear not scaling well as there is
no one size fit all solutions to all problems. Here, identification
of new meta-heuristics algorithm is most welcome [1].

In order to help engineers make a sound decision on the
selection amongst the best meta-heuristic algorithms for the
problem at hand, there is a need to assess the performance of
each algorithm against common case studies. Owing to the fact
that they are new and much of their performance is still
unknown (as compared to other established meta-heuristic
algorithms), Bacterial Foraging Optimization Algorithm (BFO)
[2] and Bat Algorithm (BA) [3] have been adopted for
benchmark comparison using the 12 selected benchmark
functions. In order to ensure fair comparison, both BFO and
BA are implemented using the same data structure and the

same language and running in the same platform (i.e. Microsoft
Visual C# with .Net Framework 4.5). Here, our aim for
making this comparison is to select the suitable meta-heuristic
algorithm for solving the t-way test data generation problem.

We have developed two GUI application implementing BA
and BFO algorithm called BAapp and BFOapp respectively.
Here, the developed applications are based on the original
pseudo code by Yang 2010 [3] and Passino 2002 [2] without
any modifications.

The remainder of the paper is organized as follows. Section
2 briefly reviews BA and the experiment implementation of it
application BAapp. Section 3 briefly reviews BFO and the
experiment implementation of it application BFOapp. Section 4
elaborates on the results of the experiments. Section 5 provides
concluding remarks and our plan for further work.

II. BAT ALGORITHM IMPLEMENTATION

A. Bat Algorithm (BA)
Bat algorithm (BA) is ta new population based meta-

heuristic algorithm founded on the hunting behavior of
Microbats. The algorithm has been built on the assumption that
the bat is able to find its prey in complete darkness [4]. The bat
position represents a possible solution of the problem. The best
position of a bat to its prey indicates the quality of the solution.
Here, obstacles are avoided using echolocation. In such a case,
different frequencies are returned [4, 5]. Generally, the BA has
three main assumptions [3, 6]:

 All bats are using echolocation to intelligently calculate
distance. They know the difference between food/prey and
the surrounding environment background in magical way.

 Bats are flying randomly using velocity vi at position xi.
They automatically adjust emitted pulses and adjust the
rate of pulse emission r ∈[0, 1], of their echolocation
frequency.

 Although the loudness could be different in several ways,
Here, it is assumed that the loudness change from a large
(positive) A0 to a minimum value Amin.

The pseudo code of the Bat algorithm can be seen in Fig. 1.
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The pseudo code of the Bat algorithm
[1]. Objective function , 	 	, … ,
[2]. Initialize the bat population and velocities for1,2,… , 	 	
[3]. Define pulse frequency ∈ 	,
[4]. Initialize pulse rates and the loudness
[5]. While // number of iterations besed on No. of generation and

No. of bats.
Generate new solutions by adjusting frequency, and update
velocities and location / solutions [Eq. 2 to 4],																																													 1∗ ,																																																				 2,																																																																 3
if 0,1 	

Select the best solution in the current population
Generate a local solution around the best solution

end if
if 0,1 	

Accept the new solutions
Increase and reduce

end if
Rank the bats and find the current best

End while
[6]. Postprocess results and visualization

Fig. 1. Pseudo code of the bat algorithm (BA) according to [7].

B. BAapp Application Implementation
We have created three classes called Main.cs,

Population.cs, and Bats.cs IComparable interface class, for
implementing of BTapp.

Fig. 2. Bat algorithm application screenshots

The Main class consists of several methods and functions
as shown in Fig. 3. The attributes in the main class are defined
according to the representation in Yang [3]. initialPopulation
operation initializes the population of bats via the object of
type bats array (i.e. by calling the constructor in the Population
class). The optimize method controls all the execution process
for the bat algorithm. Upon initialization, the Bat algorithm
actual iterates from step5 to step 5 (refer to pseudo code in Fig.
1). getPosition is the method used to return the index of the
best position of the best fitness. As the name suggests, the
method getFitness is in charge of calculating the fitness
functions. The other methods described in the main class have
auxiliary purposes (i.e. to display the result and make them
readable).

The main aim for the Population class is to initialize the
attributes for the bat algorithm (i.e. through an interface
object). Here, the constructor initializes a sub-object form the
interface class Bats for all defined bats. Each sub-object in the
main object bats is from the type IComparable where each
object has a four attributes; positions array, velocity value,
fitness value and frequency value respectively. Each row
represents an interface object. This interface reduces the
number of the variables, which are needed in classic
implementation.

Fig. 3. Bat algorithm application (BAapp) class diegram

The fitness value for each bat object is calculated based on
the problem domain selected in the execution. The frequency
value and the velocity value are calculated using the equation



[1-3]. The best fitness from each iterative generation is stored
in bestPosition in Array in the main class. In each iteration, the
BA finds new position for each bat and compares the new
positions fitness with the best position fitness. If there are
improvements, the position for the new improved fitness
selected as best position. Upon completion, the best solution
(i.e. minimum or maximum) for the problem is found and
displayed on the screen (see Fig. 2).

III. BACTERIAL FORAGING OPTIMIZATION ALGORITHM
IMPLEMENTATION

A. Bacterial foraging optimization algorithm (BFO)
Bacterial foraging optimization algorithm (BFO) is inspired

by the intelligence social behaviors of E-Coli bacteria.
Specifically, it is based on bacteria swarming and foraging
behaviors. There are five main steps: chemotaxis, swarming,
reproduction, elimination and dispersal [8, 9]. These steps can
be seen in the pseudo code of BFO at Fig. 4.

The pseudo code of Bacterial foraging optimization algorithm

[1] Initialize parameters	 , , , , , , , 	 1,2,… , , .
[2] Elimination-dispersal loop: 1.
[3] Reproduction loop: 1.
[4] Chemotaxis loop: 1.

[a]. For 1, 2, … , take a chemotactic step for bacterium i as
follows.

[b]. Compute fitness function, 	 , , , .
Let, , , , , , , 	 	 , , , 	 , ,
(i.e. add on the cell-to cell attractant–repellant profile to simulate
the swarming behavior)
Where, J is defined in (2)., 0 , 			 0,1 . , , 									 4

[c]. Let , , , to save this value since we may find better
value via a run.

[d]. Tumble: Generate a random vector ∈ 	 with each element, 1, 2, … , 	 a random number on [-1, 1].
[e]. Move: Left 1, , , , 	 												 5

This results in a step of size C i in the direction of the tumble for
bacterium i.

[f]. Compute J i, j 1, k, l with Let, J	 i, j, k, l J	 i, j, k, l	J 	 θ 	j, k, l , P 	j, k, l 	
Swim:
Let m 0 (counter for swim length).
While m 	N (if has not climbed down too long)

Let 1.
If , 1, , 	 ,
let 	 	 , 1, , .
And move left as it in equation (6).
And use this 	 	 1, , to compute
the new 	 , 	 1, , as we did in [f].
Else, let 	 .

End While.
[g]. Go to next bacterium 1 . if ,  do Compute fitness

function as in [b] for 	 , , , .		Process the next bacterium.
[5] If 	 	 , go to Step [3] Reproduction loop. In this case, continue

chemotaxis since the life of the bacteria is not over.
[6] Reproduction:

[a]. For the given k and l, and for each i 1, 2, … , S,, , , 																																			 6

be the health of the bacterium i (a measure of how many nutrients
it got over its lifetime and how successful it was at avoiding
noxious substances). Sort bacteria and chemotactic parameters

in order of ascending cost J (higher cost means lower
health).

[b]. The bacteria with the highest values die and the
other bacteria with the best values split and the copies that
are made are placed at the same location as their parent.

[7] If go to Step [3] Elimination-dispersal loop. In this case the
number of specified reproduction steps is not reached and start the next
generation in the chemotactic loop.

[8] Elimination-dispersal: For 	 	1,2. . . , , with probability , eliminate
and disperse each bacterium, and this result in keeping the number of
bacteria in the population constant. To do this, if a bacterium is
eliminated, simply disperse one to a random location on the optimization
domain. If 	 	 , then go to step [2]; otherwise end.

Fig. 4. Pseudo code of the Bacterial foraging optimization algorithm
according to [10].

B. BFOapp Application Implementation
We have created three classes called Main.cs, Colony.cs,

and Bacterium.cs IComparable interface class, for
implementing of BFOapp.

Fig. 5. Bacterial foraging optimization algorithm application screenshots

The Main class consists of several methods and functions
(see Fig. 6). The attribute in the main class represented
according to the representation in Passino [2]. initialColony
operation initializes the colony of bacteria as object of type
Bacterium array by calling the constructor in the colony class.
The optimize controls all the execution process for the bacterial
foraging optimization (from step [2] to step [8] in Fig. 4). The
getPosition method returns the index of the best position of the
best fitness. The method getCost is in charge with the
calculation of the fitness function for each Bacterium position.
The other methods described in the main class have auxiliary
purposes (i.e. to display the result and make them readable).

The main aim for the Colony class is to initialize all the
attributes for the bacterial foraging optimization algorithm (i.e.
through an interface object). Here, the constructor initializes a
sub-object form the interface class Bacterium for all defined
bacteria. Each sub-object in the main bacteria object is of type
IComparable. Each object has four attributes; position array,
Cost value, PreviousCost value and Health value. Each row
represents an interface object. This interface reduces the



number of the variables, which are needed in classic
implementation.

The cost value for each Bacterium object is calculated
based on the problem domain selected in the execution. Here,
the first generation position of the colony located randomly in
the problem range. The health value and is calculated using the
equation [6].

Fig. 6. Bacterial foraging optimization application (BFOapp) class
diegram

The best cost from the first generation is stored in
bestPosition array in the main class. The main iteration of the
BFO starts by looping in the number of elimination of
dispersal steps, reproduction steps and chemotactic steps in

sequence. In each iteration, BFO finds new position for each
bacterium and compares the new position’s cost with the
previous cost. If there are improvements, the position for the
new improved fitness selected as best position. Upon
completion, the best solution (i.e. minimum or maximum) for
the problem is found and displayed on the screen (see Fig. 5).

IV. TEST RUN AND RESULTS

For our test, we run the optimization tests for all the
functions from BTapp and BFOapp and recorded the results.
Our test is performed on Intel® Core ™ i7-3770 (3.40GHz,
3MB L3, 256KB L2, 32KB L1 cache) with 4GB of RAM on
Windows 7 Operating System with Visual Studio 2013. We
show the result of time performance (in milliseconds).

The Bat algorithm implemented in BTapp takes the
following parameter values. The population size nBats = 40
(typically 10 to 40 bats [3] for the population), number of
generation = 1000, loudness = 0.5, rate of pulse emission Q =
0.5 with frequency range of [0,2] and tolerance = 0.001.
Notice: that we fixed the dimension of all the functions equal to
2.  As for the Bacteria Foraging Algorithm (BFO) implemented
in BFOapp, we set the colony size S = 50 (typically divisible
by 2), chemotactic steps Nc =100, maximum swim steps Ns = 4,
reproduction steps Nre =4, dispersal steps Ned = 2, probability of
dispersal Ped = 0.25, and basic bacteria movement Ci = 0.01.

We have selected 12 standard benchmark functions in [11]
and fixed our test with 2 diminutions for all the benchmark
functions. Here, the two diminutions of the selected standard
benchmark functions have been chosen carefully from the
standard benchmark functions survey described in [11]. In this
case, we get the best and worst solution for each function. We
also calculate the mean and standard deviation for the 30 runs
result (for statistical significance).

A. Test Functions
1) The Rastrigin’s function:10 	 10 2 													 7

subject to [−5.12 ≤ xi ≤ 5.12]. It has global minimum
located at x* = (0, ..., 0), f(x*) = 0.

2) Egg Crate function: 25	 	 	 						 8
subject to [−5 ≤ xi ≤ 5]. It has global minimum located at x*

= (0, 0), f(x*) = 0.

3) Bartels Conn function:| | | | | |	 9
subject to [−500 ≤ xi ≤ 500]. It has global minimum located
at x* = (0, 0), f(x*) = 1.

4) Beale Function: 1.52.25 	2.625 																									 10
subject to [−4.5 ≤ xi ≤ 4.5]. It has global minimum located
at x* = (3, 0.5), f(x*) = 0.



5) Bohachevsky Function 1:= + 2 − 0.3 cos 3− 0.4 cos 4 + 0.7																	 (11)
subject to [−100 ≤ xi ≤ 100]. It has global minimum located
at x* = (0, 0), f(x*) = 0.

6) Bohachevsky Function 2:= + 2 − 0.3 cos 3∗ 0.4 cos 4 + 0.3																							(12)
subject to [−100 ≤ xi ≤ 100]. It has global minimum located
at x* = (0, 0), f(x*) = 0.

7) Bohachevsky Function 3:= + 2 − 0.3 cos 3 + 	4+ 0.3																																													(13)
subject to [−100 ≤ xi ≤ 100]. It has global minimum located
at x* = (0, 0), f(x*) = 0.

8) Booth Function:= + 2 − 7 + 	 2 + − 5 						(14)
subject to [−10 ≤ xi ≤ 10]. It has global minimum located at
x* = (1, 3), f(x*) = 0.

9) Camel – Six Hump Function:= 4 − 2.1 + 3+ 	 + 4 − 4 																	(15)
subject to [−5 ≤ xi ≤ 5]. It has global minimum located at x*

= ({-0.0898, 0.7126}, {0.0898, - 0.07126}), f(x*) = -1.0316.

10) Deckkers-Aarts Function:= 10 + − ++ 10 + 																													(16)
subject to [−20 ≤ xi ≤ 20]. It has a global minimum located
at x* = (0, 15), f(x*) = -24777.

11) Himmelblau Function:= 	 + − 11 + + − 7 						(17)
subject to [−5 ≤ xi ≤ 5]. It has a global minimum located at
x* = (3, 2), f(x*) = 0.

12) Parsopoulos Function:= 	 sin 	cos 																		(18)
subject to [−5 ≤ xi ≤ 5]. It has 12 global minimum located at
x*  R2, f(x*) = 0.

B. Result for the experiment

TABLE I. RESULT OF BAAPP

Fun.
Result for Bat Algorithm (BTapp)

Best Worst Means St.Dev Time(ms)

f1 4.99E-04 2.29649 1.21333 6.71E-01 155

f2 1.27E-04 1.30036 3.18E-01 3.48E-01 354

f3 1.29393 260.301 91.7337 74.8549 252

f4 1.18E-06 8.41E-03 3.74E-03 2.65E-03 335

f5 8.07E-02 13.0098 5.14899 3.65217 245

f6 -2.4E-03 17.3774 5.16764 4.47657 250

Fun.
Result for Bat Algorithm (BTapp)

Best Worst Means St.Dev Time(ms)

f7 1.11E-02 26.1169 7.04784 6.65011 212

f8 8.57E-06 2.98E-01 9.43E-02 8.28E-02 175

f9 -1.03156 -9.5E-01 -1.00542 2.17E-02 333

f10 -24775.2 -21498.6 -23801.7 909.526 585

f11 1.05E-05 3.61E-01 7.45E-02 9.02E-02 301

f12 1.00E-05 2.54E-02 6.54E-03 6.40E-03 175

TABLE II. RESULT OF BFOAPP

Fun.
Result for Bacterial Foraging Optimization Algorithm

(BFOapp)
Best Worst Means St.Dev Time(ms)

f1 1.69E-08 9.95E-01 5.30E-01 5.04E-01 297

f2 1.98E-09 2.12E-06 4.41E-07 4.31E-07 712

f3 1.00000 10862.4 3273.97 3465.19 724

f4 2.68E-10 2.86E-07 1.01E-07 6.59E-08 777

f5 2.42E-01 314.868 41.7957 85.5574 689

f6 1.29E-02 314.468 30.3813 79.2000 689

f7 4.61E-07 212.196 30.9777 54.1435 600

f8 1.34E-10 3.33E-07 8.14E-08 8.38E-08 436

f9 -1.03162 -1.03162 -1.03162 7.69E-08 706

f10 -24776.5 -24776.5 -24776.5 1.23E-03 1395

f11 8.59E-09 1.21E-06 2.99922 3.28E-07 652

f12 1.72E-10 4.23E-08 1.27E-08 1.20E-08 506

Fig. 7. Time of optimization  process for the two algorithms.
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V. DISCUSSION AND CONCLUSION

At a glance, the iterations for both BTapp and BFOapp
appear different which may nullify the comparison. A counter
argument suggests otherwise. Although there are parameter
differences, the number of minimum iteration for both
algorithms are the same.  As for the Bat algorithm has two
control loop the other loop is for the local search (see Fig. 1),
the minimum iteration for BA = 1000 generation * 40 bats =
40000 iterations. Concerning BFO algorithm has four control
loop (see Fig. 4), the minimum iteration for BFO = 100
chemotactic step * 4 reproduction step * 2 dispersal steps * 50
colony size = 40000 iterations.

In our experiments, we found that BFO gives more accurate
solution as compared to BA. The result is expected as BFO
also performs local search when the results is not converging
well resulting in to significant increase in execution time.
Expectedly, BA yield faster convergence to solution. (see
Table 1 and Table 2).

Our contention is to use an optimal and fast algorithm for
our t-way data test generation strategy. For this reason, we
have opted for the Bat algorithm for our work [12-15]. As the
scope of future work, we are currently modeling and
implementing our t-way strategy using the Bat algorithm.
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