Evaluation Of The Bio-Kinetics Of Cement Kiln Dust In An Upflow Anaerobic Sludge Blanket Reactor For Treatment Of Palm Oil Mill Effluent As A Function Of Hydraulic Retention Time

Anwar Ahmad^a, Rumana Ghufran^b

ABSTRACT

In this paper we operated an upflow anaerobic sludge blanket reactor (UASBR) continuously at 35 °C in order to observe the effects of varying the hydraulic retention time (HRT) from 3.5 to 34.5 d and varying the organic loading rate (OLR) from 1.5 to 46 kg COD m⁻³ d⁻¹. The pH of the digester improved, which we varied from 1.5 to 14.5 g L⁻¹ CaO-CKD, a range pH 7.5. A high COD degradation rate of 97% and mixed liquor suspended solids (MLVSS) of 99,000 mg L⁻¹ were achieved at an HRT of 24.5 d. The maximum methane yield was 0.346 I CH₄/g COD_{removed}. A CO₂ reduction of 87% was obtained at an OLR of 26.5 (r = 0.99). The optimum conditions for digestion of the palm oil mill effluent were determined by studying the bio-kinetics of granulation. The growth yield (Y_G) was 1.45 g VSS/g COD_{removed} day; the specific biomass decay (b) was 0.056; the specific biomass growth rate (μ_{max}) was 0.988 d⁻¹; the saturation constant (K_s) was 460; and the critical retention time (Θ_c) was 2.464 d⁻¹. With a feed flow rate (Q_F) of 1.65 l/d, the upflow velocity (V_{up}) was 0.6 m/h, and for a Q_F of 2.45 l/d, V_{up} was 0.75 m/h.

KEYWORDS: Bio-kinetics; Hydraulic retention time; Granules; Biogas; CO₂ reduction

DOI: 10.1016/j.seppur.2014.06.047

^a Department of Civil Engineering, College of Engineering, King Saud University (KSU), PO Box 800, Riyadh 11421, Saudi Arabia

^b Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Malaysia